Cube Roots of Unity

Let x be cube root of unity
Then $x^{3}=1$
$\Rightarrow \quad x^{3}-1=0$
$\Rightarrow \quad(x-1)\left(x^{2}+x+1\right)=0$
$\Rightarrow \quad x-1=0 \quad$ or $\quad x^{2}+x+1=0$
$\Rightarrow \quad x=1 \quad$ or $\quad x^{2}+x+1=0$
Now solving; $\quad x^{2}+x+1=0$

$$
\begin{aligned}
& \Rightarrow \quad x=\frac{-1 \pm \sqrt{1-4(1)(1)}}{2} \\
& \Rightarrow \quad x=\frac{-1 \pm \sqrt{-3}}{2} \\
& \Rightarrow \quad x=\frac{-1 \pm \sqrt{3} i}{2}
\end{aligned}
$$

Thus cube roots of unity are $1, \frac{-1+\sqrt{3} i}{2}$ and $\frac{-1-\sqrt{3} i}{2}$
Note $\quad \omega=\frac{-1+\sqrt{3} i}{2} \quad$ and $\quad \omega^{2}=\frac{-1-\sqrt{3} i}{2}$

Properties of Cube Roots of Unity

(i) Sum of all cube roots of unity is zero.
(ii) Product of all cube roots of unity is 1 .
(iii) Each complex cube root of unity is square of the other.

Proofs: (i) Sum of all cube roots of unity is zero.
Since $1, \omega$ and ω^{2} are cube roots of unity
Now; $1+\omega+\omega^{2}=1+\left(\frac{-1+\sqrt{3} i}{2}\right)+\left(\frac{-1-\sqrt{3} i}{2}\right)$

$$
\begin{aligned}
& =\frac{2-1+\sqrt{3} i-1-\sqrt{3} i}{2} \\
& =\frac{0}{2} \\
& =0
\end{aligned}
$$

(ii) Product of all cube roots of unity is 1 .

Since $1, \omega$ and ω^{2} are cube roots of unity

1. $\omega \cdot \omega^{2}=1 \cdot\left(\frac{-1+\sqrt{3} i}{2}\right) \cdot\left(\frac{-1-\sqrt{3} i}{2}\right)$
2. $\omega . \omega^{2}=\left(\frac{-1+\sqrt{3} i}{2}\right) \cdot\left(\frac{-1-\sqrt{3} i}{2}\right)$
3. $\omega \cdot \omega^{2}=\left(\frac{1-3 i^{2}}{4}\right)$
4. $\omega \cdot \omega^{2}=\left(\frac{1+3}{4}\right) \quad \because i^{2}=-1$
5. $\omega \cdot \omega^{2}=\frac{4}{4}$
6. $\omega \cdot \omega^{2}=1 \quad$ as required \quad Note: $\boldsymbol{\omega}^{\mathbf{3}}=\mathbf{1}$

Four Fourth Roots of Unity

Let x be fourth root of unity

$$
\begin{array}{lll}
\Rightarrow & x^{4}=1 \\
\Rightarrow & x^{4}-1=0 & \\
\Rightarrow & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 \\
\Rightarrow & x^{2}-1=0 & \text { or } \\
\Rightarrow & x^{2}+1=0 \\
\Rightarrow & x^{2}=1 & \text { or } \\
\Rightarrow & x= \pm 1 & x^{2}=-1 \\
\Rightarrow & \text { or } & x= \pm i
\end{array}
$$

i.e; fourth roots of unity are $1,-1,-i$ and i

Properties of Fourth roots of unity:

(i) Sum of all fourth roots of unity is 0
(ii) Every real fourth root of unity is additive inverse of the other
(iii) Every complex fourth root of unity is conjugate of the other
(iv) Product of all fourth root of unity is -1

Proofs: (i) Sum of all fourth roots of unity is 0
Since $1,-1,-i$ and i are fourth roots of unity

$$
\begin{aligned}
& \Rightarrow \quad \text { Sum }=-1+1-i+i \\
& \Rightarrow \quad \text { Sum }=0
\end{aligned}
$$

