Answer Sheet No	<u> </u>
Sig. of Invigilator	<u>.</u> .

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Time	allowe	d:	25	Min	ites

(x)

NOTE:- Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered

Q. 1	Circl	Circle the correct option i.e. A / B / C / D. Each part carries one mark.									
	(i)	i ¹⁸ =									
			3	B.	2	C.	1	D.	–1		
	(ii)	$\frac{4}{1+i}$	- is	-							
		A.	1+i	В.	1- <i>i</i>	C.	2(1+i)	D.	2(1-i)		
	(iii)	(xC	¬γ ^C) =	_							
		A.	$x \cap y$	₿.	$x \cup y$	C.	(x ∩ y)°	D.	None of these		
	(iv)	lf ($\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 \end{bmatrix}$	-1 5 12 3	then X=		_				
		Α.	$\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$	В.	$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$	C.	$\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$	D.	$\begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$		
	(v)	For v	vhat value of m	, the roots	of the equatio	n (m+1)x ²	+2(m+3)x+m+8	3≖0 are e	qual?		
		A.	<u>-1</u>	B.	$\frac{2}{3}$	C.	-1 3	D.	None of these		
	(vi)	If ω is the cube roots of unity, then a quadratic equation whose roots are 2ω and $2\omega^2$ is									
		A.	$x^2 + 2x + 4$	= 0		В.	$x^2 - 2x + 4$	= 0			
		C.	$x^2 + x + 4 =$	= 0		D.	$x^2 + 2x - 4$	= 0			
	(vii)	if deç	gree of P(x)=3 a	and degre	e of Q(x)=4, th	en $\frac{P(x)}{Q(x)}$ w	ill be	<u> </u>			
		A.	Proper Ratio	onal Fracti	ion		B. Impr	oper Rat	ional Fraction		
	4 ""	Ç.	Polynomial					e of these	9		
	(viii)		care in G.P an						·		
		Α.	A.P	В.	G.P	C.	H,P	D.	None of these		
	(ix)	If $\frac{1}{a}$,	$\frac{1}{b}$, $\frac{1}{c}$ are in A.P the	nen the co	ommon differer	ice is					
		A.	<u>a – c</u> 2ac	В.	2ac a - c	C.	<u>a + c</u> 2ac	D.	2ac a + c		

A card is drawn from a pack of 52 cards at random. What is the probability that it is either a heart

B. $\frac{1}{13}$ C. $\frac{9}{13}$ D. $\frac{2}{13}$

DO NOT WRITE ANYTHING HERE

(xi)	1 (167)	niddle terms in ti	no exha	, ,								
	Å.	5 th term	В.	7 th term	C.	8 th term	D.	6 th term				
(xil)	Circu	lar measure of ti	ne angle	between the ha	nds of a	watch at a 4'O o	lock is _					
	À.	$\frac{\pi}{6}$ radians	₿.	$\frac{2\pi}{3}$ radians	C.	$\frac{3\pi}{4}$ radians	D.	$\frac{\pi}{3}$ radiens				
(ilix)	lf tan	$\theta = \frac{2}{5}$ and $0 < \theta < \frac{\pi}{2}$	then $\frac{4}{2}$	$\frac{\cos\theta + 3\sin\theta}{\cos\theta - \sin\theta} = \underline{\hspace{1cm}}$								
	A .	14 3	В.	<u>26</u> 3	C.	13 7	D.	None of these				
(xiv)	The a	angles 90°±θ,186	0°±θ, 27	0°± <i>0</i> ,360°± <i>0</i> are	the	angle.						
	Å.	Composite	₿.	Haif	C.	Quadrantal	D.	Allied				
(xv)	The p	period of $3\cos\frac{x}{5}$	is	. <u></u>								
	À.	5π	₿.	2π	C.	10π	Ď.	6π				
(xvi)	The i	The in-radius r of a triangle is given by										
	Å.	sΔ	В.	<u>∆</u> s	C.	<u>\$</u> Δ	D.	None of these				
(xvii).	sin	$\cos^{-1}\frac{\sqrt{3}}{2}$.								
	Å.	0	В.	$\frac{1}{2}$	C.	<u>1</u>	D.	$\frac{\sqrt{3}}{2}$				
(xvili)	Ħα	and $oldsymbol{eta}$ are the r	oots of t	he equation x^2	– (p – 1)x	+ c = 0 then (1+a	r)(1+β)=					
	- 1	1-c	₿.	c–2	C.	-c	D.	None of these				
(xix)		h term of 64,60,8		is zero?				,				
	A .	16 th	B.	17 th	C.	14 th	D.	15 th				
(xx)	Multip	olicative inverse	of 1 2	is=								
	A.	$\frac{1-2i}{5}$	В.	$\frac{1+2i}{5}$	C.	$\frac{1+2i}{4}$	D.	None of these				
For Ex	camine	r's use only:		-		· ·						
	!				Tota	Marks:		20				
					Mark	s Obtained:						

Page 2 of 2(Math)

