Exercise 4.9

M. shahid Nadeem, Punjab College, Wah Cantt. (shahid.skp01@gmail.com)

Case II: Both the Equations are quadratic in two Variables

The equations in this case are classified as
(i) Both the equations contain only x^{2} and y^{2} terms.
(ii) One of the equations is homogeneous in x and y.
(iii) Both the equations are non-homogeneous.

The methods of solving these type of equations are explained through the following examples.

Example 1: Solve the equations
$x^{2}+y^{2}=25 ; 2 x^{2}+3 y^{2}=66$
Solution: $\quad x^{2}+y^{2}=25$
$2 x^{2}+3 y^{2}=66$
From equations (1) and (2) we have

$$
\begin{equation*}
x^{2}=25-y^{2} \tag{3}
\end{equation*}
$$

And $2 x^{2}=66-3 y^{2}$

$$
\begin{equation*}
x^{2}=\frac{66-3 y^{2}}{2} \tag{4}
\end{equation*}
$$

Now comparing equations (3) and (4),

$$
\begin{aligned}
& 25-y^{2}=\frac{66-3 y^{2}}{2} \\
& 50-2 y^{2}=66-3 y^{2} \\
& 3 y^{2}-2 y^{2}=66-50 \\
& y^{2}=16
\end{aligned}
$$

$y= \pm 4$ put in (3), we have

$$
\begin{aligned}
& x^{2}=25-16 \\
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

Hence solution set is $\{(\pm 3, \pm 4)\}$
Example 2: Solve the equations
$x^{2}-3 x y+2 y^{2}=0 ; 2 x^{2}-3 x+y^{2}=24$

Solution:

$$
\begin{align*}
& x^{2}-3 x y+2 y^{2}=0 \tag{1}\\
& 2 x^{2}-3 x+y^{2}=24 \tag{2}
\end{align*}
$$

Equation (1) can be written as

$$
\begin{aligned}
& x^{2}-2 x y-x y+2 y^{2}=0 \\
& x(x-2 y)-y(x-2 y)=0 \\
& (x-2 y)(x-y)=0 \\
& x-2 y=0 \text { or } x-y=0 \\
& x=2 y \rightarrow(3) \text { or } x=y \rightarrow(4)
\end{aligned}
$$

Putting value from equation (3) in equation (2)

$$
\begin{aligned}
& 2(2 y)^{2}-3(2 y)+y^{2}=24 \\
& 8 y^{2}-6 y+y^{2}=24 \\
& 9 y^{2}-6 y-24=0
\end{aligned}
$$

Dividing by 3
$3 y^{2}-2 y-8=0$
$3 y^{2}-6 y+4 y-8=0$
$3 y(y-2)+4(y-2)=0$
$(y-2)(3 y+4)=0$
$y-2=0$ or $3 y+4=0$
$y=2$ or $y=-\frac{4}{3}$
Putting $y=2$ in equation (3)
$x=2(2)$
$x=4$
Putting $y=-\frac{4}{3}$ in equation (3)
$x=2\left(-\frac{4}{3}\right)$
$x=-\frac{8}{3}$
Now putting value from equation (4) in equation (2)
$2 y^{2}-3 y+y^{2}=24$
$3 y^{2}-3 y-24=0$
Dividing by 3
$y^{2}-y-8=0$
Using quadratic formula we have

$$
\begin{gathered}
y=\frac{1 \pm \sqrt{1-4(1)(-8)}}{2} \\
y=\frac{1 \pm \sqrt{1+32}}{2} \\
y=\frac{1 \pm \sqrt{33}}{2}
\end{gathered}
$$

