Exercise 4.7

Nature of roots of Quadratic Equation

We know that the roots of the quadratic equation $ax^2 + bx + c = 0$ are given by the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We see that there are two possible values for x, as discriminated by the part of the formula $\pm \sqrt{b^2 - 4ac}$. The nature of roots of the quadratic equation depends on the value of the expression $b^2 - 4ac$, which is called its discriminant.

Case I: If $b^2 - 4ac = 0$ then roots will be $\frac{-b}{2a}$ and $\frac{-b}{2a}$, so the roots are real and equal. **Case II:** If $b^2 - 4ac < 0$ then roots will be complex and distinct.

Case III: If $b^2 - 4ac > 0$ then roots will be real and distinct. Also if If $b^2 - 4ac$ is a perfect square then roots will be rational otherwise irrational.

Q#1: Discuss the nature of roots of the following equations.

(i) $4x^2 + 6x + 1 = 0$

Solution: $4x^2 + 6x + 1 = 0 \rightarrow (1)$ a = 4, b = 6, c = 1Now $b^2 - 4ac = 6^2 - 4(4)(1)$ = 36 - 16 = 20 > 0 \Rightarrow Roots of equation (1) will be real and distinct, also $b^2 - 4ac = 20$ is not a perfect square so roots will be irrational.

(ii) $x^2 - 5x + 6 = 0$

Solution:
$$x^2 - 5x + 6 = 0 \rightarrow (1)$$

 $a = 1, b = -5, c = 6$
Now $b^2 - 4ac = (-5)^2 - 4(1)(6)$
 $= 25 - 24 = 1 > 0$
 \Rightarrow Roots of equation (1) will be real an

 \Rightarrow Roots of equation (1) will be real and distinct, also $b^2 - 4ac = 1$ is a perfect square so roots will be rational.

(iii) $2x^2 - 5x + 1 = 0$

Solution:
$$2x^2 - 5x + 1 = 0 \rightarrow (1)$$

 $a = 2, b = -5, c = 1$
Now $b^2 - 4ac = (-5)^2 - 4(2)(1)$
 $= 25 - 8 = 17 > 0$
 \Rightarrow Roots of equation (1) will be real and
distinct, also $b^2 - 4ac = 17$ is not a perfect

square so roots will be irrational.

(iv) $25x^2 - 30x + 9 = 0$

Solution: $25x^2 - 30x + 9 = 0 \rightarrow (1)$

UNIT 4 (QUADRATIC EQUATIONS)

$$a = 25, b = -30, c = 9$$

Now $b^2 - 4ac = (-30)^2 - 4(25)(9)$
 $= 900 - 900 = 0$
 \Rightarrow Roots of equation (1) will be real and equal.
Q#2: Show that the roots of the following
equations will be real.
(i) $x^2 - 2\left(m + \frac{1}{m}\right)x + 3 = 0$
Solution: $x^2 - 2\left(m + \frac{1}{m}\right)x + 3 = 0$
 $= 2\left(m^2 + 1\right)x + 3m = 0$
 $a = m, b = -2(m^2 + 1), c = 3m$
Now $b^2 - 4ac = 4(m^2 + 1)^2 - 4(m)(3m)$
 $= 4(m^4 + 2m^2 + 1) - 12m^2$
 $= 4m^4 + 8m^2 + 4 - 12m^2$
 $= 4m^4 - 4m^2 + 4$
 $= 4(m^4 - m^2 + 1)$
Now as we know that $m^4 > m^2$
 $\Rightarrow m^4 - m^2 + 1 > 0$
 $\Rightarrow b^2 - 4ac > 0$
 $\Rightarrow Roots of (1)$ will be real.
(i) $(b - c)x^2 + (c - a)x + (a - b) = 0, a, b, c \in Q$
Solution:
 $(b - c)x^2 + (c - a)x + (a - b) = 0 \rightarrow (1)$
 $A = (b - c), B = (c - a), C = (a - b)$
Now $B^2 - 4AC = (c - a)^2 - 4(b - c)(a - b)$
 $= c^2 + a^2 - 2ac - 4(ab - b^2 - ac + bc)$

