Type v

Radical Equations

Radical equations are equations involving the radical symbol " $\sqrt{}$ ". In this section we will discuss four types of Radical Equations. First we obtain radical free equation then solve it. The solutions of radical-free equation contain the solutions of given radical equation. Solutions of radical free equations, which do not satisfy the given radical equation, are called extraneous roots, because of involvement of extraneous roots we have to carry out the process of checking. Only roots satisfying the given equation are to be considered as the root of equation and be written in solution set.

Exercise 4.3	
Q# 1: $3x^2 + 2x - \sqrt{3x^2 + 2x - 1} = 3$	$\implies 3x + 5 = 0 or x - 1 = 0$
Solution:	$\Rightarrow x = -\frac{5}{3} \text{ or } x = 1$
$3x^2 + 2x - \sqrt{3x^2 + 2x - 1} = 3 \qquad \dots (1)$	When $y = -1 \implies \sqrt{3x^2 + 2x - 1} = -1$
$Let \ \sqrt{3x^2 + 2x - 1} = y$	$\implies 3x^2 + 2x - 1 = 1$
Putting values in (1)	$\implies 3x^2 + 2x - 2 = 0$
$3x^2 + 2x - 1 = y^2$	$\implies \qquad x = \frac{-2 \pm \sqrt{4 - 4(3)(-2)}}{6}$
$\implies \qquad 3x^2 + 2x = y^2 + 1$	0
$\implies \qquad y^2 + 1 - y = 3$	$\implies \qquad x = \frac{-2 \pm \sqrt{4 + 24}}{6}$
$\implies \qquad y^2 - y - 2 = 0$	$\implies \qquad x = \frac{-2 \pm \sqrt{28}}{6}$
$\implies \qquad y^2 - 2y + y - 2 = 0$	$\implies x = \frac{-2 \pm 2\sqrt{7}}{6}$
$\implies \qquad y(y-2) + 1(y-2) = 0$	0
$\implies (y-2)(y+1) = 0$	$\implies \qquad x = \frac{-1 \pm \sqrt{7}}{3}$
$\implies y-2=0 or y+1=0$	CHECKING: <i>let</i> $x = 1$
\Rightarrow $y = 2$ or $y = -1$	$\implies 3+2-\sqrt{3+2-1}=3$
When $y = 2 \implies \sqrt{3x^2 + 2x - 1} = 2$	\Rightarrow 5-2=3
$\implies 3x^2 + 2x - 1 = 4$	\Rightarrow 3 = 3 True
$\implies 3x^2 + 2x - 5 = 0$	\Rightarrow x = 1 is root of equation (1)
$\implies 3x^2 + 5x - 3x - 5 = 0$	<i>let</i> $x = -\frac{5}{3}$
$\Rightarrow x(3x+5) - 1(3x+5) = 0$	(25) (5) (25) (5)
$\Rightarrow (3x+5)(x-1) = 0$	$\implies 3\left(\frac{25}{9}\right) + 2\left(-\frac{5}{3}\right) - \sqrt{3\left(\frac{25}{9}\right) + 2\left(-\frac{5}{3}\right) - 1} = 3$

Let
$$\sqrt{2x^2 - 3x + 2} = y$$

Putting values in (2)
 $2x^2 - 3x + 2 = y^2$
 $\Rightarrow 2x^2 - 3x + 2 = y^2$
 $\Rightarrow 2x^2 - 3x + 2 = y^2$
 $\Rightarrow 2x^2 - 3x + 2 = y^2$
 $\Rightarrow y^2 - 2 - 14 + 6y = 0$
 $\Rightarrow y^2 - 2 - 14 + 6y = 0$
 $\Rightarrow y^2 - 2 - 14 + 6y = 0$
 $\Rightarrow y^2 - 6 \pm \sqrt{36 - 4(1)(-16)}$
 $\Rightarrow y = \frac{-6 \pm \sqrt{36 - 4(1)(-16)}}{2}$
 $\Rightarrow x = \frac{3 \pm \sqrt{9 - 4(2)(-62)}}{4}$
 $\Rightarrow x = 2 \text{ is root of equation (1)}$
 $\text{let } x = -\frac{1}{2}$
 $\Rightarrow x = 2 \text{ is root of equation (1)}$
 $\text{let } x = -\frac{1}{2} - 3 \sqrt{\frac{1 \pm 3 \pm 4}{2}}$
 $\Rightarrow x = \frac{3 \pm \sqrt{9 - 4(2)(-2)}}{4}$
 $\Rightarrow x = \frac{3 \pm \sqrt{9 - 4(2)}}{4}$
 $\Rightarrow x = \frac{3 \pm \sqrt{9 - 4(2$

