Gkapter 6 (Objectives) SEQUENCE AND SERIES

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI

	Textbook of Algebra and Trigonometry for Class XI
Item	1: Fill in the blanks (Completion Items)
1.	Sequences are also called
2.	Sequence is denoted by
3.	An sequence has no last term.
4. -	The difference between two consecutive terms in A.P. is called the
	If $\{a_n\}$ is an then $a_n - a_{n-1} = d$ for $n > 0$.
6.	$a_n = a + (n-1)d$ is called or general term of an A.P.
7.	If a, A, b are in A.P then $A - a = $
8.	A.M between a_{n-1} and a_{n+1} is
9.	If all terms of the sequence are real number then it is called sequence.
	Finite series has number of terms.
11.	$S_{2n} = n(a_1 + a_{2n})$ denotes the sum of terms in A.P.
12.	Infinite series has number of terms.
13.	If a_n is the A.M. between a_{n-1} and a_{n+1} then $a_n = $
14.	can not be terms in G.P.
15.	The common ratio $\frac{a_n}{a_{n-1}}$ exists if $a_{n-1} \neq $
16.	$a_n = ar^{n-1}$ is called general term of a
17.	If a, G, b are in G.P. then $\frac{G}{a} = $
	If a, G, b are in G.P. then $G^2 = $
19.	If $\{a_n\}$ is a G.P. then $S_n = \frac{a(1-r^n)}{1-r}$ when $r \neq $
20.	If G_1, G_2, \dots, G_n are <i>n</i> G.P. between <i>a</i> and <i>b</i> then $\sqrt[n]{G_1 \cdot G_2 \cdot \dots \cdot G_n} =$
21.	When $\lim_{n \to \infty} S_n$ does not exists, the series is said to be
	If S_n exists when $n \to \infty$ then the series is said to be
	Middle term of three consecutive terms in A.P. is the between the
	extreme terms.
	can not be the term of H.P.
	If a, H, b are in H.P. then $H = $
	$1^3 + 2^3 + 3^3 + \dots + n^3 = $
27.	The next term of the sequence 7, 9, 12, 16, is
	The 5 th term of G.P. 3, 6, 12, is
29.	G.M. between $\frac{1}{-2i}$ and $\frac{1}{8i}$ is
30.	The sum of infinite geometric series $2,\sqrt{2},1,\dots$ is
	The general term of the series $1^2 + 3^2 + 5^2 + \cdots$ is
32.	The 12 th term of $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \dots$ is
33.	The G.M. between $-2i$ and $8i$ is
34.	$1+3+5+\dots$ to n terms, can be written as $\sum_{k=1}^{\infty}$.
	If $a_n = (-1)^{n+1}$ then its 21 st term is
36.	If A_1, A_2, A_3 are in H.P. then $\frac{1}{A_1}, \frac{1}{A_2}, \frac{1}{A_3}$ are in

- 37. $\frac{ab(n+1)}{b+na}$ is the *n*th _____ between *a* and *b*.
- 38. For any two distinct _____ real numbers A > G > H.
- 39. The infinite Geometric series converges if |r| _____.
- 40. The *n*th term of the sequence $\left(\frac{1}{3}\right)^2, \left(\frac{2}{3}\right)^2, \left(\frac{3}{3}\right)^2, \dots, \text{ is } \dots$.

41. If $S_n \to a$ limit as $n \to \infty$ then the series is said to be _____

Item 2: True or False

- 1. A sequence is a special type of a function from a subset of \mathbb{N} to \mathbb{N} or \mathbb{C} .
- 2. In real sequence, all the terms must be real numbers.
- 3. Sequence is denoted by a_n .
- 4. Finite sequence has limited number of terms.
- 5. An infinite sequence has no last term.
- 6. The first four terms of the sequence $\{2n-3\}$ are -1, 1, 3, 4.
- 7. A sequence $\{a_n\}$ is an A.P. if $a_n a_{n-1} = d$ for all $n \in \mathbb{N}$ and n > 0.
- 8. $a_n = a + (n+1)d$ is *n*th term of G.P.
- 9. If a = 3, d = 7 in the A.P. then $a_n = 10 + 7n$.
- 10. If a, A, b are in A.P. then $A = \frac{a+b}{2}$.
- 11. A.M. between -1 and 1 is 0.
- 12. $a + (a+d) + (a+2d) + \dots + a + (n-1)d$ is an A.P.
- 13. A finite series has infinite number of terms.
- 14. Infinite series has unlimited number of terms.
- 15. For any sequence $\{a_n\}$, $S_n = a_1 + a_2 + a_3 + \dots + a_{n-1}$.