Putting $y=\frac{1+\sqrt{33}}{2}$ in equation (4)
$x=\frac{1+\sqrt{33}}{2}$
Putting $y=\frac{1-\sqrt{33}}{2}$ in equation (4)
$x=\frac{1-\sqrt{33}}{2}$
Hence solution set is
$\left\{\left(-\frac{8}{3},-\frac{4}{3}\right),\left(\frac{1+\sqrt{33}}{2}, \frac{1+\sqrt{33}}{2}\right),\left(\frac{1-\sqrt{33}}{2}, \frac{1-\sqrt{33}}{2}\right)\right\}$
Example 3: Solve the equations
$x^{2}-y^{2}=5 ; 4 x^{2}-3 x y=18$
Solution:

$$
\begin{align*}
& x^{2}-y^{2}=5 \\
& 4 x^{2}-3 x y=18 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 18 and (2) by 5 then subtracting

$$
\begin{aligned}
& 18 x^{2}-18 y^{2}=90 \\
& 20 x^{2}-15 x y=90 \\
& -\quad+\quad- \\
& \hline-2 x^{2}-18 y^{2}+15 x y=0 \\
& 2 x^{2}-15 x y+18 y^{2}=0 \\
& 2 x^{2}-12 x y-3 x y+18 y^{2}=0 \\
& 2 x(x-6 y)-3 y(x-6 y)=0
\end{aligned}
$$

$$
(x-6 y)(2 x-3 y)=0
$$

$$
x-6 y=0 \text { or } 2 x-3 y=0
$$

$$
x=6 y \rightarrow(3) \text { or } x=\frac{3 y}{2} \rightarrow(4)
$$

Putting value from equation (3) in equation (1)
$(6 y)^{2}-y^{2}=5$

$$
\begin{aligned}
& 36 y^{2}-y^{2}=5 \\
& 35 y^{2}=5 \\
& y^{2}=\frac{5}{35} \\
& y^{2}=\frac{1}{7} \\
& y= \pm \frac{1}{\sqrt{7}}
\end{aligned}
$$

Putting $y=\frac{1}{\sqrt{7}}$ in (3)
$x=\frac{6}{\sqrt{7}}$
Put $y=-\frac{1}{\sqrt{7}}$ in (3)
$x=-\frac{6}{\sqrt{7}}$
Now putting value from equation (4) in equation (1)
$\left(\frac{3 y}{2}\right)^{2}-y^{2}=5$
$\frac{9 y^{2}}{4}-y^{2}=5$

Multiplying by 4
$9 y^{2}-4 y^{2}=20$
$5 y^{2}=20$
$y^{2}=4$
$y= \pm 2$
Putting $y=2$ in (4)
$x=\frac{3(2)}{2}$
$x=3$
Putting $y=-2$ in equation (4)
$x=\frac{3(-2)}{2}$

Hence solution set is
$\left\{\left(\frac{6}{\sqrt{7}}, \frac{1}{\sqrt{7}}\right),\left(-\frac{6}{\sqrt{7}},-\frac{1}{\sqrt{7}}\right),(3,2),(-3,-2)\right\}$

Exercise

Solve the following system of equations.

Q\#1: $\quad 2 x^{2}=6+3 y^{2} ; 3 x^{2}-5 y^{2}=7$.
Solution:

$$
\begin{align*}
& 2 x^{2}=6+3 y^{2} \tag{1}\\
& 3 x^{2}-5 y^{2}=7 \tag{2}
\end{align*}
$$

From (1) and (2) we can write:

$$
\begin{align*}
& x^{2}=\frac{6+3 y^{2}}{2} \tag{3}\\
& x^{2}=\frac{7+5 y^{2}}{3} \tag{4}
\end{align*}
$$

Comparing equations (3) and (4), we get

$$
\begin{aligned}
& \frac{7+5 y^{2}}{3}=\frac{6+3 y^{2}}{2} \\
& 14+10 y^{2}=18+9 y^{2} \\
& 10 y^{2}-9 y^{2}=18-14
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}=4 \\
& y= \pm 2
\end{aligned}
$$