(ii) Real fourth roots of unity are additive inverses of each other

Since $1,-1$ are real fourth roots of unity

$$
\begin{aligned}
& \Rightarrow \quad-1+1=1+(-1)=0 \\
& \Rightarrow \quad-1+1=1+(-1)=0
\end{aligned}
$$

$\Rightarrow \quad$ Real fourth roots of unity are additive inverses of each other.
(iv) Complex fourth roots of unity are Conjugate of each other
i and $-i$ are conjugate of each other.
(v) Product of all fourth roots of unity is -1.

Since $1,-1,-i$ and i are fourth roots of unity
$\Rightarrow \quad$ Product $=-1 \times 1 \times-i \times i$
$\Rightarrow \quad$ Product $=-1$

EXERCISE 4.4

Q\# 1: Find cube roots of $8,-8,27,-27,64$

Solution: Let \boldsymbol{x} be cube root of 8

$$
\begin{aligned}
& \text { Then } x^{3}=8 \\
& \Rightarrow \quad x^{3}-8=0 \\
& \Rightarrow \quad x^{3}-2^{3}=0 \\
& \Rightarrow \quad(x-2)\left(x^{2}+2 x+4\right)=0 \\
& \Rightarrow \quad x-2=0 \quad \text { or } \quad x^{2}+2 x+4=0 \\
& \Rightarrow \quad x=2 \quad \text { or } \quad x^{2}+2 x+4=0
\end{aligned}
$$

Now solving; $\quad x^{2}+2 x+4=0$

$$
\begin{aligned}
& \Rightarrow \quad x=\frac{-2 \pm \sqrt{4-4(1)(4)}}{2} \\
& \Rightarrow \quad x=\frac{-2 \pm \sqrt{12}}{2} \\
& \Rightarrow \quad x=\frac{-2 \pm 2 \sqrt{3} i}{2} \\
& \Rightarrow \quad x=2\left(\frac{-1 \pm \sqrt{3} i}{2}\right)
\end{aligned}
$$

$\Rightarrow \quad 2,2 \omega$ and $2 \omega^{2}$ are cube roots of 8 .

Let \boldsymbol{x} be cube root of -8

$$
\begin{array}{ll}
& \text { Then } x^{3}=-8 \\
\Rightarrow & x^{3}+8=0 \\
\Rightarrow & x^{3}+2^{3}=0 \\
\Rightarrow & (x+2)\left(x^{2}-2 x+4\right)=0 \\
\Rightarrow \quad & x+2=0 \quad \text { or } \quad x^{2}-2 x+4= \\
\Rightarrow & x=-2 \quad \text { or } \quad x^{2}-2 x+4=0
\end{array}
$$

0

Now solving; $\quad x^{2}-2 x+4=0$

$$
\Rightarrow \quad x=\frac{2 \pm \sqrt{4-4(1)(4)}}{2}
$$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{2 \pm \sqrt{12}}{2} \\
\Rightarrow & x=\frac{2 \pm 2 \sqrt{3} i}{2} \\
\Rightarrow & x=-2\left(\frac{-1 \pm \sqrt{3} i}{2}\right)
\end{array}
$$

$\Rightarrow \quad-2,-2 \omega$ and $-2 \omega^{2}$ are cube roots of -8 .

Let \boldsymbol{x} be cube root of 27

$$
\begin{aligned}
& \text { Then } x^{3}=27 \\
& \Rightarrow \quad x^{3}-27=0 \\
& \Rightarrow \quad x^{3}-3^{3}=0 \\
& \Rightarrow \quad(x-3)\left(x^{2}+3 x+9\right)=0 \\
& \Rightarrow \quad x-3=0 \quad \text { or } \quad x^{2}-3 x+9=0 \\
& \Rightarrow \quad x=3 \quad \text { or } \quad x^{2}+3 x+9=0
\end{aligned}
$$

