Gkapter 08 (Objectives)

MATHEMATICAL INDUCTION & BINOMIAL THEOREM

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI

Fill in the blanks

1. devised the method of induction. is used to prove that the sum of first *n* positive integers equals n^2 . 2. The properties of integer can be proved by 3. 4. The case or exception which fails the mathematical formula or statement is called 5. The of a formula is established if it is true for each element of set under consideration. 6. The method of mathematical induction is used to avoid 7. The method of mathematical induction is used to prove statement relating to sets of numbers. 8. In mathematical induction, we suppose that statement is true for positive integer k, we show that it is true for 9. A statement in mathematical induction for which only one condition of mathematical induction satisfies is 10. There is no integer n for which 3^n is 11. The principle of is used to prove S(i) is true for $i \neq 1$. 12. An algebraic expression consisting of two terms is called expression. 13. The formula for expansion of a binomial raised to any positive integral power is called 14. $(a+x)^n = \dots$ 15. The rules of binomial theorem also hold if *a* and *x* are $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{n}$ are called 16. 17. In expansion of $(a + x)^n$, the number of terms are that its index. 18. The sum of exponents of a set a and x in binomial expansion is to its index. 19. $T_{r+1} = \dots$ 20. $T_{r+1} = \binom{n}{r} a^{n-r} x^r$ is called of the expansion. 21. In expansion of $(a + x)^n$, total number of terms is 22. If the term of expansion $(a + x)^n$ is independent of x, the exponent of x is 23. The sum of coefficients of a binomial expansion equals to 24. The sum of odd coefficients of a binomial expansion equals to the sum of its coefficients. 25. Symbols $\binom{n}{0}$, $\binom{n}{1}$, etc are meaningless when *n* is a or 26. If *n* is negative number or fraction, then $T_{r+1} = \dots$ 27. The binomial series are used for of infinite sets.

KEY (CHAPTER 7)

<i>01-</i>	Francesco Mourolico	<i>02-</i>	Mathematical Induction		
<i>03-</i>	Mathematical Induction	<i>04-</i>	Counter example	05-	Validity
<i>06-</i>	Infinite	07-	Natural, whole	<i>08-</i>	<i>k</i> +1
<i>09-</i>	False	10-	Even		
11-	Extended Mathematical Ind	ducti	on	12-	Binomial
13-	Binomial Theorem	14-	$\sum_{r=0}^{n} \binom{n}{r} a^{n-r} x^{r}$	15-	Complex
16-	Binomial Coefficient	17-	One greater	18-	Equal
19-	$\binom{n}{r}a^{n-r}x^r$	20-	General term	21-	<i>n</i> +1
22-	Zero	23-	2^n	24-	Even
25-	Negative number, fraction				
26-	$\frac{n(n-1)(n-2)\dots(n-r)}{r!}$	r + 1)	x^{r}	27-	Summation

The End

Provided by: Adil Rauf & Muhammad Nabil (F.Sc. Part I, FAZMIC Sargodha) Session: 2003-05

Composed by: Atiqur Rehman (<u>http://www.mathcity.tk)</u>