Gleapter 08 (Objectives)
 MATHEAMATUCAL UNDUCTION \& BUNOAMAL THEOREA
 Textbook of Algebra and Trigonometry for Class XI

Fill in the blanks

1. devised the method of induction.
2. is used to prove that the sum of first n positive integers equals n^{2}.
3. The properties of integer can be proved by
4. The case or exception which fails the mathematical formula or statement is called \qquad
5. The of a formula is established if it is true for each element of set under consideration.
6. The method of mathematical induction is used to avoid
7. The method of mathematical induction is used to prove statement relating to sets of and numbers.
8. In mathematical induction, we suppose that statement is true for positive integer k, we show that it is true for
9. A statement in mathematical induction for which only one condition of mathematical induction satisfies is \qquad
10. There is no integer n for which 3^{n} is
11. The principle of is used to prove $S(i)$ is true for $i \neq 1$.
12. An algebraic expression consisting of two terms is called \qquad expression.
13. The formula for expansion of a binomial raised to any positive integral power is called
14. $(a+x)^{n}=$ \qquad
15. The rules of binomial theorem also hold if a and x are \qquad
16. $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots \ldots, ~\binom{n}{n}$ are called \qquad
17. In expansion of $(a+x)^{n}$, the number of terms are \qquad that its index.
18. The sum of exponents of a set a and x in binomial expansion is to its index.
19. $T_{r+1}=$
20. $T_{r+1}=\binom{n}{r} a^{n-r} x^{r}$ is called \qquad of the expansion.
21. In expansion of $(a+x)^{n}$, total number of terms is
22. If the term of expansion $(a+x)^{n}$ is independent of x, the exponent of x is
23. The sum of coefficients of a binomial expansion equals to \qquad
24. The sum of odd coefficients of a binomial expansion equals to the sum of its coefficients.
25. Symbols $\binom{n}{0},\binom{n}{1}$, etc are meaningless when n is a \qquad
\qquad
26. If n is negative number or fraction, then $T_{r+1}=$ \qquad
27. The binomial series are used for
of infinite sets.

01- Francesco Mourolico
03- Mathematical Induction
06- Infinite
09- False
10- Even
11- Extended Mathematical Induction
13- Binomial Theorem
16- Binomial Coefficient
19- $\binom{n}{r} a^{n-r} x^{r}$
22- Zero
25- Negative number, fraction
26- $\frac{n(n-1)(n-2) \ldots \ldots \ldots .(n-r+1)}{r!} x^{r}$

05- Validity
08- $k+1$

12- Binomial
15- Complex
18- Equal
21- $n+1$
24- Even

27- Summation

The End

Provided by: Adil Rauf乡Muhammad Nabil (F.Sc. PartI, FAZMIC Sargodha)
Session: 2003-05
Composed by: AtiqurRehman (http://www.mathcity.tk)