Now solving; $\quad x^{2}+3 x+9=0$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{-3 \pm \sqrt{9-4(1)(9)}}{2} \\
\Rightarrow & x=\frac{-3 \pm \sqrt{-27}}{2} \\
\Rightarrow & x=\frac{-3 \pm 3 \sqrt{3} i}{2} \\
\Rightarrow & x=3\left(\frac{-1 \pm \sqrt{3} i}{2}\right)
\end{array}
$$

$\Rightarrow \quad 3,3 \omega$ and $3 \omega^{2}$ are cube roots of 27 .
Let \boldsymbol{x} be cube root of -27
Then $x^{3}=-27$

$$
\begin{array}{ll}
\Rightarrow & x^{3}+27=0 \\
\Rightarrow & x^{3}+3^{3}=0 \\
\Rightarrow & (x+3)\left(x^{2}-3 x+9\right)=0
\end{array}
$$

$$
\Rightarrow \quad x+3=0 \quad \text { or } \quad x^{2}-3 x+9=0
$$

$$
\Rightarrow \quad x=-3 \quad \text { or } \quad x^{2}-3 x+9=0
$$

Now solving; $\quad x^{2}-3 x+9=0$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{3 \pm \sqrt{9-4(1)(9)}}{2} \\
\Rightarrow & x=\frac{3 \pm \sqrt{-27}}{2} \\
\Rightarrow & x=\frac{3 \pm 3 \sqrt{3} i}{2} \\
\Rightarrow & x=-3\left(\frac{-1 \pm \sqrt{3} i}{2}\right)
\end{array}
$$

$\Rightarrow \quad-3,-3 \omega$ and $-3 \omega^{2}$ are cube roots of -27 .
Let \boldsymbol{x} be cube root of 64
Then $x^{3}=64$

$$
\begin{array}{ll}
\Rightarrow & x^{3}-64=0 \\
\Rightarrow & x^{3}-4^{3}=0 \\
\Rightarrow & (x-4)\left(x^{2}+4 x+16\right)=0
\end{array}
$$

$\Rightarrow \quad x-4=0 \quad$ or $\quad x^{2}+4 x+16=0$
$\Rightarrow \quad x=4 \quad$ or $\quad x^{2}+4 x+16=0$
Now solving; $\quad x^{2}+4 x+16=0$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{-4 \pm \sqrt{16-4(1)(16)}}{2} \\
\Rightarrow & x=\frac{-4 \pm \sqrt{-48}}{2} \\
\Rightarrow & x=\frac{-4 \pm 4 \sqrt{3} i}{2} \\
\Rightarrow & x=4\left(\frac{-1 \pm \sqrt{3} i}{2}\right)
\end{array}
$$

$\Rightarrow \quad 4,4 \omega$ and $4 \omega^{2}$ are cube roots of 64 .
Q\# 2: Evaluate
(i) $\left(1+\omega-\omega^{2}\right)^{8}$

Solution:

$$
\begin{aligned}
& \left(1+\omega-\omega^{2}\right)^{8} \\
& =\left(-\omega^{2}-\omega^{2}\right)^{8} \\
& =\left(-2 \omega^{2}\right)^{8} \\
& =\left(-2 \omega^{2}\right)^{8} \\
& =2^{8} \omega^{16} \\
& =256 \omega \cdot \omega^{15} \\
& =256 \omega \cdot\left(\omega^{3}\right)^{5}
\end{aligned}
$$

$=256 \omega$
$\because \omega^{3}=1$
(ii)
$\omega^{28}+\omega^{29}+1$
Solution: $\quad \omega^{28}+\omega^{29}+1$
$=\omega \cdot \omega^{27}+\omega^{2} \cdot \omega^{27}+1$
$=\omega \cdot\left(\omega^{3}\right)^{9}+\omega^{2} \cdot\left(\omega^{3}\right)^{9}+1$
$=\omega \cdot(1)^{9}+\omega^{2} \cdot(1)^{9}+1$
$=\omega+\omega^{2}+1$
$=1+\omega+\omega^{2}$
$=0$
(iii) $\left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)$