P- 3

$\implies \frac{396+4\sqrt{505}}{16} = \frac{3+\sqrt{505}-96}{4}$		
$\Rightarrow \frac{99+\sqrt{505}}{4} = \frac{-93+\sqrt{505}}{4}$ False		
$\implies \qquad x = \frac{3 + \sqrt{505}}{4} \text{ is an extraneous root}$		
Similarly on checking we come to know that $x = \frac{3-\sqrt{505}}{4}$ is also an extraneous root.		
Hence solution set = $\left\{-\frac{1}{2}, 2\right\}$		
Q# 3: $\sqrt{2x+8} + \sqrt{x+5} = 7$	$\implies \sqrt{8+8} + \sqrt{4+5} = 7$	
Solution: $\sqrt{2x+8} + \sqrt{x+5} = 7$, (1)	$\implies \qquad \sqrt{16} + \sqrt{9} = 7$	
Squaring on both sides	\Rightarrow 4+3=7	
$2x + 8 + x + 5 + 2\sqrt{2x + 8} \cdot \sqrt{x + 5} = 49$	\Rightarrow 7 = 7 True	
$3x + 13 + 2\sqrt{(2x+8)(x+5)} = 49$	\Rightarrow x = 4 is root of equation (1)	
$2\sqrt{(2x+8)(x+5)} = 49 - 3x - 13$	<i>let</i> $x = 284$	
$2\sqrt{(2x+8)(x+5)} = 36 - 3x$	$\Rightarrow \sqrt{568+8} + \sqrt{284+5} = 7$	
$2\sqrt{2x^2 + 18x + 40} = 3(12 - x)$	$\Rightarrow \sqrt{576} + \sqrt{289} = 7$	
Again squaring on both sides	\Rightarrow 24 + 17 = 7	
$\Rightarrow 4(2x^2 + 18x + 40) = 9(12 - x)^2$	\Rightarrow 41 = 7 False	
$\Rightarrow 8x^{2} + 72x + 160 = 9(144 + x^{2} - 24x)$	\Rightarrow x = 284 is an extraneous root	
$\Rightarrow 8x^2 + 72x + 160 = 1296 + 9x^2 - 216x$	Hence solution set = {4}	
$\implies 8x^2 + 72x + 160 - 1296 - 9x^2 + 216x = 0$	Q# 4: $\sqrt{3x+4} = 2 + \sqrt{2x-4}$	
$\implies -x^2 + 288x - 1136 = 0$	Solution: $\sqrt{3x+4} = 2 + \sqrt{2x-4} (1)$	
$\implies \qquad x^2 - 288x + 1136 = 0$	$\sqrt{3x+4} - \sqrt{2x-4} = 2$	
$\implies \qquad x^2 - 284x - 4x + 1136 = 0$	Squaring on both sides	
$\implies \qquad x(x-284)-4(x-284)=0$	$3x + 4 + 2x - 4 - 2\sqrt{3x + 4} \cdot \sqrt{2x - 4} = 4$	
$\implies (x-284)(x-4) = 0$	$5x - 2\sqrt{3x+4} \cdot \sqrt{2x-4} = 4$	
\implies $x - 284 = 0$ or $x - 4 = 0$	$-2\sqrt{3x+4}$. $\sqrt{2x-4} = 4 - 5x$	
\Rightarrow x = 284 or x = 4	$-2\sqrt{(3x+4)(2x-4)} = 4 - 5x$	
Checking: $let x = 4$	$-2\sqrt{6x^2 - 4x - 16} = 4 - 5x$	