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE:- Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Attempt any TEN parts. All parts carry equal marks. Q. 2

 $(10 \times 4 = 40)$

(i) Simplify
$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$$

(ii) Without expansion verify that
$$\begin{bmatrix}
1 & a^2 & \frac{a}{bc} \\
1 & b^2 & \frac{b}{ca} \\
1 & c^2 & \frac{c}{ab}
\end{bmatrix} = 0$$

- Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but opposite in signs. Find the sum of 20 terms of the series whose rth term is 3r+1. (iii)
- (iv)

(v) Resolve into Partial Fraction
$$\frac{9x-7}{(x^2+1)(x+3)}$$

(vi) Show that
$${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$$

(vii) Find the term independent of x in the expansion of
$$\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$$

(viii) If
$$\cot \theta = \frac{m^2 - 1}{2m}$$
 and $0 < \theta < \frac{\pi}{2}$ find the value of remaining trigonometric ratios.

(ix) If
$$\sin \alpha = \frac{12}{13}$$
, then find the values of $\sin 2\alpha$ and $\cos 2\alpha$, where $0 < \alpha < \frac{\pi}{2}$

- Draw the graph of $y = \tan x$, $x \in [-\pi, \pi]$ Graph paper should be given to the candidates. (x)
- Solve the triangle ABC if $\alpha = 35^{\circ}\,17'$, $\beta = 45^{\circ}\,13'$, b = 421(xi)

(xii) Show that
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$

(xiii) Solve
$$2x - y = 4$$
 and $2x^2 - 4xy - y^2 = 6$

(xiv) Show that the statement
$$\sim q \land (p \rightarrow q) \rightarrow \sim q$$
 is a tautology.

SECTION - C (Marks 40)

Attempt any FIVE questions. All questions carry equal marks. Note:-

 $(5 \times 8 = 40)$

- Q. 3 Prove that $\sqrt{3}$ is an irrational number.
- Find the value of λ for which the system has non-trivial solutions. Also find solution for the value of λ

$$x + y + z = 0$$

$$2x + y - \lambda z = 0$$

$$x + 2y - 2z = 0$$

Show that roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are real and will be equal only if a=b=c

Q. 6 If
$$m$$
 and n are nearly equal show, that $\left(\frac{5m-2n}{3n}\right)^{\frac{1}{3}} \approx \frac{m}{m+2n} + \frac{n+m}{3n}$

Q.7 If
$$\alpha, \beta, \gamma$$
 are the angles of a triangle ABC, then show that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$

Q. 8 Prove that
$$r = \frac{\Delta}{s}$$
 with usual notation. Also show that $r_1 = s \tan \frac{\alpha}{2}$

Q. 9 Solve the equation
$$\sin^2 x + \cos x = 1$$

Time allowed: 25 Minutes

(viii)

Answer Sheet No	
Sig. of Invigilator	

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

NOTE:	que	stion p		should	be completed	in the	first 25 minu	tes an	to be answered on the d handed over to the noil.			
Q. 1	Circle the correct option i.e. A / B / C / D. Each part carries one mark.											
	(i)	$i^{20} = \underline{\hspace{1cm}}$										
		A.	3	В.	2	C.	1	D.	0			
	(ii)	$\frac{2}{1+i}$	= <u></u>									
		A.	1+i	₿.	1-i	C.	2(1+i)	D.	2(1-i)			
	(iii)	If A h	If A has 3 elements, B has 5 elements then maximum numbers of elements in $A \cup B$ is									
		A.	5	B.	3	C.	2	D.	8			
	(iv) If $A = \begin{pmatrix} 1 & -1 \\ a & b \end{pmatrix}$ and $A^2 = I$ then a and b are											
		A.	a = 0 , b = -1	B.	a=1.b=0	C.	a = 2 , b = 1	D.	a = 3, b = 0			
	(v)	For w	hat value of k, th	e sum of	roots of the equ	uation x	² + <i>kx</i> + 4 = 0 is	equal	to the product of its roots?			
		A.	±1	B.	±4	C.	4	Ð.	-4			
	(vi)	If the	If the roots of $x^2 - px + q = 0$ differ by unity then $p^2 - 4q = $									
		A.	0	B.	1	C.	2	D.	–1			
	(vii)	The ra	ational fraction	<u>P(x)</u> Q(x)	per Rational Fraction if							
		A.	DegP(x) = i	DegQ(x	:)	В.	DegP(x) < t	DegQ((x)			
		C.	DegP(x) > 0	DegQ(x	·)	D.	None of these					

If a^2,b^2,c^2 are in A.P., then a+b,c+a,b+c are in____ H.P None of these If $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in H.P., then the value of k is____ (ix) A die is rolled, what is the probability of getting a number which is even and greater than 2? (x)