Solution: $\left(1+\omega-\omega^{2}\right)\left(1-\omega+\omega^{2}\right)$
$=\left(-\omega^{2}-\omega^{2}\right)\left(1+\omega^{2}-\omega\right)$
$=\left(-\omega^{2}-\omega^{2}\right)(-\omega-\omega)$
$=\left(-2 \omega^{2}\right)(-2 \omega)$
$=4 \omega^{3} \quad \because \omega^{3}=1$
$=4$
(iv) $\quad\left(\frac{-1+\sqrt{-3}}{2}\right)^{7}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{7}$

Solution:

$$
\begin{aligned}
& \left(\frac{-\mathbf{1}+\sqrt{-3}}{2}\right)^{7}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{7} \\
& =(\omega)^{7}+\left(\omega^{2}\right)^{7} \\
& =\omega^{7}+\omega^{14} \\
& \quad=\omega \cdot \omega^{6}+\omega^{2} \cdot \omega^{12} \\
& \quad=\omega \cdot\left(\omega^{3}\right)^{2}+\omega^{2} \cdot\left(\omega^{3}\right)^{4} \\
& =\omega \cdot(\mathbf{1})^{2}+\omega^{2} \cdot(1)^{4} \\
& =\omega+\omega^{2} \\
& =-1
\end{aligned}
$$

(vi) $\quad(-1+\sqrt{-3})^{5}+(-1-\sqrt{-3})^{5}$

$$
\begin{aligned}
& =(-1+\sqrt{-3})^{5}+(-1-\sqrt{-3})^{5} \\
& =\left(2 \cdot \frac{-1+\sqrt{-3}}{2}\right)^{5}+\left(2 \cdot \frac{-1-\sqrt{-3}}{2}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =32(\omega)^{5}+32\left(\omega^{2}\right)^{5} \\
& =32 \omega^{5}+32 \omega^{10} \\
& =32 \omega^{5}\left(1+\omega^{5}\right) \\
& =32 \omega^{2} \cdot \omega^{3}\left(1+\omega^{2} \cdot \omega^{3}\right) \\
& =32 \omega^{2}\left(1+\omega^{2}\right) \\
& =32 \omega^{2}(-\omega) \\
& =-32 \omega^{3} \\
& =-32
\end{aligned}
$$

Q\#3 Show that

$$
\begin{equation*}
x^{3}-y^{3}=(x-y)(x-\omega y)\left(x-\omega^{2} y\right) \tag{i}
\end{equation*}
$$

Solution:

$$
x^{3}-y^{3}=(x-y)(x-\omega y)\left(x-\omega^{2} y\right)
$$

R.H.S $=(x-y)(x-\omega y)\left(x-\omega^{2} y\right)$

$$
\begin{aligned}
& =(x-y)\left(x^{2}-\omega x y-\omega^{2} x y+\omega^{3} y^{2}\right) \\
& =(x-y)\left(x^{2}-\left(\omega+\omega^{2}\right) x y+y^{2}\right) \\
& =(x-y)\left(x^{2}-(-1) x y+y^{2}\right) \\
& =(x-y)\left(x^{2}+x y+y^{2}\right) \\
& =x^{3}-y^{3} \\
& =\text { L.H.S }
\end{aligned}
$$

(ii)

$$
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(x+\omega^{2} y+\omega z\right)
$$

Solution: $\quad x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(x+\omega^{2} y+\omega z\right)$

$$
\begin{aligned}
\text { R.H.S }= & (x+y+z)\left(x+\omega y+\omega^{2} z\right)\left(x+\omega^{2} y+\omega z\right) \\
& =(x+y+z)\left(x^{2}+\omega^{2} x y+\omega x z+\omega x y+\omega^{3} y^{2}+\omega^{2} y z+\omega^{2} z x+\omega^{4} y z+\omega^{3} z^{2}\right) \\
& =(x+y+z)\left(x^{2}+y^{2}+z^{2}+\left(\omega^{2}+\omega\right) x y+\left(\omega^{2}+\omega\right) z x+\left(\omega^{2}+\omega\right) y z\right) \\
= & (x+y+z)\left(x^{2}+y^{2}+z^{2}+(-1) x y+(-1) z x+(-1) y z\right) \\
= & (x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\
= & x^{3}+y^{3}+z^{3}-3 x y z \\
= & \text { R.H.S }
\end{aligned}
$$

