maths

Question \# 1

Write the first four terms of the following sequences, if
(i) $a_{n}=2 n-3$
(ii) $a_{n}=(-1)^{n} n^{2}$
(viii) $a_{n}=n a_{n-1}, \quad a_{1}=1$
(x) $a_{n}=\frac{1}{a+(n-1) d}$

Solution

(i)

$$
a_{n}=2 n-3
$$

Put $n=1$

$$
a_{1}=2(1)-3 \quad \Rightarrow \quad a_{1}=2-3=-1
$$

Put $n=2$

$$
a_{2}=2(2)-3 \quad \Rightarrow \quad a_{2}=4-3=1
$$

Put $n=3$

$$
a_{3}=2(3)-3 \quad \Rightarrow \quad a_{3}=6-3=3
$$

Put $n=4$

$$
a_{4}=2(4)-3 \quad \Rightarrow \quad a_{4}=8-3=5
$$

Hence $-1,1,3,5$ are the first four term of the sequence.
(ii)

$$
a_{n}=(-1)^{n} n^{2}
$$

Put $n=1$

$$
a_{1}=(-1)^{1}(1)^{2} \quad \Rightarrow a_{1}=(-1)(1)=-1
$$

Put $n=2$

$$
a_{2}=(-1)^{2}(2)^{2} \quad \Rightarrow a_{2}=(1)(4)=4
$$

Put $n=3$

$$
a_{3}=(-1)^{3}(3)^{2} \quad \Rightarrow a_{3}=(-1)(9)=-9
$$

Put $n=4$

$$
a_{4}=(-1)^{4}(4)^{2} \quad \Rightarrow a_{4}=(1)(16)=16
$$

Hence $-1,4,-9,16$ are the first four terms of the sequence.
(iii), (iv), (v) and (vi) Do yourself as above.

$$
\begin{equation*}
a_{n}-a_{n-1}=n+2, \quad a_{1}=2 \tag{vii}
\end{equation*}
$$

Put $n=2$

$$
a_{2}-a_{2-1}=2+2 \quad \Rightarrow a_{2}-a_{1}=4 \quad \Rightarrow a_{2}=4+a_{1}=4+2=6 \quad \because a_{1}=2
$$

Put $n=3$

$$
a_{3}-a_{3-1}=3+2 \quad \Rightarrow a_{3}-a_{2}=5 \Rightarrow a_{3}=5+a_{2}=5+6=11 \quad \because a_{2}=6
$$

Put $n=4$

$$
a_{4}-a_{4-1}=4+2 \quad \Rightarrow a_{4}-a_{3}=6 \Rightarrow a_{4}=6+a_{3}=6+11=17 \quad \because a_{3}=11
$$

Hence $2,6,11,17$ are the first four terms of the sequence.
(viii)

$$
a_{n}=n a_{n-1}, \quad a_{1}=1
$$

Put $n=2$

$$
a_{2}=(2) a_{2-1} \Rightarrow a_{2}=2 a_{1}=2(1)=2 \quad \because a_{1}=1
$$

Put $n=3$

$$
a_{3}=(3) a_{3-1} \Rightarrow a_{3}=3 a_{2}=3(2)=6 \quad \because a_{2}=2
$$

Put $n=4$

$$
a_{4}=(4) a_{4-1} \quad \Rightarrow a_{4}=4 a_{3}=4(6)=24 \quad \because a_{3}=6
$$

(ix)

Same as above

(x)

$$
a_{n}=\frac{1}{a+(n-1) d}
$$

Put $n=1$

$$
a_{1}=\frac{1}{a+(1-1) d} \Rightarrow a_{1}=\frac{1}{a+(0) d}=\frac{1}{a+0}=\frac{1}{a}
$$

Put $n=2$

$$
a_{2}=\frac{1}{a+(2-1) d} \Rightarrow a_{2}=\frac{1}{a+(1) d}=\frac{1}{a+d}
$$

Put $n=3$

$$
a_{3}=\frac{1}{a+(3-1) d} \Rightarrow a_{3}=\frac{1}{a+(2) d}=\frac{1}{a+2 d}
$$

Put $n=4$

$$
\begin{aligned}
a_{4}= & \frac{1}{a+(4-1) d} \Rightarrow a_{4}=\frac{1}{a+(3) d}=\frac{1}{a+3 d} \\
& \text { Hence } \frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \frac{1}{a+3 d} \text { are the first four terms of the }
\end{aligned}
$$

sequence.