M. SHAHID NADEEM, SCHOLARS ACADEMY, SHAH WALI COLONY, WAH CANTT. (0300-5608736) P 1

 $= c^{2} + a^{2} - 2ac - 4ab + 4b^{2} + 4ac - 4bc$ $= a^2 + 4b^2 + c^2 + 2ac - 4ab - 4bc$ $= (a - 2b + c)^2 > 0$ \Rightarrow Roots of (1) will be real. Q#3: Show that the roots of the following equations will be rational. $(p+q)x^2 - px - q = 0 \longrightarrow (1)$ (i) Solution: a = p + q, b = -p, c = -qNow $b^2 - 4ac = (-p)^2 - 4(p+q)(-q)$ $= p^2 + 4q(p+q)$ $= p^2 + 4pq + q^2$ $= (p + 2q)^2$ As $b^2 - 4ac > 0$ and also a perfect square, so roots of (1) are rational. $px^2 - (p - q)x - q = 0 \longrightarrow (1)$ (ii) Solution: a = p, b = p - q, c = -qNow $b^2 - 4ac = (p - q)^2 - 4(p)(-q)$ $= p^{2} + q^{2} - 2pq + 4pq$ $= p^2 + q^2 + 2pq$ $= (p+q)^2$ As $b^2 - 4ac > 0$ and also a perfect square, so roots of (1) are rational. **Q#4:** For what value of *m* will the roots of the following equations be equal? (i) $(m+1)x^2 + 2(m+3)x + m + 8 = 0 \rightarrow (1)$ Solution: a = m + 1, b = 2(m + 3), c = m + 8Since roots of equation (1) are equal $\Rightarrow b^2 - 4ac = 0$ $\Rightarrow 4(m+3)^2 - 4(m+1)(m+8) = 0$ $\Rightarrow (m+3)^2 - (m+1)(m+8) = 0$ $\implies m^2 + 6m + 9 - (m^2 + 8m + m + 8) = 0$ $\implies m^2 + 6m + 9 - (m^2 + 9m + 8) = 0$ $\implies m^2 + 6m + 9 - m^2 - 9m - 8 = 0$ $\Rightarrow -3m + 1 = 0$ \Rightarrow 3m = 1 $\implies m = \frac{1}{3}$ $x^2 - 2(1+3m)x + 7(3+2m) =$ (ii) $0 \rightarrow (1)$ Solution: a = 1, b = -2(1 + 3m), c = 7(3 + 2m)Since roots of equation (1) are equal $\implies b^2 - 4ac = 0$ $\Rightarrow 4(1+3m)^2 - 4(1)(7(3+2m)) = 0$ $\Rightarrow (1+3m)^2 - 7(3+2m) = 0$ \implies 1 + 9m² + 6m - 21 - 14m = 0 $\Rightarrow 9m^2 - 8m - 20 = 0$

