Exercise 4.7

Nature of roots of Quadratic Equation

We know that the roots of the quadratic equation $a x^{2}+b x+c=0$ are given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We see that there are two possible values for x, as discriminated by the part of the formula $\pm \sqrt{b^{2}-4 a c}$.
The nature of roots of the quadratic equation depends on the value of the expression $b^{2}-4 a c$, which is called its discriminant.
Case I: If $b^{2}-4 a c=0$ then roots will be $\frac{-b}{2 a}$ and $\frac{-b}{2 a}$, so the roots are real and equal.
Case II: If $b^{2}-4 a c<0$ then roots will be complex and distinct.
Case III: If $b^{2}-4 a c>0$ then roots will be real and distinct. Also if If $b^{2}-4 a c$ is a perfect square then roots will be rational otherwise irrational.

Q\#1: Discuss the nature of roots of the following equations.
(i) $4 x^{2}+6 x+1=0$

Solution: $4 x^{2}+6 x+1=0 \rightarrow$ (1)

$$
a=4, b=6, c=1
$$

Now $b^{2}-4 a c=6^{2}-4(4)(1)$

$$
=36-16=20>0
$$

\Rightarrow Roots of equation (1) will be real and distinct, also $b^{2}-4 a c=20$ is not a perfect square so roots will be irrational.
(ii) $x^{2}-5 x+6=0$

Solution: $x^{2}-5 x+6=0 \rightarrow(1)$

$$
a=1, b=-5, c=6
$$

Now $b^{2}-4 a c=(-5)^{2}-4(1)(6)$

$$
=25-24=1>0
$$

\Rightarrow Roots of equation (1) will be real and distinct, also $b^{2}-4 a c=1$ is a perfect square so roots will be rational.
(iii) $2 x^{2}-5 x+1=0$

Solution: $2 x^{2}-5 x+1=0 \rightarrow$ (1)

$$
a=2, b=-5, c=1
$$

Now $b^{2}-4 a c=(-5)^{2}-4(2)(1)$

$$
=25-8=17>0
$$

\Rightarrow Roots of equation (1) will be real and distinct, also $b^{2}-4 a c=17$ is not a perfect square so roots will be irrational.
(iv) $25 x^{2}-30 x+9=0$

Solution: $25 x^{2}-30 x+9=0 \rightarrow$ (1)

$$
a=25, b=-30, c=9
$$

Now $b^{2}-4 a c=(-30)^{2}-4(25)(9)$

$$
=900-900=0
$$

\Rightarrow Roots of equation (1) will be real and equal.
Q\#2: Show that the roots of the following equations will be real.
(i) $\quad x^{2}-2\left(m+\frac{1}{m}\right) x+3=0$

Solution: $x^{2}-2\left(m+\frac{1}{m}\right) x+3=0 \rightarrow(1)$
Equation (1) can be written as

$$
\begin{aligned}
& x^{2}-2\left(\frac{m^{2}+1}{m}\right) x+3=0 \\
& m x^{2}-2\left(m^{2}+1\right) x+3 m=0 \\
& a=m, b=-2\left(m^{2}+1\right), c=3 m \\
& \begin{aligned}
\text { Now } b^{2}-4 a c & =4\left(m^{2}+1\right)^{2}-4(m)(3 m) \\
& =4\left(m^{4}+2 m^{2}+1\right)-12 m^{2} \\
& =4 m^{4}+8 m^{2}+4-12 m^{2} \\
& =4 m^{4}-4 m^{2}+4 \\
& =4\left(m^{4}-m^{2}+1\right)
\end{aligned}
\end{aligned}
$$

Now as we know that $m^{4}>m^{2}$

$$
\begin{aligned}
& \Rightarrow m^{4}+1>m^{2} \\
& \Rightarrow m^{4}-m^{2}+1>0 \\
& \Rightarrow 4\left(m^{4}-m^{2}+1\right)>0 \\
& \Rightarrow b^{2}-4 a c>0
\end{aligned}
$$

\Rightarrow Roots of (1) will be real.
(ii) $(b-c) x^{2}+(c-a) x+(a-b)=0$, $a, b, c \in Q$

Solution:

$$
\begin{gathered}
(b-c) x^{2}+(c-a) x+(a-b)=0-\rightarrow(1) \\
A=(b-c), B=(c-a), C=(a-b)
\end{gathered}
$$

Now $B^{2}-4 A C=(c-a)^{2}-4(b-c)(a-b)$ $=c^{2}+a^{2}-2 a c-4\left(a b-b^{2}-a c+b c\right)$
$=c^{2}+a^{2}-2 a c-4 a b+4 b^{2}+4 a c-4 b c$
$=a^{2}+4 b^{2}+c^{2}+2 a c-4 a b-4 b c$
$=(a-2 b+c)^{2}>0$
\Rightarrow Roots of (1) will be real.
Q\#3: Show that the roots of the following equations will be rational.
(i) $\quad(p+q) x^{2}-p x-q=0 \longrightarrow$

