Gkapter 4 (Objectives)

Quadratic equations

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI

Fill in the blanks.

- 1. A quadratic equation in *x* can be written in form
- 2. Another name for quadratic equation in *x* is in *x*.
- 3. The solutions of an equation are also called its
- 4. Quadratic formula is given by
- 5. Equation in which variable occurs in exponent are called
- 6. An equation which remains unchanged when x (variable) replaced by (reciprocal of variable) 1/x, is called a
- 7. Equations involving of the variable are called radical equation.
- 8. The extra solutions of an equation are called
- 9. ω and ω^2 are called cube roots of unity.
- 10. Each complex cube root of unity is of other.
- 11. Sum of all three cube roots of unity is
- 12. $1 + \omega + \omega^2 = \dots$
- 13. The product of all three cube roots of unity is
- 14. $\omega^{-12} = \dots$
- 15. $\omega^{27} = \dots$
- 16. $\omega^{11} = \dots$
- 17. Four fourth roots of unity are
- 18. Sum of all four fourth roots of unity is
- 19. The real fourth roots of unity are of each other
- 20. Both complex fourth roots of unity are of each other.
- 21. Product of all fourth roots of unity is
- 22. The highest power of x in polynomial of x is called of polynomial.
- 23. Degree of $x^3 + 2x^2 + 4$ is
- 24. Dividend = (divisor)(.....) + remainder
- 25. Remainder obtained when f(x) is divided by is same as value of polynomial f(x) at x = a.
- 26. (x-a) is a factor of f(x) if
- 27. Sum of roots of quadratic equation =
- 28. Product of roots of quadratic equation =
- 29. The nature of roots of an equation depends on value of
- 30. Value of Discriminate is
- 31. If $b^2 4ac = 0$, roots are and
- 32. If $b^2 4ac \neq 0$, roots are
- 33. If $b^2 4ac > 0$, roots will be and unequal.
- 34. If $b^2 4ac < 0$, roots will be and unequal.
- 35. If $b^2 4ac$ is perfect square, the roots are
- 36. If $b^2 4ac$ is not perfect square, the roots are
- 37. Two quadratic equations in which xy term is missing and co-efficient x^2 and
 - y^2 are equal give a linear equation by

Ñ KEY							
01-	$ax^2 + bx + c = 0$	<i>02-</i> 2 nd degree polynomial				03-	roots
04-	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		$\mathbf{05-} a^2+b^2-2ab\cos\gamma \ .$				
06-	$\frac{b^2 + c^2 - a^2}{2bc}$	07-	Law of tangent	08-	$\sqrt{\frac{(s-c)(s-a)}{ca}}$)	
09-	$\cos\frac{\gamma}{2}$	10-	$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$	-			
11-	Circum circle	12-	Circum radius	13-	$R = \frac{a}{2\sin \alpha}$		
14-	<i>R</i> (Circum radius)	15-	Inscribe circle or in-circle	16-	In-centre		
17-	$r = \frac{\Delta}{s}$	18-	Escribed circle, ex-circle	19-	ex-centres		
20-	$\frac{\tan\frac{\gamma-\alpha}{2}}{\tan\frac{\gamma+\alpha}{2}}$	21-	$\sqrt{\frac{s(s-c)}{ab}}$				

The End

Provided by: Adil Rauf & Muhammad Nabil (F.Sc. Part I, FAZMIC Sargodha) Session: 2003-05 Composed by: Atiq ur Rehman (<u>http://www.mathcity.tk)</u>