Putting value in (3); $x^{2}=\frac{6+12}{2}$

$$
\begin{aligned}
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

Hence solution set is $\{(\pm 3, \pm 2)\}$
Q\#2: $\quad 8 x^{2}=y^{2} ; x^{2}+2 y^{2}=19$.
Solution:

$$
\begin{align*}
& 8 x^{2}=y^{2} \tag{1}\\
& x^{2}+2 y^{2}=19 \tag{2}
\end{align*}
$$

From (1) and (2) we can write:

$$
\begin{align*}
& x^{2}=\frac{y^{2}}{8} \tag{3}\\
& x^{2}=19-2 y^{2} \tag{4}
\end{align*}
$$

Comparing equations (3) and (4), we get

$$
\begin{aligned}
& \frac{y^{2}}{8}=19-2 y^{2} \\
& y^{2}=152-16 y^{2} \\
& 16 y^{2}+y^{2}=152 \\
& 17 y^{2}=152 \\
& y^{2}=\frac{152}{17} \\
& y= \pm \sqrt{\frac{152}{17}} \\
& y= \pm 2 \sqrt{\frac{38}{17}}
\end{aligned}
$$

Putting value in (3); $x^{2}=\frac{\frac{152}{17}}{8}$
$x^{2}=\frac{19}{17}$

$$
x= \pm \sqrt{\frac{19}{17}}
$$

Hence solution set is $\left\{\left(\pm \sqrt{\frac{19}{17}}, \pm 2 \sqrt{\frac{38}{17}}\right)\right\}$
Q\#3: $\quad 2 x^{2}-8=5 y^{2} ; x^{2}-13=-2 y^{2}$.

Solution:

$$
\begin{align*}
& 2 x^{2}-8=5 y^{2} \tag{1}\\
& x^{2}-13=-2 y^{2} \tag{2}
\end{align*}
$$

From (1) and (2) we can write:

$$
\begin{align*}
& x^{2}=\frac{8+5 y^{2}}{2} \tag{3}\\
& x^{2}=13-y^{2} \tag{4}
\end{align*}
$$

Comparing equations (3) and (4), we get

$$
\begin{aligned}
& \frac{8+5 y^{2}}{2}=13-2 y^{2} \\
& 8+5 y^{2}=26-4 y^{2} \\
& 5 y^{2}+4 y^{2}=26-8 \\
& 9 y^{2}=18 \\
& y^{2}=2 \\
& y= \pm \sqrt{2}
\end{aligned}
$$

Putting value in (4); $x^{2}=13-4$

$$
\begin{aligned}
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

Hence solution set is $\{(\pm 3, \pm \sqrt{2})\}$
Q\#4: $\quad x^{2}-5 x y+6 y^{2}=0 ; x^{2}+y^{2}=45$.

Solution:

$$
\begin{align*}
& x^{2}-5 x y+6 y^{2}=0 \tag{1}\\
& x^{2}+y^{2}=45 \tag{2}
\end{align*}
$$

From (1)

$$
\begin{aligned}
& x^{2}-2 x y-3 x y+6 y^{2}=0 \\
& x(x-2 y)-3 y(x-2 y)=0 \\
& (x-2 y)(x-3 y)=0 \\
& x-2 y=0 \text { or } x-3 y=0
\end{aligned}
$$

$$
\begin{equation*}
x=2 y \rightarrow(3) \quad \text { or } x=3 y \tag{4}
\end{equation*}
$$

Putting value from (3) in (2), we get

$$
(2 y)^{2}+y^{2}=45
$$

$$
\begin{aligned}
& 4 y^{2}+y^{2}=45 \\
& 5 y^{2}=45 \\
& y^{2}=9
\end{aligned}
$$

$y= \pm 3$ put in (3)

$$
x=2(\pm 3)= \pm 6
$$

Putting value from (4) in (2), we get

$$
\begin{aligned}
& (3 y)^{2}+y^{2}=45 \\
& 9 y^{2}+y^{2}=45 \\
& 10 y^{2}=45 \\
& y^{2}=\frac{45}{10} \\
& y^{2}=\frac{9}{2} \\
& y= \pm \frac{3}{\sqrt{2}}
\end{aligned}
$$

