Exercise 4.6

Relation Between Roots and Coefficients of a Quadratic Equation:

General quadratic equation is

$$
a x^{2}+b x+c=0 \rightarrow(1)
$$

a, b and c are coefficients and Roots of (1) are
$x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$.
If α, β are the roots of (1) then

$$
\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Now

$$
\begin{gathered}
\alpha+\beta=\frac{-b+\sqrt{b^{2}-4 a c}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}}{\alpha+\beta=\frac{-b+\sqrt{b^{2}-4 a c}-b-\sqrt{b^{2}-4 a c}}{2 a}} \\
\alpha+\beta=\frac{-b-b}{2 a} \\
\alpha+\beta=\frac{-2 b}{2 a} \\
\alpha+\beta=\frac{-b}{a} \\
\alpha+\boldsymbol{\beta}=-\frac{\text { coefficient of } \boldsymbol{x}}{\text { coefficient of } \boldsymbol{x}^{2}}
\end{gathered}
$$

and

$$
\begin{gathered}
\alpha \beta=\frac{-b+\sqrt{b^{2}-4 a c} \cdot \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}}{2 a} \\
\alpha \beta=\frac{(-b)^{2}-\left(\sqrt{b^{2}-4 a c}\right)^{2}}{4 a^{2}} \\
\alpha \beta=\frac{b^{2}-\left(b^{2}-4 a c\right)}{4 a^{2}} \\
\alpha \beta=\frac{b^{2}-b^{2}+4 a c}{4 a^{2}} \\
\alpha \beta=\frac{4 a c}{4 a^{2}} \\
\alpha \beta=-\frac{\alpha \beta=\frac{c}{a}}{\operatorname{coefficient} \text { of } x^{0}} \\
\alpha \beta \text { coeficient of } x^{2}
\end{gathered}
$$

Formation of Equation whose roots are given

Let α, β be roots of required equation then $x=$ α and $x=\beta$

$$
\begin{aligned}
& \Rightarrow x-\alpha=0 \text { and } x-\beta=0 \\
& \Rightarrow(x-\alpha)(x-\beta)=0 \\
& \Rightarrow x^{2}-\alpha x-\beta x+\alpha \beta=0 \\
& \Rightarrow x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
& \Rightarrow x^{2}-\mathrm{S} x+\mathrm{P}=0
\end{aligned}
$$

Where $\mathrm{S}=\alpha+\beta$ and $\mathrm{P}=\alpha \beta$.

1. If α, β are the roots of $3 x^{2}-2 x+4=0$, find the values of
(i) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

Solution: Since α, β are roots of $3 x^{2}-2 x+4=0$.

$$
\Rightarrow \alpha+\beta=\frac{2}{3} \quad \text { and } \alpha \beta=\frac{4}{3}
$$

Now, $\quad \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\beta^{2}+\alpha^{2}}{\alpha^{2} \beta^{2}}$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta}{\alpha^{2} \beta^{2}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\left(\frac{2}{3}\right)^{2}-2\left(\frac{4}{3}\right)}{\left(\frac{4}{3}\right)^{2}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\frac{4}{9}-\frac{8}{3}}{\frac{16}{9}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\frac{4-24}{9}}{\frac{16}{9}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\frac{-20}{9}}{\frac{16}{9}}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{-20}{16}
$$

$$
\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{-5}{4}
$$

$$
\begin{align*}
& \frac{\alpha}{\boldsymbol{\beta}}+\frac{\beta}{\boldsymbol{\alpha}} \tag{ii}\\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta}{\alpha \beta} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\left(\frac{2}{3}\right)^{2}-2\left(\frac{4}{3}\right)}{\frac{4}{3}} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\frac{4}{9}-\frac{8}{3}}{4} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\frac{4-24}{9}}{\frac{4}{3}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\frac{-20}{9}}{\frac{4}{3}} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{-20}{9} \cdot \frac{3}{4} \\
& \frac{\alpha}{\boldsymbol{\alpha}}+\frac{\boldsymbol{\beta}}{\boldsymbol{\alpha}}=\frac{-5}{3}
\end{aligned}
$$