16. If
$$\{a_n\}$$
 is an A.P. then $S_n = \frac{n}{2}(a_1 - a_n)$.

- 17. *n* (number of term) can not be negative.
- 18. Geometric sequence and Geometric progression are two types of sequence.

19. In G.P.
$$\frac{a_n}{a_{n-1}} = r$$
 for all $n \in \mathbb{N}$ and $n > 0$.

- 20. $r = \frac{a_n}{a_{n-1}}$ exists when $a_{n-1} = 0$.
- 21. No term of G.P is zero.
- 22. 6th term of G.P. 3, 6, 12, 24, is 96.
- 23. If a, G, b are in G.P then $G^2 = \pm \sqrt{ab}$.
- 24. 0, 2, 4, 8, is a G.P.
- 25. G.M. between 4 and 16 is ± 8 .

26.
$$S_{\infty} = \frac{a}{1-r}$$
 exists when $r = 1$.

- 27. $\lim_{n \to \infty} r^n = 0$ when |r| > 1.
- 28. Infinite geometric series converges for |r| < 1.
- 29. The sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ is a H.P.
- 30. If a, H, b are in H.P. then $H = \frac{2ab}{a+b}$.
- 31. $\sqrt{a} \sqrt{b}$ is a real number where $a, b \in \mathbb{R}$.

32.
$$1+2+3+\dots+n = \frac{n(n+1)}{6}$$

33. $1^2+2^2+3^2+\dots+n^2 = \frac{n(n+1)(n+2)}{6}$

- 35. A sequence is said to be a function from set \mathbb{R} to set \mathbb{N} .
- 36. Domain of the sequence is some time taken as the set of whole numbers.
- 37. There are one-one correspondence between the set of natural numbers and the terms of a sequence.
- 38. If 1,3,5,.... is the sequence then $a_n = 2n + 1$.
- 39. In an A.P. ratio of any two consecutive terms is same.

40.
$$G_n = a \left(\frac{b}{a}\right)^{\frac{n}{n+1}}$$
 is the *n*th G.Ms between *a* and *b*.

- 41. If a, b, c and d are in G.P. then $b^2 = ac$ and $c^2 = bd$.
- 42. If the population of village increase geometrically at the rate of 4% annually then r = 1 + 0.004.
- 43. For any two distinct negative real numbers *a* and *b*, A > G > H.
- 44. $a_1 a_1 + a_1 a_1 + a_1 a_1 + \dots$ is called an oscillatory series.

ANSWERS

Item I: Fill in the Blanks

Item I: Fill in the Blanks						
1. Progression	is 2. $\{a_n\}$	3. Infinite	4. Common differen	ce 5. A.P.		
6. <i>n</i> th term	7. <i>b</i> – <i>A</i>	8. $\frac{a_{n-1} + a_{n+1}}{2}$	9. Real 1	D. Finite 11. 2 <i>n</i>		
			15. Zero 16. (
18. <i>ab</i> 19. 1 (One) 20. \sqrt{ab} 21. Divergent 22. Convergent 23. A.M.						
24. Zero 25. $\frac{2ab}{a+b}$ 26. $\frac{n^2(n+1)^2}{4}$ 27. 21 28. 48 29. $\frac{1}{4}$						
			33. 4 34. (2			
36. A.P. 37. H.M. 38. positive 39. less than 1 40. $\left(\frac{n}{3}\right)^2$ 41. Convergent						
Item 2: True or False						
1. False	2. True	3. False 4	True 5. True	6. False		
7. True	8. False	9. False 1	0. True 11. True	12. False		
13. False	14. True	15. False 1	6. True 17. True	18. False		
19. True	20. False	21. True 2	2. True 23. False	24. False		
25. True	26. False	27. False 2	8. True 29. True	30. True		
31. True	32. False	33. True 3	4. True 35. False	36. True		
37. True			0. True 41. True	42. False		
43. False	44. True					

Made By: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.tk

THE END