Putting $y=\frac{3}{\sqrt{2}}$ in (4)

$$
x=3\left(\frac{3}{\sqrt{2}}\right)=\frac{9}{\sqrt{2}}
$$

Putting $y=-\frac{3}{\sqrt{2}}$ in (4)

$$
x=3\left(-\frac{3}{\sqrt{2}}\right)=-\frac{9}{\sqrt{2}}
$$

Hence solution set is
$\left\{(\pm 6, \pm 3),\left(\frac{9}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right),\left(-\frac{9}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)\right\}$
Q\#5: $\quad 12 x^{2}-25 x y+12 y^{2}=04 x^{2}+7 y^{2}=148$
Solution:

$$
\begin{align*}
& 12 x^{2}-25 x y+12 y^{2}=0 \tag{1}\\
& 4 x^{2}+7 y^{2}=148 \tag{2}
\end{align*}
$$

From (1):

$$
\begin{aligned}
12 x^{2}- & 16 x y-9 x y+12 y^{2}=0 \\
& 4 x(3 x-4 y)-3 y(3 x-4 y)=0 \\
& (3 x-4 y)(4 x-3 y)=0
\end{aligned}
$$

$$
3 x-4 y=0 \text { or } 4 x-3 y=0
$$

$$
\begin{equation*}
x=\frac{4 y}{3} \rightarrow(3) \quad \text { or } x=\frac{3 y}{4} \tag{4}
\end{equation*}
$$

Putting value from (3) in (2), we get

$$
\begin{aligned}
& 4\left(\frac{4 y}{3}\right)^{2}+7 y^{2}=148 \\
& 4\left(\frac{16 y^{2}}{9}\right)+7 y^{2}=148 \\
& \frac{64 y^{2}+63 y^{2}}{9}=148 \\
& \frac{127 y^{2}}{9}=148 \\
& y^{2}=\frac{148 \times 9}{127} \\
& y= \pm \frac{6 \sqrt{37}}{\sqrt{127}} \\
& y= \pm 6 \sqrt{\frac{37}{127}}
\end{aligned}
$$

Putting $y=6 \sqrt{\frac{37}{127}}$ in (3)

$$
x=\frac{4}{3}\left(6 \sqrt{\frac{37}{127}}\right)=8 \sqrt{\frac{37}{127}}
$$

Putting $y=-6 \sqrt{\frac{37}{127}}$ in (3)

$$
x=\frac{4}{3}\left(-6 \sqrt{\frac{37}{127}}\right)=-8 \sqrt{\frac{37}{127}}
$$

Putting value from (4) in (2), we get

$$
\begin{aligned}
& 4\left(\frac{3 y}{4}\right)^{2}+7 y^{2}=148 \\
& 4\left(\frac{9 y^{2}}{16}\right)+7 y^{2}=148 \\
& \frac{9 y^{2}+28 y^{2}}{4}=148 \\
& \frac{37 y^{2}}{4}=148
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}=\frac{148 \times 4}{37} \\
& y= \pm 4
\end{aligned}
$$

Putting $y=4$ in (4)

$$
x=\frac{3}{4}(4)=3
$$

Putting $y=-4$ in (4)

$$
x=\frac{3}{4}(-4)=-3
$$

Hence solution set is
$\left\{(3,4),(-3,-4),\left(8 \sqrt{\frac{37}{127}}, 6 \sqrt{\frac{37}{127}}\right),\left(-8 \sqrt{\frac{37}{127}},-6 \sqrt{\frac{37}{127}}\right)\right.$
Q\#6: $\quad 12 x^{2}-11 x y+2 y^{2}=0 ; 2 x^{2}+7 x y=60$
Solution:

$$
\begin{equation*}
12 x^{2}-11 x y+2 y^{2}=0 \rightarrow \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
2 x^{2}+7 x y=60 \tag{2}
\end{equation*}
$$

