Ghapter 6 (Objectives) SEOUEN $\mathbb{N} \mathbb{E}$ AND SERIES

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI

Item 1: Fill in the blanks (Completion Items)

1. Sequences are also called \qquad
2. Sequence is denoted by \qquad .
3. An \qquad sequence has no last term.
4. The difference between two consecutive terms in A.P. is called the \qquad .
5. If $\left\{a_{n}\right\}$ is an \qquad then $a_{n}-a_{n-1}=d$ for $n>0$..
6. $a_{n}=a+(n-1) d$ is called \qquad or general term of an A.P.
7. If a, A, b are in A.P then $A-a=$ \qquad .
8. A.M between a_{n-1} and a_{n+1} is \qquad _.
9. If all terms of the sequence are real number then it is called \qquad sequence.
10. Finite series has \qquad number of terms.
11. $S_{2 n}=n\left(a_{1}+a_{2 n}\right)$ denotes the sum of \qquad terms in A.P.
12. Infinite series has \qquad number of terms.
13. If a_{n} is the A.M. between a_{n-1} and a_{n+1} then $a_{n}=$ \qquad .
14. \qquad can not be terms in G.P.
15. The common ratio $\frac{a_{n}}{a_{n-1}}$ exists if $a_{n-1} \neq$ \qquad -.
16. $a_{n}=a r^{n-1}$ is called general term of a \qquad .
17. If a, G, b are in G.P. then $\frac{G}{a}=$ \qquad -
18. If a, G, b are in G.P. then $G^{2}=$ \qquad .
19. If $\left\{a_{n}\right\}$ is a G.P. then $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ when $r \neq$ \qquad -
20. If $G_{1}, G_{2}, \ldots \ldots ., G_{n}$ are n G.P. between a and b then $\sqrt[n]{G_{1} \cdot G_{2} \cdot \ldots . \cdot G_{n}}=$ \qquad .
21. When $\lim _{n \rightarrow \infty} S_{n}$ does not exists, the series is said to be \qquad .
22. If S_{n} exists when $n \rightarrow \infty$ then the series is said to be \qquad -
23. Middle term of three consecutive terms in A.P. is the \qquad between the extreme terms.
24. \qquad can not be the term of H.P.
25. If a, H, b are in H.P. then $H=$ \qquad .
26. $1^{3}+2^{3}+3^{3}+\cdots \cdots \cdots \cdots \cdots+n^{3}=$ \qquad .
27. The next term of the sequence $7,9,12,16$, is \qquad .
28. The $5^{\text {th }}$ term of G.P. $3,6,12$, is \qquad .
29. G.M. between $1 /-2 i$ and $1 / 8 i$ is \qquad -.
30. The sum of infinite geometric series $2, \sqrt{2}, 1$, \qquad is \qquad .
31. The general term of the series $1^{2}+3^{2}+5^{2}+\cdots \cdots \cdots$ is \qquad .
32. The $12^{\text {th }}$ term of $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}$, is \qquad .
33. The G.M. between $-2 i$ and $8 i$ is \qquad —.
34. $1+3+5+\ldots \ldots .$. to n terms, can be written as $\sum_{k=1}^{n}$
35. If $a_{n}=(-1)^{n+1}$ then its $21^{\text {st }}$ term is ____.
36. If $a_{n}=(-1)^{n+1}$ then its $21^{\text {st }}$ term is \qquad
37. If A_{1}, A_{2}, A_{3} are in H.P. then $\frac{1}{A_{1}}, \frac{1}{A_{2}}, \frac{1}{A_{3}}$ are in \qquad .
38. $\frac{a b(n+1)}{b+n a}$ is the nth \qquad between a and b.
39. For any two distinct \qquad real numbers $A>G>H$.
40. The infinite Geometric series converges if $|r|$ \qquad .
41. The nth term of the sequence $\left(\frac{1}{3}\right)^{2},\left(\frac{2}{3}\right)^{2},\left(\frac{3}{3}\right)^{2}$, \qquad is \qquad -
42. If $S_{n} \rightarrow a$ limit as $n \rightarrow \infty$ then the series is said to be \qquad .