Solution:

$$
\begin{equation*}
a=p+q, b=-p, c=-q \tag{1}
\end{equation*}
$$

Now $b^{2}-4 a c=(-p)^{2}-4(p+q)(-q)$

$$
\begin{aligned}
& =p^{2}+4 q(p+q) \\
& =p^{2}+4 p q+q^{2} \\
& =(p+2 q)^{2}
\end{aligned}
$$

As $b^{2}-4 a c>0$ and also a perfect square, so roots of (1) are rational.
(ii) $\quad p x^{2}-(p-q) x-q=0 \longrightarrow$

Solution:

$$
\begin{equation*}
a=p, b=p-q, c=-q \tag{1}
\end{equation*}
$$

Now $b^{2}-4 a c=(p-q)^{2}-4(p)(-q)$

$$
\begin{aligned}
& =p^{2}+q^{2}-2 p q+4 p q \\
& =p^{2}+q^{2}+2 p q \\
& =(p+q)^{2}
\end{aligned}
$$

As $b^{2}-4 a c>0$ and also a perfect square, so roots of (1) are rational.
Q\#4: For what value of m will the roots of the following equations be equal?
(i)
$(m+1) x^{2}+2(m+3) x+m+8=0$
Solution:

$$
\begin{equation*}
a=m+1, b=2(m+3), c=m+8 \tag{1}
\end{equation*}
$$

Since roots of equation (1) are equal

$$
\begin{aligned}
& \Rightarrow b^{2}-4 a c=0 \\
\Rightarrow & 4(m+3)^{2}-4(m+1)(m+8)=0 \\
\Rightarrow & (m+3)^{2}-(m+1)(m+8)=0 \\
\Rightarrow & m^{2}+6 m+9-\left(m^{2}+8 m+m+8\right)=0 \\
\Rightarrow & m^{2}+6 m+9-\left(m^{2}+9 m+8\right)=0 \\
\Rightarrow & m^{2}+6 m+9-m^{2}-9 m-8=0 \\
& \Rightarrow-3 m+1=0 \\
& \Rightarrow 3 m=1 \\
& \Rightarrow m=\frac{1}{3}
\end{aligned}
$$

(ii) $\quad x^{2}-2(1+3 m) x+7(3+2 m)=$ $0 \rightarrow$ (1)
Solution:

$$
a=1, b=-2(1+3 m), c=7(3+2 m)
$$

Since roots of equation (1) are equal

$$
\Rightarrow b^{2}-4 a c=0
$$

$\Rightarrow 4(1+3 m)^{2}-4(1)(7(3+2 m))=0$
$\Rightarrow(1+3 m)^{2}-7(3+2 m)=0$
$\Rightarrow 1+9 m^{2}+6 m-21-14 m=0$
$\Rightarrow 9 m^{2}-8 m-20=0$
$\Rightarrow 9 m^{2}+10 m-18 m-20=0$
$\Rightarrow 9 m(m+10)-2(m+10)=0$
$\Rightarrow(m+10)(9 m-2)=0$
$\Rightarrow m+10=0$ or $9 m-2=0$
$\Rightarrow m=-10$ or $m=\frac{2}{9}$
(iii)
$(1+m) x^{2}-2(1+3 m) x+(1+8 m)=0$
Solution:

$$
(1+m) x^{2}-2(1+3 m) x+(1+8 m)=0 \rightarrow(1)
$$

$$
a=1+m, b=-2(1+3 m), c=1+8 m
$$

Since roots of (1) are equal

$$
\begin{gathered}
\Rightarrow b^{2}-4 a c=0 \\
\Rightarrow 4(1+3 m)^{2}-4(1+m)(1+8 m)=0 \\
\Rightarrow(1+3 m)^{2}-(1+m)(1+8 m)=0 \\
\Rightarrow 1+9 m^{2}+6 m-\left(1+8 m+m+8 m^{2}\right)=0 \\
\Rightarrow 1+9 m^{2}+6 m-\left(1+9 m+8 m^{2}\right)=0 \\
\Rightarrow 1+9 m^{2}+6 m-1-9 m-8 m^{2}=0 \\
\quad \Rightarrow m^{2}-3 m=0 \\
\Rightarrow m(m-3)=0 \\
\Rightarrow m=0, m-3=0 \\
\Rightarrow m=0, m=3
\end{gathered}
$$

