Gkapter 07 (Objectives)

PERMUTATION, COMBINATION & PROBABILITY

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI

Fill in the blanks

- 1. The factorial notation was introduced by
- 2. 0!=
- 3. An arrangement of 'n' objects such that one object is first, one is second, one is third and so on is called
- 4. $n! = n(n-1)(___).....3 \cdot 2 \cdot 1$
- 5. A permutation of 'n' different objects taken $r (\leq n)$ at a time is denoted by
- 6. ${}^{n}P_{r} = \dots$

.

- 7. If r = n then ${}^{n}P_{r} = \dots$
- 8. ${}^{n}P_{r} = \dots$ if n = 0 and r = 0.
- 9. Number of permutations of letters of word BITTER taken all at time =
- 10. The permutations of things which can be represented by points on a circle are called
- 11. The number of combinations of n different objects taken r at a time is denoted by
- 12. Formula for ${}^{n}C_{r} = \dots$
- 13. ${}^{n}C_{r} \times r! = \dots$
- 14. In C(n,r) if r = n then C(n,r) =
- 15. In $\binom{n}{r}$ if r = 0 then $\binom{n}{r} = \dots$
- 16. In ${}^{n}C_{r}$ if n=0 and r=0 then ${}^{n}C_{r} = \dots$
- 17. ${}^{n}C_{r-1} = \dots$
- 18. Blaise Pascal and Pierre De Fermat introduced theory.
- 19. is numerical evaluation of a chance that a particular event would occur.
- 20. The set *S* containing all possible outcomes of a given experiment is called
- 21. A particular outcomes is called \dots and is denoted by E.
- 22. An event E is of sample space S.
- 23. If a sample space S, and an event is A and another B, then if A and B are disjoint they are said to be
- 24. *A* and *B* are said to be equally likely events if each one of them has number of chances of occurrences.
- 25. Formula for addition of probability of event *E* is given by $P(E) = \dots$
- 26. Formula for addition of probabilities of *A* and *B* when *A* and *B* are disjoint is
- 27. $P(A \cup B) = \dots$ when $B \subseteq A$ (A and B are overlapping)
- 28. Two event *A* and *B* are said to be if the occurrence of any one of then does not influence the occurrence of other event.

KEY (CHAPTER 7)

<i>01-</i>	Christian Kramp	02-	1	<i>03-</i>	Permutation
04-	n-2	05-	$^{n}P_{r}$	06-	$\frac{n!}{(n-r)!}$
07-	<i>n</i> !	<i>08-</i>	1	<i>09-</i>	$\frac{6!}{2} = 360$
10-	Circular permutation	11-	${}^{n}C_{r}$	12-	$\frac{n!}{(n-r)! \cdot r!}$
13-	$^{n}P_{r}$	14-	1	15-	1
16-	1	17-	${}^{n}C_{r}$	18-	Probability
19-	Probability	20-	Sample Space	21-	Event
22-	Subset	23-	Mutually exclusive event		
24-	Equal	25-	$\frac{n(E)}{n(S)}$, where S is sample	space	e
26-	$P(A \cup B) = P(A) + P(B)$	27-	$P(A) + P(B) - P(A \cap B)$	28-	Independent

The End

Provided by: Adil Rauf & Muhammad Nabil (F.Sc. Part I, FAZMIC Sargodha) Session: 2003-05

Composed by: Atiqur Rehman (<u>http://www.mathcity.tk)</u>