(iii) $\quad \alpha^{4}+\beta^{4}$

$$
\begin{aligned}
& \alpha^{4}+\beta^{4}=\left(\alpha^{2}\right)^{2}+\left(\beta^{2}\right)^{2} \\
& \alpha^{4}+\beta^{4}=\left(\alpha^{2}\right)^{2}+\left(\beta^{2}\right)^{2}+2 \alpha^{2} \beta^{2}-2 \alpha^{2} \beta^{2} \\
& \alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2} \\
& \alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta\right)^{2}-2 \alpha^{2} \beta^{2} \\
& \alpha^{4}+\beta^{4}=\left((\alpha+\beta)^{2}-2 \alpha \beta\right)^{2}-2(\alpha \beta)^{2} \\
& \alpha^{4}+\beta^{4}=\left(\left(\frac{2}{3}\right)^{2}-2\left(\frac{4}{3}\right)\right)^{2}-2\left(\frac{4}{3}\right)^{2} \\
& \alpha^{4}+\beta^{4}=\left(\frac{4}{9}-\frac{8}{3}\right)^{2}-2\left(\frac{16}{9}\right) \\
& \alpha^{4}+\beta^{4}=\left(\frac{4-24}{9}\right)^{2}-\frac{32}{9} \\
& \alpha^{4}+\beta^{4}=\left(\frac{-20}{9}\right)^{2}-\frac{32}{9} \\
& \alpha^{4}+\beta^{4}=\frac{400}{81}-\frac{32}{9} \\
& \alpha^{4}+\beta^{4}=\frac{400-288}{81} \\
& \alpha^{4}+\beta^{4}=\frac{112}{81} \\
& \text { (iv) } \alpha^{3}+\beta^{3}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right) \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta-\alpha \beta\right) \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{3}+\beta^{3}=\left(\frac{2}{3}\right)\left(\left(\frac{2}{3}\right)^{2}-3\left(\frac{4}{3}\right)\right) \\
& \alpha^{3}+\beta^{3}=\left(\frac{2}{3}\right)\left(\frac{4}{9}-4\right) \\
& \alpha^{3}+\beta^{3}=\left(\frac{2}{3}\right)\left(\frac{4-36}{9}\right) \\
& \alpha^{3}+\beta^{3}=\left(\frac{2}{3}\right)\left(\frac{-32}{9}\right) \\
& \alpha^{3}+\beta^{3}=\left(\frac{2}{3}\right)\left(\frac{-32}{9}\right) \\
& \alpha^{3}+\beta^{3}=\frac{-64}{27}
\end{aligned}
$$

(v) $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$

Solution:

$$
\begin{aligned}
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\beta^{3}+\alpha^{3}}{\alpha^{3} \beta^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\alpha^{3}+\beta^{3}}{\alpha^{3} \beta^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)}{(\alpha \beta)^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{(\alpha+\beta)\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta-\alpha \beta\right)}{(\alpha \beta)^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{(\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right)}{(\alpha \beta)^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}= \\
& \frac{\left(\frac{2}{3}\right)\left(\left(\frac{2}{3}\right)^{2}-3\left(\frac{4}{3}\right)\right)}{\left(\frac{4}{3}\right)^{3}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\left(\frac{2}{3}\right)\left(\frac{4}{9}-4\right)}{\frac{64}{27}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\left(\frac{2}{3}\right)\left(\frac{4-36}{9}\right)}{\frac{64}{27}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=\frac{\left(\frac{2}{3}\right)\left(\frac{-32}{9}\right)}{\frac{64}{27}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=-\frac{\frac{64}{27}}{\frac{64}{27}} \\
& \frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}=-1
\end{aligned}
$$