 $\Rightarrow 9m^2 + 10m - 18m - 20 = 0$ $\Rightarrow 9m(m+10) - 2(m+10) = 0$ $\implies (m+10)(9m-2) = 0$ \Rightarrow m + 10 = 0 or 9m - 2 = 0 $\implies m = -10 \text{ or } m = \frac{-10}{2}$ (iii) $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0$ Solution: $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0 \rightarrow (1)$ a = 1 + m, b = -2(1 + 3m), c = 1 + 8mSince roots of (1) are equal $\implies b^2 - 4ac = 0$ $\Rightarrow 4(1+3m)^2 - 4(1+m)(1+8m) = 0$ $\Rightarrow (1+3m)^2 - (1+m)(1+8m) = 0$ $\implies 1 + 9m^2 + 6m - (1 + 8m + m + 8m^2) = 0$ $\implies 1 + 9m^2 + 6m - (1 + 9m + 8m^2) = 0$ \implies 1 + 9m² + 6m - 1 - 9m - 8m² = 0 $\implies m^2 - 3m = 0$ $\implies m(m-3) = 0$ $\implies m = 0, m - 3 = 0$ $\implies m = 0, m = 3$ O#5: Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1 + m^2)$. Solution: $x^{2} + (mx + c)^{2} = a^{2} \rightarrow (1)$ $x^2 + m^2 x^2 + 2mcx + c^2 - a^2 = 0$ $x^{2}(1+m^{2}) + 2mcx + c^{2} - a^{2} = 0$ $A = 1 + m^2$, B = 2mc, $C = c^2 - a^2$ Since roots of (1) are equal $\implies B^2 - 4AC = 0$ $\Rightarrow 4m^2c^2 - 4(1+m^2)(c^2 - a^2) = 0$ $\Rightarrow m^2 c^2 - (1 + m^2)(c^2 - a^2) = 0$ $\Rightarrow m^2 c^2 - (c^2 - a^2 + m^2 c^2 - m^2 a^2) = 0$ $\implies m^2 c^2 - c^2 + a^2 - m^2 c^2 + m^2 a^2 = 0$ $\implies -c^2 + a^2 + m^2 a^2 = 0$ $\Rightarrow c^2 = a^2(1+m^2)$ as required. Q#6: Show that roots of $(mx + c)^2 = 4ax$ will be equal, if $c = \frac{a}{m}$, $m \neq 0$. Solution: $(mx + c)^2 = 4ax \rightarrow (1)$ $m^2 x^2 + 2mcx + c^2 - 4ax = 0$ $m^2 x^2 + 2(mc - 2a)x + c^2 = 0$ Since roots of the equation (1) are equal $\Rightarrow b^2 - 4ac = 0$ $\implies 4(mc-2a)^2 - 4m^2c^2 = 0$ $\Rightarrow (mc - 2a)^2 - m^2c^2 = 0$ $\Rightarrow (m^2c^2 - 4mca + 4a^2) - m^2c^2 = 0$ $\Rightarrow m^2c^2 - 4mca + 4a^2 - m^2c^2 = 0$

UNIT 4 (QUADRATIC EQUATIONS) **M. SHAHID NADEEM, SCHOLARS ACADEMY, SHAH WALI COLONY, WAH CANTT.** (0300-5608736) P 2 $\Rightarrow -4mca + 4a^{2} = 0$ $\Rightarrow -mc + a = 0$ $\Rightarrow c = \frac{a}{m} \text{ as required.}$ Q#7: Prove that $\frac{x^{2}}{a^{2}} + \frac{(mx+b)^{2}}{b^{2}} = 1$ will have equal roots if $c^{2} = a^{2}m^{2} + b^{2}$, $a \neq 0, b \neq 0$. Solution: Do yourself Q#8: Show that the roots of the equation $(a^{2} - bc)x^{2} + 2(b^{2} - ca)x + c^{2} - ab = 0$ will be equal, if either $a^{2} + b^{2} + c^{2} =$ 3abc or b = 0. Solution: $(a^{2} - bc)x^{2} + 2(b^{2} - ca)x + c^{2} - ab = 0 - \rightarrow (1)$ Since roots of (1) are equal

$$\Rightarrow b^{2} - 4ac = 0$$

$$\Rightarrow 4(b^{2} - ca)^{2} - 4(a^{2} - bc)(c^{2} - ab) = 0$$

$$\Rightarrow (b^{2} - ca)^{2} - (a^{2} - bc)(c^{2} - ab) = 0$$

$$\Rightarrow b^{4} + c^{2}a^{2} - 2b^{2}ca - (a^{2}c^{2} - a^{3}b - bc^{3} + ab^{2}c) = 0$$

$$\Rightarrow b^{4} + c^{2}a^{2} - 2b^{2}ca - a^{2}c^{2} + a^{3}b + bc^{3} - ab^{2}c = 0$$

$$\Rightarrow b^{4} - 2b^{2}ca + a^{3}b + bc^{3} - ab^{2}c = 0$$

$$\Rightarrow (b^{3} - 2bca + a^{3} + c^{3} - abc)b = 0$$

$$\Rightarrow (a^{3} + b^{3} + c^{3} - 3abc)b = 0$$

$$\Rightarrow a^{3} + b^{3} + c^{3} = 3abc \text{ or } b = 0$$

$$\Rightarrow 0 \text{ as required.}$$