(iii)
$(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) \ldots .2 n$ factors $=1$
Solution:

$$
\begin{gathered}
(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) \ldots .2 n \text { factors } \\
=1
\end{gathered}
$$

L.H.S $=(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) \ldots .2 n$ factors
$=(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega \cdot \omega^{3}\right)\left(1+\omega \cdot \omega^{6}\right) \ldots .2 n$ factors
$=(1+\omega)\left(1+\omega^{2}\right)(1+\omega)\left(1+\omega^{2}\right) \ldots .2 n$ factors
$=\left(-\omega^{2}\right)(-\omega)\left(-\omega^{2}\right)(-\omega) \ldots .2 n$ factors
$=\omega^{3} \cdot \omega^{3} \ldots n$ factors
$=1.1 .1 \ldots . n$ factors
$=1$
= R.H.S
Q\#4: If ω is a root of $x^{2}+x+1=0$, show that its other root is ω^{2} and prove that $\omega^{3}=1$.

Solution: \quad Since ω is a root of $x^{2}+x+1=0$
$\Rightarrow \omega^{2}+\omega+1=0$
Now to show that ω^{2} is root of $x^{2}+x+1=0$ we have to show that $\quad \omega^{4}+\omega^{2}+1=0$

$$
\begin{aligned}
\omega^{4}+\omega^{2}+1 & =\left(\omega^{2}\right)^{2}+1+\omega^{2} \\
& =\left(\omega^{2}\right)^{2}+1+2 \omega^{2}+\omega^{2}-2 \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\omega^{2}+1\right)^{2}-\omega^{2} \\
& =\left(\omega^{2}+1+\omega\right)\left(\omega^{2}+1-\omega\right) \\
& =\left(1+\omega+\omega^{2}\right)\left(\omega^{2}-\omega+1\right) \\
& =(0)\left(\omega^{2}-\omega+1\right) \quad \text { from }(1)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\omega^{4}+\omega^{2}+1=0 \tag{2}
\end{equation*}
$$

Now subtracting equations (1) and (2)

$$
\begin{gathered}
\left(\omega^{4}+\omega^{2}+1\right)-\left(\omega^{2}+\omega+1\right)=0 \\
\\
\omega^{4}-\omega=0 \\
\\
\omega\left(\omega^{3}-1\right)=0 \\
\\
\omega \neq 0 \quad \Rightarrow\left(\omega^{3}-1\right)=0 \\
\\
\Rightarrow \omega^{3}=1 \text { as required }
\end{gathered}
$$

Q\#5: Prove that complex cube roots of $\mathbf{- 1}$
are $\left(\frac{1+\sqrt{3} i}{2}\right)$ and $\left(\frac{1-\sqrt{3} i}{2}\right)$; and hence prove that $\left(\frac{1+\sqrt{-3}}{2}\right)^{9}+\left(\frac{1-\sqrt{-3}}{2}\right)^{9}=-2$

Solution: Let x be cube root of -1

$$
\begin{array}{ll}
\Rightarrow & x^{3}=-1 \\
\Rightarrow & x^{3}+1=0 \\
\Rightarrow & (x+1)\left(x^{2}-x+1\right)=0
\end{array}
$$

$\Rightarrow \quad x+1=0 \quad$ or $\quad x^{2}-x+1=0$
$\Rightarrow \quad x=-1 \quad$ or $\quad x^{2}-x+1=0$
Now solving; $\quad x^{2}-x+1=0$

$$
\begin{aligned}
& \Rightarrow \quad x=\frac{1 \pm \sqrt{1-4(1)(1)}}{2} \\
& \Rightarrow \quad x=\frac{1 \pm \sqrt{-3}}{2} \\
& \Rightarrow \quad x=\frac{1 \pm \sqrt{3} i}{2}
\end{aligned}
$$