(vi) $\quad \alpha^{2}-\beta^{2}$

Solution

Now, $\quad\left(\alpha^{2}-\beta^{2}\right)^{2}=\alpha^{4}+\beta^{4}-2 \alpha^{2} \beta^{2}$ $\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\alpha^{2}\right)^{2}+\left(\beta^{2}\right)^{2}+2 \alpha^{2} \beta^{2}-2 \alpha^{2} \beta^{2}-2 \alpha^{2} \beta^{2}$

$$
\begin{gathered}
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\alpha^{2}+\beta^{2}\right)^{2}-4 \alpha^{2} \beta^{2} \\
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta\right)^{2}-4 \alpha^{2} \beta^{2} \\
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left((\alpha+\beta)^{2}-2 \alpha \beta\right)^{2}-4(\alpha \beta)^{2} \\
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\left(\frac{2}{3}\right)^{2}-2\left(\frac{4}{3}\right)\right)^{2}-4\left(\frac{4}{3}\right)^{2} \\
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\frac{4}{9}-\frac{8}{3}\right)^{2}-4\left(\frac{16}{9}\right) \\
\left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\frac{4-24}{9}\right)^{2}-\frac{64}{9}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\alpha^{2}-\beta^{2}\right)^{2}=\left(\frac{-20}{9}\right)^{2}-\frac{64}{9} \\
& \left(\alpha^{2}-\beta^{2}\right)^{2}=\frac{400}{81}-\frac{64}{9} \\
& \left(\alpha^{2}-\beta^{2}\right)^{2}=\frac{400-576}{81} \\
& \left(\alpha^{2}-\beta^{2}\right)^{2}=\frac{-176}{81} \\
& \alpha^{2}-\beta^{2}= \pm \frac{\sqrt{-176}}{9} \\
& \alpha^{2}-\beta^{2}= \pm \frac{4 \sqrt{11} i}{9}
\end{aligned}
$$

2. If α, β are roots of $x^{2}-p x-p-c=0$, prove that $(1+\alpha)(1+\beta)=1-c$.

Solution:

$$
\begin{equation*}
x^{2}-p x-p-c=0 \tag{1}
\end{equation*}
$$

Since α, β are the roots of (1)

$$
\begin{aligned}
& \Rightarrow \alpha+\beta=\frac{-(-p)}{1}=p \\
& \Rightarrow \alpha \beta=\frac{-p-c}{1}=-p-c
\end{aligned}
$$

Now, $(1+\alpha)(1+\beta)=1+\alpha+\beta+\alpha \beta$

$$
\begin{aligned}
& (1+\alpha)(1+\beta)=1+p-p-c \\
& (1+\alpha)(1+\beta)=1-c
\end{aligned}
$$

As required.
3. Find the condition that one root of $x^{2}+p x+q=0$ is
(i) Double the other
(ii) square of the other
(iii) additive inverse of the other
(iv) multiplicative inverse of the other
solution:

$$
\begin{equation*}
x^{2}+p x+q=0 \tag{1}
\end{equation*}
$$

(i) Let $\alpha, 2 \alpha$ be roots of (1)
$\Rightarrow \alpha+2 \alpha=-p$
$\Rightarrow 3 \alpha=-p$
$\Rightarrow \alpha=\frac{-p}{3}$
$\Rightarrow \quad \alpha .2 \alpha=q$
$2 \alpha^{2}=q$
$2\left(\frac{-p}{3}\right)^{2}=q$
$2 \frac{p^{2}}{9}=q$
$2 p^{2}=9 q$ is required condition.
(ii) Let α and α^{2} be roots of equation (1)

$$
\Rightarrow \alpha+\alpha^{2}=-p \rightarrow(2)
$$

and $\alpha \cdot \alpha^{2}=q$
$\Rightarrow \alpha^{3}=q$
$\Rightarrow \alpha=q^{\frac{1}{3}}$
Using value in (2)
$q^{\frac{1}{3}}+q^{\frac{2}{3}}=-p$
$\Rightarrow q^{\frac{1}{3}}\left(1+q^{\frac{1}{3}}\right)=-p$
$\Rightarrow q\left(1+q^{\frac{1}{3}}\right)^{3}=(-p)^{3}$
$\Rightarrow q\left(1+q+3 q^{\frac{1}{3}}\left(1+q^{\frac{1}{3}}\right)\right)=-p^{3}$
$\Rightarrow q(1+q+3(-p))=-p^{3}$
$\Rightarrow q+q^{2}-3 p q+p^{3}=0$ is required condition.
(iii) Let α and $-\alpha$ be roots of equation (1)
$\Rightarrow \alpha-\alpha=-p$
$\Rightarrow 0=-p$
$\Rightarrow p=0$ is required condition.
(iv) Let α and $\frac{1}{\alpha}$ be roots of equation (1)
$\Rightarrow \alpha \cdot \frac{1}{\alpha}=q$
$\Rightarrow 1=q$
$\Rightarrow q=1$ is required condition.
4. If the roots of the equation $x^{2}-p x+q=0$ differ by unity, prove that $p^{2}=4 q+1$.