Item 2: True or False

1. A sequence is a special type of a function from a subset of \mathbb{N} to \mathbb{N} or \mathbb{C}.
2. In real sequence, all the terms must be real numbers.
3. Sequence is denoted by a_{n}.
4. Finite sequence has limited number of terms.
5. An infinite sequence has no last term.
6. The first four terms of the sequence $\{2 n-3\}$ are $-1,1,3,4$.
7. A sequence $\left\{a_{n}\right\}$ is an A.P. if $a_{n}-a_{n-1}=d$ for all $n \in \mathbb{N}$ and $n>0$.
8. $a_{n}=a+(n+1) d$ is nth term of G.P.
9. If $a=3, d=7$ in the A.P. then $a_{n}=10+7 n$.
10. If a, A, b are in A.P. then $A=\frac{a+b}{2}$.
11. A.M. between -1 and 1 is 0 .
12. $a+(a+d)+(a+2 d)+\cdots \cdots \cdots+a+(n-1) d$ is an A.P.
13. A finite series has infinite number of terms.
14. Infinite series has unlimited number of terms.
15. For any sequence $\left\{a_{n}\right\}, S_{n}=a_{1}+a_{2}+a_{3}+\cdots \cdots \cdots \cdots+a_{n-1}$.
16. If $\left\{a_{n}\right\}$ is an A.P. then $S_{n}=\frac{n}{2}\left(a_{1}-a_{n}\right)$.
17. n (number of term) can not be negative.
18. Geometric sequence and Geometric progression are two types of sequence.
19. In G.P. $\frac{a_{n}}{a_{n-1}}=r$ for all $n \in \mathbb{N}$ and $n>0$.
20. $\quad r=\frac{a_{n}}{a_{n-1}}$ exists when $a_{n-1}=0$.
21. No term of G.P is zero.
22. $6^{\text {th }}$ term of G.P. $3,6,12,24, \ldots \ldots \ldots$ is 96 .
23. If a, G, b are in G.P then $G^{2}= \pm \sqrt{a b}$.
24. $0,2,4,8, \ldots \ldots .$. is a G.P.
25. G.M. between 4 and 16 is ± 8.
26. $\quad S_{\infty}=\frac{a}{1-r}$ exists when $r=1$.
27. $\lim _{n \rightarrow \infty} r^{n}=0$ when $|r|>1$.
28. Infinite geometric series converges for $|r|<1$.
29. The sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \cdots \cdots \cdots$ is a H.P.
30. If a, H, b are in H.P. then $H=\frac{2 a b}{a+b}$.
31. $\sqrt{a}-\sqrt{b}$ is a real number where $a, b \in \mathbb{R}$.
32. $1+2+3+\cdots \cdots \cdots+n=\frac{n(n+1)}{6}$
33. $1^{2}+2^{2}+3^{2}+\cdots \cdots \cdots \cdot n^{2}=\frac{n(n+1)(n+2)}{6}$.
34. Term of the sequence are in definite order.
35. A sequence is said to be a function from set \mathbb{R} to set \mathbb{N}.
36. Domain of the sequence is some time taken as the set of whole numbers.
37. There are one-one correspondence between the set of natural numbers and the terms of a sequence.
38. If $1,3,5$, \qquad is the sequence then $a_{n}=2 n+1$.
39. In an A.P. ratio of any two consecutive terms is same.
40. $G_{n}=a\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$ is the nth G.Ms between a and b.
41. If a, b, c and d are in G.P. then $b^{2}=a c$ and $c^{2}=b d$.
42. If the population of village increase geometrically at the rate of 4% annually then $r=1+0.004$.
43. For any two distinct negative real numbers a and $b, A>G>H$.
44. $a_{1}-a_{1}+a_{1}-a_{1}+a_{1}-a_{1}+\ldots$ \qquad is called an oscillatory series.

ANSWERS

Item I: Fill in the Blanks

1. Progressions
2. $\left\{a_{n}\right\}$
3. Infinite
4. Common difference
5. A.P.
6. nth term
7. $b-A$
8. $\frac{a_{n-1}+a_{n+1}}{2}$
9. Real 10. Finite
10. $2 n$
11. Infinite 13. $\frac{a_{n-1}+a_{n+1}}{2}$ 14. Zero 15. Zero 16. G.P. 17. $\frac{b}{G}$
$\begin{array}{lllll}\text { 18. } a b & \text { 19. } 1(\text { One) 20. } \sqrt{a b} & \text { 21. Divergent } & \text { 22. Convergent } & 23 .\end{array}$ A.M.
12. Zero 25. $\frac{2 a b}{a+b}$ 26. $\frac{n^{2}(n+1)^{2}}{4} \quad$ 27. $21 \quad$ 28. $48 \quad$ 29. $\frac{1}{4}$
13. $4+2 \sqrt{2}$
14. $(2 n-1)^{2}$
15. $1 / 35$
16. 4 34. $(2 k-1)$
17. 1
18. A.P. 37. H.M. 38. positive
19. less than 1 40. $\left(\frac{n}{3}\right)^{2}$ 41. Convergent

Item 2: True or False

1. False 7. True	2. True 8. False	3. False 9. False	4. True 10. True	5. True 11. True	6. False 12. False
13. False	14. True	15. False	16. True	17. True	18. False
19. True	20. False	21. True	22. True	23. False	24. False
25. True	26. False	27. False	28. True	29. True	30. True
31. True	32. False	33. True	34. True	35. False	36. True
37. True	38. False	39. False	40. True	41. True	42. False
43. False	44. True				

[^0]
[^0]: Made By: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.tk