Thus cube roots of -1 are $-1, \frac{1+\sqrt{3} i}{2}$ and $\frac{1-\sqrt{3} i}{2}$
Hence complex cube roots of -1 are $\frac{1+\sqrt{3} i}{2}$ and $\frac{1-\sqrt{3} i}{2}$
Now to prove $\left(\frac{1+\sqrt{-3}}{2}\right)^{9}+\left(\frac{1-\sqrt{-3}}{2}\right)^{9}=-2$
L.H.S $=\left(\frac{1+\sqrt{-3}}{2}\right)^{9}+\left(\frac{1-\sqrt{-3}}{2}\right)^{9}$

$$
\begin{aligned}
& =\left(-1 \cdot \frac{-1-\sqrt{-3}}{2}\right)^{9}+\left(-1 \cdot \frac{-1+\sqrt{-3}}{2}\right)^{9} \\
& =\left(-\omega^{2}\right)^{9}+(-\omega)^{9} \\
& =-\omega^{18}-\omega^{9} \\
& =-\left(\omega^{3}\right)^{6}-\left(\omega^{3}\right)^{3} \\
& =-(1)^{6}-(1)^{3} \\
& =-1-1 \\
& =-2 \\
& =\text { R. H.S }
\end{aligned}
$$

Q\#6: If ω is a cube root of unity, form an equation whose roots are 2ω and $2 \omega \omega^{2}$

Solution: An equation whose roots are 2ω and $2 \omega^{2}$ is

$$
\begin{equation*}
x^{2}-S x+P=0 \tag{1}
\end{equation*}
$$

Now $S=2 \omega+2 \omega^{2}$

$$
\begin{aligned}
& =2\left(\omega+\omega^{2}\right) \\
& =2(-1) \\
& =-2
\end{aligned}
$$

$P=2 \omega .2 \omega^{2}$
$P=4 \omega^{3}$
$P=4$
Putting values in (1)
$\Rightarrow x^{2}+2 x+4=0$ is required equation.
Q\#7: Find four fourth roots of 16, 81, 625.
Solution: Let \boldsymbol{x} be fourth root of 16 .

$$
\begin{aligned}
& \Rightarrow \quad x^{4}=16 \\
& \Rightarrow \quad x^{4}-16=0 \\
& \Rightarrow \quad\left(x^{2}\right)^{2}-(4)^{2}=0 \\
& \Rightarrow \quad\left(x^{2}-4\right)\left(x^{2}+4\right)=0 \\
& \Rightarrow \quad x^{2}-4=0 \quad \text { or } \quad x^{2}+4=0 \\
& \Rightarrow \quad x^{2}=4 \quad \text { or } \quad x^{2}=-4 \\
& \Rightarrow \quad x= \pm 2 \quad \text { or } \quad x= \pm 2 i
\end{aligned}
$$

i.e; fourth roots of 16 are $2,-2,-2 i$ and $2 i$.

Let \boldsymbol{x} be fourth root of 81 .

$$
\begin{aligned}
& \Rightarrow \quad x^{4}=81 \\
& \Rightarrow \quad x^{4}-81=0 \\
& \Rightarrow \quad\left(x^{2}\right)^{2}-(9)^{2}=0 \\
& \Rightarrow \quad\left(x^{2}-9\right)\left(x^{2}+9\right)=0 \\
& \Rightarrow \quad x^{2}-9=0 \quad \text { or } \quad x^{2}+9=0 \\
& \Rightarrow \quad x^{2}=9 \quad \text { or } \quad x^{2}=-9 \\
& \Rightarrow \quad x= \pm 3 \quad \text { or } \quad x= \pm 3 i
\end{aligned}
$$

i.e; fourth roots of 81 are $3,-3,-3 i$ and $3 i$.