Solution:

Let α and $\alpha-1$ be roots of the equation.
$\alpha+\alpha-1=-(-p)$
$2 \alpha-1=p$
$2 \alpha=p+1$
$2 \alpha=p+1$
$\alpha=\frac{p+1}{2}$
And $\alpha(\alpha-1)=q$

$$
\begin{aligned}
& \frac{p+1}{2}\left(\frac{p+1}{2}-1\right)=q \\
& \frac{p+1}{2}\left(\frac{p+1-2}{2}\right)=q \\
& \frac{p+1}{2}\left(\frac{p-1}{2}\right)=q \\
& \frac{p^{2}-1}{4}=q \\
& p^{2}-1=4 q \\
& p^{2}=4 q+1 \text { as required. }
\end{aligned}
$$

5. Find the condition that $\frac{a}{x-a}+\frac{b}{x-b}=5$ may have roots equal in magnitude but opposite in signs.

Solution:

$$
\begin{aligned}
& \frac{a}{x-a}+\frac{b}{x-b}=5 \\
& \frac{a(x-b)+b(x-a)}{(x-a)(x-b)}=5 \\
& \frac{a x-a b+b x-a b}{(x-a)(x-b)}=5 \\
& a x-a b+b x-a b=5(x-a)(x-b) \\
& a x-a b+b x-a b=5\left(x^{2}-a x-b x+a b\right) \\
& a x-a b+b x-a b=5 x^{2}-5 a x-5 b x+5 a b \\
& 5 x^{2}-5 a x-5 b x+5 a b-a x+a b-b x+a b=0 \\
& 5 x^{2}-6 a x-6 b x+7 a b=0 \\
& 5 x^{2}-6(a+b) x+7 a b=0
\end{aligned}
$$

Let $\alpha,-\alpha$ be roots of this equation

$$
\begin{aligned}
& \alpha+(-\alpha)=\frac{-6(a+b)}{5} \\
& 0=\frac{-6(a+b)}{5} \\
& a+b=0 \text { is the required condition. }
\end{aligned}
$$

6. If the roots of $p x^{2}+q x+q=0$ are, β, prove that $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}=\sqrt{\frac{\beta}{\alpha}}$.

Solution: $\quad p x^{2}+q x+q=0 \rightarrow(1)$
Since α, β are the roots of equation (1)

$$
\begin{gathered}
\Rightarrow \alpha+\beta=-\frac{q}{p} \\
\text { and } \alpha \beta=\frac{q}{p} \\
\sqrt{\alpha \beta}=\sqrt{\frac{q}{p}} \\
\frac{\alpha+\beta}{\sqrt{\alpha \beta}}=-\frac{\frac{q}{p}}{\sqrt{\frac{q}{p}}} \\
\frac{\alpha}{\sqrt{\alpha \beta}}+\frac{\beta}{\sqrt{\alpha \beta}}=-\frac{\frac{q}{p}}{\sqrt{\frac{q}{p}}} \\
\frac{\sqrt{\alpha} \sqrt{\alpha}}{\sqrt{\alpha} \sqrt{\beta}}+\frac{\sqrt{\beta} \sqrt{\beta}}{\sqrt{\alpha} \sqrt{\beta}}=-\frac{\sqrt{\frac{q}{p}} \sqrt{\frac{q}{p}}}{\sqrt{\frac{q}{p}}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}=-\sqrt{\frac{q}{p}} \\
& \sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{q}{p}}=0
\end{aligned}
$$

as required.
7. If α, β are roots of $a x^{2}+b x+c=0$, form the equations whose roots are.
(i) α^{2}, β^{2}

Solution: Since α, β are roots of $a x^{2}+b x+c=0$.

$$
\begin{aligned}
& \alpha+\beta=-\frac{b}{a} \\
& \alpha \beta=\frac{c}{a}
\end{aligned}
$$