Equation (1) can be written as

$$
\begin{align*}
& 12 x^{2}-8 x y-3 x y+2 y^{2}=0 \\
& 4 x(3 x-2 y)-y(3 x-2 y)=0 \\
& (3 x-2 y)(4 x-y)=0 \\
& 3 x-2 y=0 \text { or } 4 x-y=0 \\
& 3 x=2 y \text { or } 4 x=y \\
& x=\frac{2 y}{3}-\rightarrow(3) \text { or } x=\frac{y}{4} \rightarrow \tag{4}
\end{align*}
$$

Putting value from (3) in (2), we have

$$
\begin{aligned}
& 2\left(\frac{2 y}{3}\right)^{2}+7\left(\frac{2 y}{3}\right) y=60 \\
& 2\left(\frac{4 y^{2}}{9}\right)+\left(\frac{14 y}{3}\right) y=60 \\
& \frac{8 y^{2}}{9}+\frac{14 y^{2}}{3}=60 \\
& \frac{8 y^{2}+42 y^{2}}{9}=60 \\
& 8 y^{2}+42 y^{2}=540 \\
& 50 y^{2}=540
\end{aligned}
$$

$$
\begin{aligned}
& y^{2}=\frac{54}{5} \\
& y= \pm \sqrt{\frac{54}{5}} \\
& y= \pm \frac{\sqrt{54}}{\sqrt{5}} \\
& y= \pm \frac{3 \sqrt{6} \sqrt{5}}{\sqrt{5} \sqrt{5}}
\end{aligned}
$$

$y= \pm \frac{3 \sqrt{30}}{5}$ put in (3)

$$
\begin{aligned}
& x=\frac{2}{3}\left(\pm \frac{3 \sqrt{30}}{5}\right) \\
& x= \pm \frac{2 \sqrt{30}}{5}
\end{aligned}
$$

Putting value from (4) in (2)
$2\left(\frac{y}{4}\right)^{2}+7\left(\frac{y}{4}\right) y=60$
$2\left(\frac{y^{2}}{4}\right)+\left(\frac{7 y}{4}\right) y=60$
$\frac{y^{2}}{2}+\frac{7 y^{2}}{4}=60$
$\frac{2 y^{2}+7 y^{2}}{4}=60$
$2 y^{2}+7 y^{2}=240$
$9 y^{2}=240$
$y^{2}=\frac{240}{9}$
$y= \pm \sqrt{\frac{240}{9}}$
$y= \pm \frac{4 \sqrt{15}}{3}$ put in (4)
$x=\frac{ \pm \frac{4 \sqrt{15}}{3}}{4}$
$x= \pm \frac{\sqrt{15}}{3}$

Hence solution set is
$\left\{\left(\pm \frac{\sqrt{15}}{3}, \pm \frac{4 \sqrt{15}}{3}\right),\left(\pm \frac{2 \sqrt{30}}{5}, \pm \frac{3 \sqrt{30}}{5}\right)\right\}$
Q\#7: $\quad x^{2}-y^{2}=16 ; x y=15$

Solution:

$$
\begin{align*}
& x^{2}-y^{2}=16 \tag{1}\\
& x y=15 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 15 and equation (2) by 16 and then subtracting

$$
\begin{gather*}
15 x^{2}-15 y^{2}=240 \\
16 x y=240 \\
15 x^{2}-15 y^{2}-16 x y=0 \\
15 x^{2}-16 x y-15 y^{2}=0 \\
15 x^{2}-25 x y+9 x y-15 y^{2}=0 \\
5 x(3 x-5 y)+3 y(3 x-5 y)=0 \\
(3 x-5 y)(5 x+3 y)=0 \\
3 x-5 y=0 \text { or } 5 x+3 y=0 \\
3 x=5 y \text { or } 5 x=-3 y \\
x=\frac{5}{3} y \rightarrow \rightarrow(3) \text { or } x=-\frac{3}{5} y- \tag{4}
\end{gather*}
$$