The expansion of $(1-2x)^{-\frac{1}{3}}$ is valid if

(xi) A. |x| < 1 B. |x| > 1 C. $|x| > \frac{1}{2}$ D. $|x| < \frac{1}{2}$

DO NOT WRITE ANYTHING HERE

(xii)	10 =							
	A .;	$\frac{\pi}{180}$ radian	В.	$\frac{180}{\pi}$ radian	C.	$\frac{1}{180\pi}$ radian	D.	180 <i>π radiar</i>
(xili)	If cos	$ heta\!-\!rac{\sqrt{3}}{2}$ and ter	minal sic	te of the angle is	s not in 3	rd quadrant then	sin <i>0</i>	s
	Α.	$-\frac{1}{2}$	В.	1 2	C.	$\frac{\sqrt{3}}{2}$	D.	None of these
(xiv)	A refer	ence angle $ heta$ is	always_		_			
	A.	$0 < \theta < \frac{\pi}{2}$	В.	$\frac{\pi}{2} < \theta < \pi$	C.	$0 < \theta < \pi$	D.	None of these
(xv)	The pe	riod of $5\cos\frac{x}{3}$	is					
	A .	3π	8.	2π	C.	6 <i>π</i>	D.	$\frac{5}{2}\pi$
(ivx)	The in-	radius r of a tria	ngle is g	iven by		_		
	A. ;	$\frac{\Delta}{s}$	В.	abc 4∆	C.	$\frac{c}{2\sin r}$	Ð.	$\frac{1}{2}bc\sin A$
(iivx)	cos(2	sin-1 x) =						
	Α.	$1 - 2x^2$	В.	$1+2x^2$	C.	$2x^2 - 1$	Ð.	$1-x^2$
(xviii)		oots of ax2+t)x + c =	0 are real and	unequal t	then		
	A.	$b^2 - 4ac < 0$			B.	$b^2 - 4ac > 0$		
	C.	$b^2 - 4ac = 0$			D.	$b^2 - 4ab = 0$		
(xix)	2+(1-	$-i)+\left(\frac{1}{i}\right)+\ldots$	is in_					
	A.	A.P	В.	G.P	C.	H.P	D.	None of these
(xx)	$if z_j = 1$	$1 + 2i, z_2 = 2 + i$, then $\overline{(z)}$	z ₁ z ₂) is				
	A .	$\frac{4-3i}{5}$	В.	$\frac{4+3i}{5}$	C.	-5i	D.	None of these
For Ex	caminer'	s use only:		_				
					Total N	Marks:		20

---- 1HA 1211 (ON) ----

Marks Obtained:

Page 2 of 2(Math)

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks. $(10 \times 4 = 40)$

(i) If
$$z_1 = 2 + i$$
, $z_2 = 3 - 2i$, $z_3 = 1 + 3i$ then express $\frac{\overline{z_1} \cdot \overline{z_3}}{\overline{z_2}}$ in the form of $a + bi$

(ii) Find the matrix A if
$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} A = \begin{pmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{pmatrix}$$

(iii) If
$$\alpha$$
, β are the roots of $3x^2 - 2x + 4 = 0$, then find the value of $\alpha^3 + \beta^3$

(v) Resolve
$$\frac{x^2 + x - 1}{(x + 2)^3}$$
 into partial fraction.
(vi) Show that ${}^{15}C_{11} + {}^{15}C_{10} = {}^{16}C_{11}$

(vi) Show that
$${}^{15}C_{13} + {}^{15}C_{10} = {}^{16}C_{11}$$

(vii) Find the sixth term from the end in the expansion of
$$\left(\frac{3}{2}x - \frac{1}{3x}\right)^{11}$$

(viii) Prove that
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
; where $\theta \neq (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$

(ix) Express
$$5\sin\theta - 4\cos\theta$$
 in the form $r\sin(\theta + \phi)$ where $0 < \theta < \frac{\pi}{2}$, $0 < \phi < \frac{\pi}{2}$

(xi) Solve the triangle ABC if
$$\gamma = 53^{\circ}$$
, $\alpha = 47^{\circ}$, $b = 125$

(xii) Show that
$$\sin^{-1}(-x) = -\sin^{-1}x$$

(xiii) Solve
$$x + y = 7$$
 and $x^2 - xy + y^2 = 13$

(xiv) Construct the truth table for
$$\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$$

SECTION - C (Marks 40)

Attempt any FIVE questions. All questions carry equal marks. Note:-

 $(5 \times 8 = 40)$

Prove that $\sqrt{3}$ is an irrational number. Q. 3

Q. 4 Find the inverse of the matrix
$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{pmatrix}$$

Q. 5 Solve the equation $\sqrt{3x^2 - 5x + 2} + \sqrt{6x^2 - 11x + 5} = \sqrt{5x^2 - 9x + 4}$

Q. 5 Solve the equation
$$\sqrt{3x^2 - 5x + 2} + \sqrt{6x^2 - 11x + 5} = \sqrt{5x^2 - 9x + 4}$$

Q. 6 If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
 then prove that $y^2 + 2y - 4 = 0$

Q. 7 Let
$$\alpha$$
 and β be any two angles (real numbers), then $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

Q. 8 Prove that
$$abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$$

Q. 9 Find the solution set of
$$\cos ecx = \sqrt{3} + \cot x$$