Let x be fourth root of 625 .

$$
\begin{array}{ll}
\Rightarrow & x^{4}=625 \\
\Rightarrow & x^{4}-625=0 \\
\Rightarrow & \left(x^{2}\right)^{2}-(25)^{2}=0 \\
\Rightarrow & \left(x^{2}-25\right)\left(x^{2}+25\right)=0 \\
\Rightarrow & x^{2}-25=0 \quad \text { or } \\
\Rightarrow & x^{2}=25 \quad x^{2}+25=0 \\
\Rightarrow & x= \pm 5 \quad \text { or }
\end{array} x^{2}=-25=1 \text { or } \quad x= \pm 5 i
$$

i.e; fourth roots of 625 are $5,-5,-5 i$ and $5 i$.

Q\# 8: Solve the following equations.
(i)

$$
\begin{aligned}
& 4 x^{2}-32=0 \\
\Rightarrow & 4\left(x^{2}-16\right)=0 \\
\Rightarrow & x^{2}-16=0 \\
\Rightarrow & x^{2}-4^{2}=0 \\
\Rightarrow & (x-4)(x+4)=0 \\
\Rightarrow & x-4=0 \quad \text { or } \quad x+4=0 \\
\Rightarrow & x=4 \quad \text { or } x=-4
\end{aligned}
$$

Solution set is $\{-4,4\}$
(ii) $3 y^{5}-243 y=0$

$$
\begin{array}{ll}
\Rightarrow & 3 y\left(y^{4}-81\right)=0 \\
\Rightarrow & 3 y=0 \text { or } y^{4}-81=0 \\
\Rightarrow & y=0 \text { or } y^{4}=81
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad y^{4}-81=0 \\
& \Rightarrow \quad\left(y^{2}\right)^{2}-(9)^{2}=0 \\
& \Rightarrow \quad\left(y^{2}-9\right)\left(y^{2}+9\right)=0 \\
& \Rightarrow \quad y^{2}-9=0 \quad \text { or } \quad y^{2}+9=0 \\
& \Rightarrow \quad y^{2}=9 \quad \text { or } \quad y^{2}=-9 \\
& \Rightarrow \quad y= \pm 3 \quad \text { or } \quad y= \pm 3 i
\end{aligned}
$$

Solution set is $\{0, \pm 3, \pm 3 i\}$
(iii) $x^{3}+x^{2}+x+1$

Solution: $\quad x^{3}+x^{2}+x+1$

$$
\begin{aligned}
& \Rightarrow x^{2}(x+1)+1(x+1)=0 \\
\Rightarrow & (x+1)\left(x^{2}+1\right)=0 \\
\Rightarrow & x+1=0 \text { or } x^{2}+1=0 \\
\Rightarrow & x=-1 \text { or } x^{2}=-1 \\
\Rightarrow & x=-1 \text { or } x= \pm i
\end{aligned}
$$

Solution set is $\{-1, \pm i\}$

$$
\text { (iv) } \begin{aligned}
& \mathbf{5} \boldsymbol{x}^{\mathbf{5}}-\mathbf{5} \boldsymbol{x}=\mathbf{0} \\
& 5 x\left(x^{4}-1\right)=0 \\
5 x= & 0 \text { or } x^{4}-1=0 \\
5 x= & 0 \text { or } x^{4}-1=0 \\
x=0 & \text { or } \quad x^{4}-1=0 \\
\Rightarrow & x^{4}-1=0 \\
\Rightarrow & \left(x^{2}-1\right)\left(x^{2}+1\right)=0 \\
\Rightarrow & x^{2}-1=0 \quad \text { or } \quad x^{2}+1=0 \\
\Rightarrow & x^{2}=1 \quad \text { or } \quad x^{2}=-1 \\
\Rightarrow & x= \pm 1 \quad \text { or } \quad x= \pm i
\end{aligned}
$$

Solution set is $\{0, \pm 1, \pm i\}$
"If A is a success in life, then A equals x plus y plus z. Work is x ; y is play; and z is keeping your mouth shut"

Albert Einstein