We have to form an equation, whose roots are α^{2}, β^{2}

$$
\begin{aligned}
& \mathrm{S}=\alpha^{2}+\beta^{2} \\
& \mathrm{~S}=\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta \\
& \mathrm{~S}=(\alpha+\beta)^{2}-2 \alpha \beta \\
& \mathrm{~S}=\left(-\frac{b}{a}\right)^{2}-2\left(\frac{c}{a}\right) \\
& \mathrm{S}=\frac{b^{2}}{a^{2}}-\frac{2 c}{a}
\end{aligned}
$$

$\mathrm{S}=\frac{b^{2}-2 a c}{a^{2}}$
$\mathrm{P}=\alpha^{2} \beta^{2}=(\alpha \beta)^{2}=\left(\frac{c}{a}\right)^{2}=\frac{c^{2}}{a^{2}}$
Equation is $x^{2}-\mathrm{S} x+\mathrm{P}=0$
$x^{2}-\frac{b^{2}-2 a c}{a^{2}} x+\frac{c^{2}}{a^{2}}=0$
$a^{2} x^{2}-\left(b^{2}-2 a c\right) x+c^{2}=0$
(ii) $\frac{1}{\alpha}, \frac{1}{\beta}$

$$
\begin{aligned}
& \mathrm{S}=\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c} \\
& \mathrm{P}=\frac{1}{\alpha} \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{a}{c}
\end{aligned}
$$

Equation is $x^{2}-S x+P=0$

$$
\begin{aligned}
& x^{2}-\left(-\frac{b}{c}\right) x+\frac{a}{c}=0 \\
& x^{2}+\frac{b}{c} x+\frac{a}{c}=0 \\
& c x^{2}+b x+a=0
\end{aligned}
$$

(iii) $\quad \frac{1}{\alpha^{2}}, \frac{1}{\beta^{2}}$

Solution:

$$
S=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}
$$

$$
\begin{aligned}
& =\frac{\beta^{2}+\alpha^{2}}{\alpha^{2} \beta^{2}} \\
& =\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta}{(\alpha \beta)^{2}} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}=\frac{\left(-\frac{b}{a}\right)^{2}-2\left(\frac{c}{a}\right)}{\left(\frac{c}{a}\right)^{2}} \\
& =\frac{\frac{b^{2}}{a^{2}}-\frac{2 c}{a}}{\frac{c^{2}}{a^{2}}}=\frac{\frac{b^{2}-2 a c}{a^{2}}}{\frac{c^{2}}{a^{2}}}=\frac{b^{2}-2 a c}{c^{2}} \\
& \mathrm{P}=\frac{1}{\alpha^{2}} \frac{1}{\beta^{2}}=\frac{1}{(\alpha \beta)^{2}}=\frac{a^{2}}{c^{2}}
\end{aligned}
$$

Equation is $x^{2}-S x+P=0$

$$
\begin{aligned}
& x^{2}-\left(\frac{b^{2}-2 a c}{c^{2}}\right) x+\frac{a^{2}}{c^{2}}=0 \\
& \boldsymbol{c}^{2} \boldsymbol{x}^{2}-\left(\boldsymbol{b}^{2}-\mathbf{a} \boldsymbol{a}\right) \boldsymbol{x}+\boldsymbol{a}^{2}=\mathbf{0}
\end{aligned}
$$

(iv) α^{3}, β^{3}

Solution:

$$
\begin{aligned}
\mathrm{S} & =\alpha^{3}+\beta^{3} \\
& =(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\
& =(\alpha+\beta)\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-2 \alpha \beta-\alpha \beta\right) \\
& =(\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right) \\
& =\left(-\frac{b}{a}\right)\left(\left(-\frac{b}{a}\right)^{2}-3 \frac{c}{a}\right) \\
& =\left(-\frac{b}{a}\right)\left(\frac{b^{2}}{a^{2}}-\frac{3 c}{a}\right) \\
& =\left(-\frac{b}{a}\right)\left(\frac{b^{2}-3 a c}{a^{2}}\right)=\frac{-b^{3}+3 a b c}{a^{3}} \\
\mathrm{P} & =\alpha^{3} \beta^{3}=(\alpha \beta)^{3}=\frac{c^{3}}{a^{3}}
\end{aligned}
$$

