Roll No.			
Sig. of Car	ndidate.		

Answer Sheet No	
Sig. of Invigilator	

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Circ	Circle the correct option i.e. A / B / C / D. Each part carries one mark.										
(i)	Multip	Multiplicative inverse of -i is									
	Α.	i	В.	-i	C.	1	D.	-1			
(ii)	Contr	rapositive of p	\rightarrow q is_								
	Α.	$p \rightarrow \sim q$	В.	$\sim q \rightarrow \sim p$	C.	$-p \rightarrow q$	D.	None of these			
(iii)	If A is	If A is a matrix of order m×n and B is a matrix of order n×p, then order of AB will be									
	Α.	$p \times m$	B.	$p \times n$	C.	$m \times p$	D.	None of these			
(iv)	When	When polynomial $x^3 + 4x^2 - 2x + 5$ is divided by $x - 1$, the remainder is									
	Α.	6	В.	4	C.	8	D.	0			
(v)	Partia	I Fractions of ${x}$	$\frac{1}{(x+1)}$	are	-						
	Α.	$\frac{1}{x} - \frac{1}{x+1}$	В.	$\frac{1}{x} + \frac{1}{x+1}$	C.	$\frac{1}{x} + \frac{2}{x+1}$	D.	$\frac{1}{x} - \frac{2}{x+1}$			
(vi)	For w	For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean between a and b?									
	A.	n= -1	В.	1	C.	1/2	D.	0			
(vii)	Facto	Factorial form of $\frac{(n+1)(n)(n-1)}{3.2.1}$ is									
	Α.	<u>(n−1)!</u> 3!.2!			В.	$\frac{(n+1)!}{3!(n-2)!}$					
	C.	$\frac{n!}{3!(n-2)!}$			D.	None of these					
(viii)	The s	The sum of coefficients in the Binomial expansion is equal to									
	Α.	2 ⁿ	В.	2"-1	C.	2n	D.	0			
(ix)	54°4	$54^{\circ}45' =$ radians									
()	Α.	0.958	В.	0.0175	C.	0.65	D.	None of these			
(x)	For tv	For two mutually exclusive events A and B, we have									
	A.	$AUB = \phi$	В.	$A \cap B = \phi$	C.	$AUB = A \cap B$	D.	None of these			
(xi)	What	What is the middle term in the expansion of (a+b) n for even values of n?									
17.025	9/20	n+1	В.	n+3	C.	n	D.	$\frac{n}{2} + 1$			
	A	-	В.		U.		U.				

DO NOT WRITE ANYTHING HERE

- Period of 3 cos $\frac{x}{5}$ is_ (xii)

- None of these

- $\sin 2\theta =$ (xiii)

- None of these

The value of C in the given triangle is (xiv)

- В.
- 8√2

C.

None of these

- Hero's Formula is used to calculate
 - Area of a triangle

Sides of a triangle B.

Angles of a triangle C.

None of these

- 2tan-1 A= (xvi)
 - $\tan^{-1}\frac{A}{1-A^2}$ B. $\tan^{-1}\frac{A^2}{1-A}$ C. $\tan^{-1}\frac{2A}{1-A^2}$ D.
- None of these

- Solution set of equation 1+cosx=0 is_ (xvii)
- $\left\{\pi+n\pi\right\}$ B. $\left\{2\pi+n\pi\right\}$ C. $\left\{\pi+2n\pi\right\}$ D.

- Harmonic Mean between a and b is_ (xviii)

- If α , β are the roots of $ax^2 + bx + c = 0$, then $\alpha^2 + \beta^2 =$ (xix)

- $\frac{b^2 2ac}{a^2} \qquad \text{C.} \qquad \frac{b^2 4ac}{a^2}$
- None of these

- A bijective function is_ (xx)
 - A. Both one-one and onto
- One -one but not onto B.
- C. Onto, but not one-one
- D. Neither one-one nor onto

For Examiner's use only:

Total Marks:

Marks Obtained:

--1HA 1111(L) ----

Page 2 of 2 (Math)

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

IOTE:- Answer any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

(i) Simplify by expressing in the form a+bi

$$\frac{2}{\sqrt{5+\sqrt{-8}}}$$

(ii) Construct truth table for the following statement:

$$(p \land \sim p) \rightarrow q$$

- (iii) If $A = \begin{pmatrix} 5 & 3 \\ 1 & 1 \end{pmatrix}$, find A^{-1}
- (iv) Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$
- (v) Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fractions.
- (vi) The A.M of two positive integral numbers exceeds their (positive) G.M. by 2 and their sum is 20. Find the numbers.
- (vii) In how many ways can 8 books including 2 on English be arranged on a shelf in such a way that English books are never together.
- (viii) Find the term involving y^3 in the expansion of $(x \sqrt{y})^{11}$
- (ix) With usual notations prove that $\theta = \frac{\ell}{q}$
- (x) Prove that $sin780^{\circ} sin480^{\circ} + cos120^{\circ} sin30^{\circ} = \frac{1}{2}$
- (xi) Draw the graph of y=2cosx for the interval $[0,\pi]$ by tabulating its values at subintervals of $\frac{\pi}{6}$.
- (xii) The sides of a triangle are $x^2 + x + 1, 2x + 1$ and $x^2 1$. Prove that the greatest angle of the triangle is 120^0
- (xiii) Prove that $\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$
- (xiv) Solve the equation $2 \sin\theta + \cos^2 \theta 1 = 0$

SECTION - C (Marks 40)

Note:- Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

Q. 3 If x is so small that its square and higher powers may me neglected, then show that

$$\frac{(1+x)^{1/2}(4-3x)^{3/2}}{(8+5x)^{1/3}} \approx 4\left(1-\frac{5x}{6}\right)$$

- Q. 4 Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- Q.5 Solve the equation $\sqrt{5x^2 + 7x + 2} \sqrt{4x^2 + 7x + 18} = x 4$
- Q. 6 Use Matrices to solve the following system:

$$2x_1 + x_2 + 3x_3 = 3$$

$$x_1 + x_2 - 2x_3 = 0$$

$$-3x_1 - x_2 + 2x_3 = -4$$

- Q. 7 A man standing on the bank of a canal observes that the measure of the angle of elevation of a tree on the other side of the canal is 60° . On retreating 40 metres from the bank, he finds the measure of angle of elevation of
- the tree as 30°. Find the height of the tree and width of the canal.

 Q. 8 If the numbers 1,4 and 3 are subtracted from three consecutive terms of an A.P, the resulting numbers are in G.P. Find the original numbers if their sum is 6.
- Q. 9 Find the solution set of the equation $\cos 2x = \sin 3x$