Putting value from equation (3) in equation (2), we have

$$
\left(\frac{5}{3} y\right) y=15
$$

On multiplying by 3

$$
\begin{gathered}
5 y^{2}=45 \\
y^{2}=9 \\
y= \pm 3
\end{gathered}
$$

Putting $y= \pm 3$ in equation (3)

$$
\begin{gathered}
x=\frac{5}{3}(\pm 3) \\
x= \pm 5
\end{gathered}
$$

Now putting value from equation (4) in equation (2)

$$
\left(-\frac{3}{5} y\right) y=15
$$

On multiplying by 5

$$
\begin{gathered}
-3 y^{2}=75 \\
y^{2}=-\frac{75}{3} \\
y^{2}=-25 \\
y= \pm 5 i
\end{gathered}
$$

Putting $y= \pm 5 i$ in equation (4)

$$
\begin{gathered}
x=-\frac{3}{5}(\pm 5 i) \\
x= \pm 3 i
\end{gathered}
$$

Hence solution set is $\{(\pm 5, \pm 3),(\pm 3 i, \pm 5 i)\}$
Q\#8: $\quad x^{2}+x y=9 ; x^{2}-y^{2}=2$
Solution: $\quad x^{2}+x y=9$

$$
\begin{equation*}
x^{2}-y^{2}=2 \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 2 and equation (2) by 9 and then subtracting

$$
\begin{aligned}
& 2 x^{2}+2 x y=18 \\
& 9 x^{2}-9 y^{2}=18
\end{aligned}
$$

$$
\frac{-\quad+\quad-}{-7 x^{2}+2 x y+9 y^{2}=0}
$$

$$
-\left(7 x^{2}-2 x y-9 y^{2}\right)=0
$$

$$
7 x^{2}-2 x y-9 y^{2}=0
$$

$$
7 x^{2}-9 x y+7 x y-9 y^{2}=0
$$

$$
x(7 x-9 y)+y(7 x-9 y)=0
$$

$$
(7 x-9 y)(x+y)=0
$$

$$
7 x-9 y=0 \text { or } x+y=0
$$

$$
7 x=9 y \text { or } x=-y
$$

$$
x=\frac{9}{7} y \longrightarrow
$$

(3) or $x=-y \rightarrow$ (4)

Putting value from equation (3) in equation (2), we have

$$
\begin{aligned}
& \left(\frac{9}{7} y\right)^{2}-y^{2}=2 \\
& \frac{81}{49} y^{2}-y^{2}=2
\end{aligned}
$$

On multiplying by 49

$$
\begin{gathered}
81 y^{2}-49 y^{2}=98 \\
32 y^{2}=98 \\
y^{2}=\frac{98}{32} \\
y^{2}=\frac{49}{16} \\
y= \pm \frac{7}{4}
\end{gathered}
$$

Putting $y= \pm \frac{7}{4}$ in equation (3)

$$
\begin{gathered}
x=\frac{9}{7}\left(\pm \frac{7}{4}\right) \\
x= \pm \frac{9}{4}
\end{gathered}
$$

Now putting value from equation (4) in equation (2)

$$
\begin{gathered}
(-y)^{2}-y^{2}=2 \\
y^{2}-y^{2}=2 \\
0=2
\end{gathered}
$$

Which is not possible.
Hence solution set is $\left\{\left(\pm \frac{9}{4}, \pm \frac{7}{4}\right)\right\}$
Q\#9: $y^{2}-7=2 x y ; 2 x^{2}+3=x y$
Solution: $\quad y^{2}-7=2 x y$

$$
\begin{equation*}
2 x^{2}+3=x y \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 3 and equation (2) by 7 and then adding