Equation is $x^{2}-\mathrm{S} x+\mathrm{P}=0$

$$
\begin{aligned}
& x^{2}-\left(\frac{-b^{3}+3 a b c}{a^{3}}\right) x+\frac{c^{3}}{a^{3}}=0 \\
& \boldsymbol{a}^{3} \boldsymbol{x}^{2}+\left(\boldsymbol{b}^{3}-\mathbf{a} \boldsymbol{a b c}\right) \boldsymbol{x}+\boldsymbol{c}^{3}=\mathbf{0}
\end{aligned}
$$

Note: Do remaining parts yourself.
8. If α, β are roots of $5 x^{2}-x-2=0$, form an equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$.

Solution $5 x^{2}-x-2=0 \rightarrow(1)$
Since α, β are roots of equation (1)

$$
\begin{aligned}
& \Rightarrow \alpha+\beta=\frac{1}{5} \\
& \alpha \beta=-\frac{2}{5}
\end{aligned}
$$

Now we have to form an equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$.

$$
\begin{gathered}
\mathrm{S}=\frac{3}{\alpha}+\frac{3}{\beta}=\frac{3 \beta+3 \alpha}{\alpha \beta}=\frac{3(\beta+\alpha)}{\alpha \beta}=\frac{3(\alpha+\beta)}{\alpha \beta}=\frac{3\left(\frac{1}{5}\right)}{-\frac{2}{5}} \\
=\frac{\frac{3}{5}}{-\frac{2}{5}}=-\frac{3}{2} \\
\mathrm{P}=\frac{3}{\alpha} \cdot \frac{3}{\beta}=\frac{9}{\alpha \beta}=\frac{9}{-\frac{2}{5}}=-\frac{45}{2}
\end{gathered}
$$

Now equation is

$$
\begin{aligned}
& x^{2}-\mathrm{S} x+\mathrm{P}=0 \\
& x^{2}-\left(-\frac{3}{2}\right) x-\frac{45}{2}=0 \\
& 2 x^{2}+3 x-45=0
\end{aligned}
$$

9. If α, β are roots of $x^{2}-3 x+5=0$, form an equation whose roots are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.
Solution: $\quad x^{2}-3 x+5=0 \rightarrow$ (1)
Since α, β are roots of equation (1)

$$
\begin{aligned}
\Rightarrow & \alpha+\beta=3 \\
& \alpha \beta=5
\end{aligned}
$$

Now we have to form an equation whose roots are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$.

$$
\begin{aligned}
& \mathrm{S}=\frac{1-\alpha}{1+\alpha}+\frac{1-\beta}{1+\beta} \\
& \mathrm{S}=\frac{(1-\alpha)(1+\beta)+(1+\alpha)(1-\beta)}{(1+\alpha)(1+\beta)} \\
& \mathrm{S}=\frac{1-\alpha+\beta-\alpha \beta+1+\alpha-\beta-\alpha \beta}{1+\alpha+\beta+\alpha \beta} \\
& \mathrm{S}=\frac{1-\alpha \beta+1-\alpha \beta}{1+\alpha+\beta+\alpha \beta} \\
& \mathrm{S}=\frac{2-2 \alpha \beta}{1+(\alpha+\beta)+\alpha \beta}=\frac{2-2(5)}{1+(3)+5}=-\frac{8}{9} \\
& \mathrm{P}=\left(\frac{1-\alpha}{1+\alpha}\right)\left(\frac{1-\beta}{1+\beta}\right) \\
& \mathrm{P}=\frac{1-\alpha-\beta+\alpha \beta}{1+\alpha+\beta+\alpha \beta} \\
& \mathrm{P}=\frac{1-(\alpha+\beta)+\alpha \beta}{1+(\alpha+\beta)+\alpha \beta} \\
& \mathrm{P}=\frac{1-3+5}{1+3+5}=\frac{3}{9}=\frac{1}{3}
\end{aligned}
$$

Now equation is

$$
\begin{gathered}
x^{2}-\mathrm{S} x+\mathrm{P}=0 \\
x^{2}-\left(-\frac{8}{9}\right) x+\frac{1}{3}=0 \\
9 x^{2}+8 x+3=0
\end{gathered}
$$

