Gleapter 07 (Objectives) PERAUTATION, COABRNATION \& PROBABULITY
 Textbook of Algebra and Trigonometry for Class XI

Fill in the blanks

1. The factorial notation was introduced by
2. $0!=$
3. An arrangement of ' n ' objects such that one object is first, one is second, one is third and so on is called
4. $n!=n(n-1)($ \qquad).. 3•2•1
5. A permutation of ' n ' different objects taken $r(\leq n)$ at a time is denoted by
6. ${ }^{n} P_{r}=$
7. If $r=n$ then ${ }^{n} P_{r}=$
8. ${ }^{n} P_{r}=$ \qquad if $n=0$ and $r=0$.
9. Number of permutations of letters of word BITTER taken all at time $=$
10. The permutations of things which can be represented by points on a circle are called
11. The number of combinations of n different objects taken r at a time is denoted by
12. Formula for ${ }^{n} C_{r}=$ \qquad
13. ${ }^{n} C_{r} \times r$! $=$ \qquad
14. In $C(n, r)$ if $r=n$ then $C(n, r)=$ \qquad
15. In $\binom{n}{r}$ if $r=0$ then $\binom{n}{r}=$ \qquad
16. In ${ }^{n} C_{r}$ if $n=0$ and $r=0$ then ${ }^{n} C_{r}=$ \qquad
17. ${ }^{n} C_{r-1}=$ \qquad
18. Blaise Pascal and Pierre De Fermat introduced \qquad theory.
19. \qquad is numerical evaluation of a chance that a particular event would occur.
20. The set S containing all possible outcomes of a given experiment is called
21. A particular outcomes is called \qquad and is denoted by E.
22. An event E is \qquad of sample space S.
23. If a sample space S, and an event is A and another B, then if A and B are disjoint they are said to be
24. A and B are said to be equally likely events if each one of them has number of chances of occurrences.
25. Formula for addition of probability of event E is given by $P(E)=$ \qquad
26. Formula for addition of probabilities of A and B when A and B are disjoint is \qquad
27. $P(A \cup B)=$ \qquad when $B \subseteq A$ (A and B are overlapping)
28. Two event A and B are said to be if the occurrence of any one of then does not influence the occurrence of other event.

$\mathbb{K E} \mathbb{F}(\mathbb{C H} H P P T E R ~ 7) ~$

01- Christian Kramp	02- 1	03- Permutation
04- $n-2$	05- ${ }^{n} P_{r}$	06- $\frac{n!}{(n-r)!}$
07- $n!$	08- 1	09- $\frac{6!}{2}=360$
10- Circular permutation	11- ${ }^{n} C_{r}$	12- $\frac{n!}{(n-r)!\cdot r!}$
13- ${ }^{n} P_{r}$	14- 1	15- 1
16- 1	17- ${ }^{n} C_{r}$	18- Probability
19- Probability	20- Sample Space	21- Event
22- Subset	25- $\frac{n(E)}{n(S)}$, where S is sample space	
24- Equal	27- $P(A)+P(B)-P(A \cap B)$	28- Independent
26- $P(A \cup B)=P(A)+P(B)$		

Providedby: Adil Rauf乡MuhammadNabil (F.Sc. PartI, FAZMIC Sargodha)
Session: 2003-05
Composed by: Atiqur Rehman (http://www.mathcity.tk)