$$
\begin{aligned}
& 3 y^{2}-21=6 x y \\
& 21+14 x^{2}=7 x y \\
& \hline 3 y^{2}+14 x^{2}=13 x y \\
& 14 x^{2}-13 x y+3 y^{2}=0 \\
& 14 x^{2}-7 x y-6 x y+3 y^{2}=0 \\
& 7 x(2 x-y)-3 y(2 x-y)=0 \\
& (2 x-y)(7 x-3 y)=0 \\
& 2 x-y=0 \text { or } 7 x-3 y=0 \\
& 2 x=y \text { or } 7 x=3 y
\end{aligned}
$$

$$
\begin{equation*}
x=\frac{y}{2} \rightarrow(3) \text { or } x=\frac{3 y}{7} \tag{4}
\end{equation*}
$$

Putting value from equation (3) in equation (2), we have

$$
\begin{aligned}
2\left(\frac{y}{2}\right)^{2}+3 & =\left(\frac{y}{2}\right) y \\
\frac{2 y^{2}}{4}+3 & =\frac{y^{2}}{2} \\
\frac{y^{2}}{2}+3 & =\frac{y^{2}}{2}
\end{aligned}
$$

On multiplying by 2

$$
\begin{gathered}
y^{2}+6=y^{2} \\
6=0
\end{gathered}
$$

which is not possible
Now putting value from equation (4) in equation (2)

$$
\begin{aligned}
2\left(\frac{3 y}{7}\right)^{2}+3 & =\left(\frac{3 y}{7}\right) y \\
\frac{18 y^{2}}{49}+3 & =\frac{3 y^{2}}{7}
\end{aligned}
$$

Multiplying by 49

$$
\begin{gathered}
18 y^{2}+147=21 y^{2} \\
3 y^{2}=147 \\
y^{2}=49 \\
y= \pm 7
\end{gathered}
$$

Putting $y= \pm 7$ in (4)

$$
\begin{gathered}
x=\frac{3(\pm 7)}{7} \\
x= \pm 3
\end{gathered}
$$

Hence solution set is $\{(\pm 3, \pm 7)\}$
Q\#10: $x^{2}+y^{2}=5 ; x y=2$
Solution:

$$
\begin{align*}
& x^{2}+y^{2}=5 \tag{1}\\
& x y=2 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 2 and equation (2) by 5 and then subtracting

$$
\begin{array}{r}
2 x^{2}+2 y^{2}=10 \\
5 x y=10
\end{array}
$$

$$
2 x^{2}+2 y^{2}-5 x y=0
$$

$$
2 x^{2}-5 x y+2 y^{2}=0
$$

$$
2 x^{2}-4 x y-x y+2 y^{2}=0
$$

$$
2 x(x-2 y)-y(x-2 y)=0
$$

$$
(x-2 y)(2 x-y)=0
$$

$$
x-2 y=0 \text { or } 2 x-y=0
$$

$$
x=2 y \text { or } 2 x=y
$$

$$
x=2 y \rightarrow(3) \text { or } x=\frac{y}{2} \rightarrow(4)
$$

Putting value from equation (3) in equation (2), we have

$$
\begin{gathered}
(2 y) y=2 \\
2 y^{2}=2 \\
y^{2}=1 \\
y= \pm 1
\end{gathered}
$$

Putting $y= \pm 1$ in (3)

$$
\begin{gathered}
x=2(\pm 1) \\
x= \pm 2
\end{gathered}
$$

Now putting value from equation (4) in equation (2)

$$
\begin{gathered}
\left(\frac{y}{2}\right) y=2 \\
\frac{y^{2}}{2}=2 \\
y^{2}=4 \\
y= \pm 2
\end{gathered}
$$

Putting $y= \pm 2$ in (4)

$$
\begin{aligned}
& x=\frac{ \pm 2}{2} \\
& x= \pm 1
\end{aligned}
$$

Hence solution set is $\{(\pm 2, \pm 1),(\pm 1, \pm 2)\}$