Q\#5:
Show that the roots of $x^{2}+(m x+c)^{2}=a^{2}$ will be equal, if $c^{2}=a^{2}\left(1+m^{2}\right)$.
Solution:

$$
\begin{gathered}
x^{2}+(m x+c)^{2}=a^{2}-\rightarrow(1) \\
x^{2}+m^{2} x^{2}+2 m c x+c^{2}-a^{2}=0 \\
x^{2}\left(1+m^{2}\right)+2 m c x+c^{2}-a^{2}=0 \\
A=1+m^{2}, B=2 m c, C=c^{2}-a^{2}
\end{gathered}
$$

Since roots of (1) are equal

$$
\Rightarrow B^{2}-4 A C=0
$$

$\Rightarrow 4 m^{2} c^{2}-4\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$
$\Rightarrow m^{2} c^{2}-\left(1+m^{2}\right)\left(c^{2}-a^{2}\right)=0$
$\Rightarrow m^{2} c^{2}-\left(c^{2}-a^{2}+m^{2} c^{2}-m^{2} a^{2}\right)=0$
$\Rightarrow m^{2} c^{2}-c^{2}+a^{2}-m^{2} c^{2}+m^{2} a^{2}=0$
$\Rightarrow-c^{2}+a^{2}+m^{2} a^{2}=0$
$\Rightarrow c^{2}=a^{2}\left(1+m^{2}\right)$ as required.
Q\#6: Show that roots of $(m x+c)^{2}=4 a x$ will be equal, if $\boldsymbol{c}=\frac{a}{m}, \boldsymbol{m} \neq 0$.
Solution:

$$
\begin{gathered}
(m x+c)^{2}=4 a x-\rightarrow(1) \\
m^{2} x^{2}+2 m c x+c^{2}-4 a x=0 \\
m^{2} x^{2}+2(m c-2 a) x+c^{2}=0
\end{gathered}
$$

Since roots of the equation (1) are equal

$$
\Rightarrow b^{2}-4 a c=0
$$

$\Rightarrow 4(m c-2 a)^{2}-4 m^{2} c^{2}=0$
$\Rightarrow(m c-2 a)^{2}-m^{2} c^{2}=0$
$\Rightarrow\left(m^{2} c^{2}-4 m c a+4 a^{2}\right)-m^{2} c^{2}=0$
$\Rightarrow m^{2} c^{2}-4 m c a+4 a^{2}-m^{2} c^{2}=0$
$\Rightarrow-4 m c a+4 a^{2}=0$
$\Rightarrow-m c+a=0$
$\Rightarrow c=\frac{a}{m}$ as required.
Q\#7: Prove that $\frac{x^{2}}{a^{2}}+\frac{(m x+b)^{2}}{b^{2}}=1$ will have equal roots if $c^{2}=a^{2} m^{2}+b^{2}, a \neq 0, b \neq 0$. Solution: Do yourself
Q\#8: Show that the roots of the equation $\left(a^{2}-b c\right) x^{2}+2\left(b^{2}-c a\right) x+c^{2}-a b=0$ will be equal, if either $a^{2}+b^{2}+c^{2}=$
$3 a b c$ or $b=0$.
Solution: $\left(a^{2}-b c\right) x^{2}+2\left(b^{2}-c a\right) x+c^{2}-$ $a b=0 \rightarrow$ (1)
Since roots of (1) are equal

$$
\begin{gathered}
\Rightarrow b^{2}-4 a c=0 \\
\Rightarrow 4\left(b^{2}-c a\right)^{2}-4\left(a^{2}-b c\right)\left(c^{2}-a b\right)=0 \\
\Rightarrow\left(b^{2}-c a\right)^{2}-\left(a^{2}-b c\right)\left(c^{2}-a b\right)=0 \\
\Rightarrow b^{4}+c^{2} a^{2}-2 b^{2} c a \\
\\
\quad-\left(a^{2} c^{2}-a^{3} b-b c^{3}+a b^{2} c\right) \\
\quad=0 \\
\Rightarrow b^{4}+c^{2} a^{2}-2 b^{2} c a-a^{2} c^{2}+a^{3} b+b c^{3} \\
\quad-a b^{2} c=0 \\
\Rightarrow b^{4}-2 b^{2} c a+a^{3} b+b c^{3}-a b^{2} c=0 \\
\Rightarrow\left(b^{3}-2 b c a+a^{3}+c^{3}-a b c\right) b=0 \\
\Rightarrow\left(a^{3}+b^{3}+c^{3}-3 a b c\right) b=0 \\
\Rightarrow a^{3}+b^{3}+c^{3}-3 a b c=0 \text { or } b=0 \\
\Rightarrow a^{3}+b^{3}+c^{3}=3 a b c \text { or } b=0 \text { as required. }
\end{gathered}
$$

