Exercise 4.5

Use remainder theorem to find the remainder when the first polynomial is divided by the second polynomial.

1. $x^{2}+3 x+7, x+1$

Solution: Let $p(x)=x^{2}+3 x+7$
Since divisor is $x-a=x+1$

$$
\Rightarrow a=-1
$$

Now by remainder theorem

$$
\begin{aligned}
& p(-1)=(-1)^{2}+3(-1)+7 \\
& p(-1)=1-3+7 \\
& p(-1)=5 \text { is the remainder. }
\end{aligned}
$$

2. $x^{3}-x^{2}+5 x+4, x-2$

Solution: Let $p(x)=x^{3}-x^{2}+5 x+4$
Since divisor is $x-a=x-2$
$\Rightarrow a=2$
Now by remainder theorem
$p(2)=2^{3}-2^{2}+5(2)+4$
$p(2)=8-4+10+4$
$p(2)=18$ is the remainder.
3. $3 x^{4}+4 x^{3}+x-5, x+1$

Solution: Let $p(x)=3 x^{4}+4 x^{3}+x-5$
Since divisor is $x-a=x+1$
$\Rightarrow a=-1$
Now by remainder theorem
$p(-1)=3(-1)^{4}+4(-1)^{3}+(-1)-5$
$p(-1)=3-4-1-5$
$p(-1)=-7$ is the remainder
4. $x^{3}-2 x^{2}+3 x+3, x-3$

Solution: Let $p(x)=x^{3}-2 x^{2}+3 x+3$
Since divisor is $x-a=x-3$
$\Rightarrow a=3$
Now by remainder theorem
$p(3)=3^{3}-2(3)^{2}+3(3)+3$
$p(3)=27-18+9+3$
$p(3)=21$ is the remainder

Use factor theorem to determine if the first polynomial is a factor of second polynomial.
5. $x-1, x^{2}+4 x-5$

Solution: Let $p(x)=x^{2}+4 x-5$
Since divisor is $x-a=x-1$

$$
\Rightarrow a=1
$$

Now ; $p(1)=1^{2}+4(1)-5$

$$
\begin{aligned}
& p(1)=1+4-5 \\
& p(1)=0 \\
& \Rightarrow R=1
\end{aligned}
$$

Hence by factor theorem $x-1$ is the factor of $x^{2}+4 x-5$.
6. $x-2, x^{3}+x^{2}-7 x+2$

Solution: Let $p(x)=x^{3}+x^{2}-x+2$

> Since divisor is $x-a=x-2$
> $\Rightarrow a=2$
> Now $; p(2)=2^{3}+2^{2}-7(2)+2$
> $p(2)=14-14$
> $p(2)=0$
> $\Rightarrow R=0$

Hence by factor theorem $x-2$ is the factor of $x^{3}+x^{2}-7 x+2$.
7. $w+2,2 w^{3}+w^{2}-4 w+4$

Solution: Let $p(w)=2 w^{3}+w^{2}-4 w+4$ Since divisor is $x-a=w+2$

$$
\begin{aligned}
& \Rightarrow \quad a=-2 \\
& p(-2)=2(-2)^{3}+(-2)^{2}-4(-2)+4 \\
& p(-2)=-16+4+8+4 \\
& p(-2)=0 \\
& \Rightarrow R=0
\end{aligned}
$$

Hence by factor theorem $w+2$ is the factor of $2 w^{3}+w^{2}-4 w+4$.
8. $x-a, x^{n}-a^{n}, n$ is a positive integer.

Solution: let $p(x)=x^{n}-a^{n}$

$$
\begin{aligned}
& \text { Now } p(a)=a^{n}-a^{n} \\
& p(a)=a^{n}-a^{n} \\
& p(a)=0 \\
& \Rightarrow R=0
\end{aligned}
$$

Hence by factor theorem $x-a$ is the factor of $x^{n}-a^{n}$.
9. $x+a, x^{n}+a^{n}, \mathrm{n}$ is an odd integer.

Solution: let $p(x)=x^{n}+a^{n}$
Now; $p(-a)=(-a)^{n}-a^{n}$

$$
\begin{aligned}
& p(-a)=(-a)^{n}+a^{n} \\
& p(-a)=-a^{n}+a^{n} \\
& \Rightarrow R=0
\end{aligned}
$$

Hence by factor theorem $x+a$ is the factor of $x^{n}+a^{n}$.
10. When $x^{4}+2 x^{3}+k x^{2}+3$ is divided by $x-2$, the remainder is 1 . Find the value of k.

Solution:

Let $P(x)=x^{4}+2 x^{3}+k x^{2}+3$
Since the divisor is $x-a=x-2$

$$
\begin{aligned}
& \Longrightarrow a=2 \\
& P(2)=1
\end{aligned}
$$

Therefore by remainder theorem

$$
\begin{aligned}
& P(2)=2^{4}+2(2)^{3}+k(2)^{2}+3 \\
& 1=2^{4}+2(2)^{3}+k(2)^{2}+3 \\
& 1=16+16+4 k+3 \\
& 4 k=1-35 \\
& 4 k=-34 \\
& k=-\frac{17}{2}
\end{aligned}
$$

11. When the polynomial $x^{3}+2 x^{2}+k x+4$ is divided by $x-2$, the remainder is 14 . Find the value of k.

Solution:

Let $P(x)=x^{3}+2 x^{2}+k x+4$
Since the divisor is $x-a=x-2$

$$
\begin{aligned}
& \Rightarrow a=2 \\
& P(2)=14 \\
& \text { Therefore by remainder theorem } \\
& P(2)=x^{3}+2 x^{2}+k x+4 \\
& 14=2^{3}+2(2)^{2}+k(2)+4 \\
& 14=8+8+2 k+4 \\
& 2 k=14-20 \\
& 2 k=-6 \\
& k=-3
\end{aligned}
$$

Use synthetic division to show that x is the solution of the polynomial and use the result to factorize the polynomial completely.
12. $x^{3}-7 x+6, x=2$

Solution:

Let $P(x)=x^{3}-7 x+6$
Using synthetic division

2	1	0	-7	6
		2	4	-6
	1	2	-3	0

As $R=0 \Rightarrow x=2$ is solution of $P(x)=0$
$\Rightarrow x-2$ is factor of $P(x)$
now depressed equation is

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& x^{2}+3 x-x-3=0 \\
& x(x+3)-1(x+3)=0 \\
& (x+3)(x-1)=0
\end{aligned}
$$

Hence complete factorization of $P(x)$ is
$P(x)=(x-2)(x+3)(x-1)$
13. $x^{3}-28 x-48=0, x=-4$

Solution: $\quad x^{3}-28 x-48=0 \rightarrow(1)$
Using synthetic division

-2	1	0	-28	-48
		-2	4	48
	1	-2	-24	0

As $R=0 \Rightarrow x=-2$ is solution of (1)
$\Rightarrow x+2=0$ is factor of (1)
Now depressed equation is

$$
\begin{aligned}
& x^{2}-2 x-24=0 \\
& x^{2}-6 x+4 x-24=0 \\
& x(x-6)-4(x-6)=0 \\
& (x-6)(x-4)=0
\end{aligned}
$$

Hence complete factorization of $P(x)$ is

$$
(x+2)(x-6)(x-4)=0
$$

14. $2 x^{4}+7 x^{3}-4 x^{2}-27 x-18, x=2, x=-3$

Solution:

Let $P(x)=2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$
Using synthetic division

2	2	7	-4	-27	-18
		4	22	36	18
-3	2	11	18	9	0
		-6	-15	-9	
	2	5	3	0	

As remainder is zero, hence $x=2$ and $x=-3$ are solutions of $2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$.

Now depressed equation is
$2 x^{2}+5 x+3=0$

$$
\begin{gathered}
2 x^{2}+2 x+3 x+3=0 \\
2 x(x+1)+3(x+1)=0 \\
(x+1)(2 x+3)=0
\end{gathered}
$$

Hence complete factorization of (1) is
$2 x^{4}+7 x^{3}-4 x^{2}-27 x-18$

$$
=(x-2)(x+3(x+1)(2 x+3)
$$

15. Use synthetic division to find the values of p and q if $x+1$ and $x-2$ are the factors of the polynomial $x^{3}+p x^{2}+q x+6$.
Solution: Let $P(x)=x^{3}+p x^{2}+q x+6$
Using synthetic division

$$
\begin{array}{c|cclc}
-1 & 1 & p & q & 6 \\
& & -1 & -p+1 & p-q-1 \\
\hline & 1 & p-1 & -p+q+1 & p-q+5
\end{array}
$$

Since $x+1$ is factor of $P(x)$

$$
\begin{gathered}
p-q+5=0 \\
p-q=-5 \rightarrow(1)
\end{gathered}
$$

Again by synthetic division

2	1	p	q	6
		2	$2 p+4$	$4 p+2 q+8$
	1	$p+2$	$2 p+q+4$	$4 p+2 q+14$

Since $x-2$ is factor of $P(x)$

$$
\begin{gathered}
4 p+2 q+14=0 \\
2 p+q+7=0 \\
2 p+q=-7 \rightarrow(2)
\end{gathered}
$$

Now adding equations (1) and (2)

$$
3 p=-12
$$

$p=-4$ put in (1)

$$
-4-q=-5
$$

$$
\begin{aligned}
-q & =-1 \\
q & =1
\end{aligned}
$$

16. Find the values of a an b if -2 and 2 are the roots of polynomial eqution $x^{3}-4 x^{2}+a x+$ $b=0$
Solution: Let $P(x)=\boldsymbol{x}^{3}-\mathbf{4 x}^{2}+\boldsymbol{a x}+\boldsymbol{b}=\mathbf{0}$
Using synthetic division

-2	1	-4	a	b
		-2	12	$-2 a-24$
	1	-6	$a+12$	$-2 a+b-24$

Since $x=-2$ is root of $P(x)=0$

$$
\begin{gathered}
-2 a+b-24=0 \\
-2 a+b=24 \quad \rightarrow(1)
\end{gathered}
$$

Again by synthetic division

2	1	-4	a	b
		2	-4	$2 a-8$
	1	-2	$a-4$	$2 a+b-8$

Since $x=2$ is factor of $P(x)=0$

$$
\begin{gathered}
2 a+b-8=0 \\
2 a+b=8 \rightarrow(2)
\end{gathered}
$$

Now adding equations (1) and (2)

$$
\begin{gathered}
2 b=32 \\
b=16
\end{gathered}
$$

put in (1)

$$
\begin{gathered}
-2 a+16=24 \\
2 a=-8 \\
a=-4
\end{gathered}
$$