Question \# 2

Find the next two terms of the following sequences;
(i) $2,6,11,17$, \qquad (ii) $1,3,12,60$ \qquad a_{6}
(iii) $1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}$
(iv) $1,1,-3,5,-7,9$, \qquad
(v) $1,-3,5,-7,9,-11$, \qquad .a_{8}

Solution

(i) 2,6,11,17, \qquad a_{7}
We see that the successive difference of the given terms are $4,5,6$ and conclude that sequence of the differences is $4,5,6,7,8,9$, \qquad
So $a_{5}=17+7=24, a_{6}=24+8=32$ and $a_{7}=32+9=41$
Thus the required term is $a_{7}=41$
1,3,12,60,
\qquad .a_{6}
We see that the successive multiplying factor are $3,4,5$ and conclude that the sequence of multiplying factors is $3,4,5,6,7,8,9$.

So $a_{5}=60 \times 6=360, a_{6}=360 \times 7=2520$
Thus the required term is $a_{6}=2520$
(iii)

$$
1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \ldots \ldots \ldots \ldots . . . a_{7}
$$

The successive terms in numerator are $1,3,5,7$, which are the consecutive odd numbers and next terms are $9,11,13$.

And the successive terms in denominators are 1, 2, 4, 8 , with common ratio 2 , so the next terms are $16,32,64$.

$$
\text { Thus the required term is } a_{7}=\frac{13}{64}
$$

$$
\begin{equation*}
1,1,-3,5,-7,9, \tag{iv}
\end{equation*}
$$

\qquad*Correction

We see that the common difference of odd terms is -4 , so $a_{7}=-7+(-4)=-11$

And the common difference of even terms is 4 , so $a_{8}=9+4=13$
Thus the required term is $a_{8}=13$
(v)
$1,-3,5,-7,9,-11$ \qquad .a_{8}
We see that the common difference of odd terms is 4 , so $a_{7}=9+4=13$.
And the common difference of the even terms is -4 , so $a_{8}=-11+(-4)=-15$
Thus the required term is $a_{8}=-15$

Question \# 3

Find the next two terms of the following sequences;
(i) $7,9,12,16$,
(ii) $1,3,7,15,31$,
(iii) $-1,2,12,40$,
(iv) $1,-3,5,-7,9,-11$,

Solution

(i) $7,9,12,16$, \qquad
We see that the sequence of the successive difference is $2,3,4, \ldots \ldots$. so the next two differences are 5 and 6 .

Thus the next two terms are $16+5=21$ and $21+6=27$.
1,3,7,15,31,
\qquad
We see that the sequence of the successive difference is $2,4,8,16$,
Thus the next two terms of the sequence are $31+32=63$ and $63+64=$
127.
(iii)
-1,2,12,40,.............

The sequence of the above terms can be written as $-1 \times 1,1 \times 2,3 \times 4,5 \times 8$, \qquad
So the next two terms are $7 \times 16=112$ and $9 \times 32=288$.
(iv) $1,-3,5,-7,9,-11$

We see that the common difference of odd terms is 4 , so $a_{7}=9+4=13$.
And the common difference of the even terms is -4 , so $a_{8}=-11+(-4)=-15$
Thus the next two terms are 13 and -15 .

If you found any error, please report us at www.mathcity.org/error

Book: Exercise 6.1

Text Book of Algebra and Trigonometry Class XI
Punjab Textbook Board, Lahore.
Available online at http://www.MathCity.org in PDF Format
(Picture format to view online).
Page setup: A4 (8.27 in $\times 11.02 \mathrm{in}$).
Updated: 5-7-2017.