Again squaring on both sides $4(6x^2 - 4x - 16) = (4 - 5x)^2$ \Rightarrow $24x^2 - 16x - 64 = 16 + 25x^2 - 40x$ \Rightarrow $24x^2 - 16x - 64 - 16 - 25x^2 + 40x = 0$ \Rightarrow $-x^2 + 24x - 80 = 0$ \implies $x^2 - 24x + 80 = 0$ \Rightarrow $x^2 - 20x - 4x + 80 = 0$ \Rightarrow x(x-20) - 4(x-20) = 0 \Rightarrow (x-20)(x-4) = 0 \Rightarrow x - 20 = 0 or x - 4 = 0x = 20 or x = 4 \Rightarrow let x = 20Checking: $\sqrt{60+4} = 2 + \sqrt{40-4}$ \Rightarrow $\sqrt{64} = 2 + \sqrt{36}$ \Rightarrow 8 = 8 True \Rightarrow x = 20 is root of equation (1) \Rightarrow let x = 4 $\sqrt{12+4} = 2 + \sqrt{8-4}$ \implies $\sqrt{16} = 2 + \sqrt{4}$ \Rightarrow 4 = 4 True \implies x = 4 is root of equation (1) \Rightarrow **Hence solution set** = $\{4, 20\}$ O# 5: $\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$ Solution: Squaring on both sides $x + 7 + x + 2 + 2\sqrt{x + 7} \cdot \sqrt{x + 2} = 6x + 13$

 $2x + 9 + 2\sqrt{(x + 7)(x + 2)} = 6x + 13$

 $2\sqrt{(x+7)(x+2)} = 6x + 13 - 2x - 9$ $2\sqrt{(x+7)(x+2)} = 4x + 4$ $2\sqrt{x^2+9x+14} = 4(x+1)$ Again squaring on both sides $4(x^2 + 9x + 14) = 16(x + 1)^2$ \Rightarrow $4x^{2} + 36x + 56 = 16(x^{2} + 2x + 1)$ \Rightarrow $4x^2 + 36x + 56 = 16x^2 + 32x + 16$ \Rightarrow $4x^2 + 36x + 56 - 16x^2 - 32x - 16 = 0$ \Rightarrow $-12x^2 + 4x + 40 = 0$ \Rightarrow $-4(3x^2 - x - 10) = 0$ \Rightarrow $3x^2 - x - 10 = 0$ \Rightarrow $3x^2 - 6x + 5x - 10 = 0$ \Rightarrow 3x(x-2) + 5(x-2) = 0 \Rightarrow (x-2)(3x+5) = 0 \Rightarrow x - 2 = 0 or 3x + 5 = 0 \Rightarrow x = 2 or $x = -\frac{5}{2}$ \Rightarrow **Checking:** let x = 2 $\sqrt{2+7} + \sqrt{2+2} = \sqrt{12+13}$ \Rightarrow $\sqrt{9} + \sqrt{4} = \sqrt{12 + 13}$ \Rightarrow 3 + 2 = 5 \Rightarrow 5 = 5 True \Rightarrow x = 2 is root of equation (1) \Rightarrow let $x = -\frac{5}{2}$ $\Rightarrow \qquad \sqrt{-\frac{5}{3}+7} + \sqrt{-\frac{5}{3}+2} = \sqrt{6\left(-\frac{5}{3}\right)+13}$ $\implies \qquad \sqrt{\frac{16}{3}} + \sqrt{\frac{1}{3}} = \sqrt{-10 + 13}$

$$\Rightarrow \frac{4}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \sqrt{3}$$

$$\Rightarrow \frac{4}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} = \sqrt{3}$$

Now solving $\sqrt{x+3} + \sqrt{x+8} = \sqrt{5(x+4)}$	$\implies \qquad x^2 + 3x - x - 3 = 0$	
Squaring on both sides	$\implies \qquad x(x+3) - 1(x+3) = 0$	
$x + 3 + x + 8 + 2\sqrt{x+3} \cdot \sqrt{x+8} = 5(x+4)$	$\implies (x+3)(x-1) = 0$	
$2x + 11 + 2\sqrt{(x+3)(x+8)} = 5x + 20$	$\implies x+3=0 or x-1=0$	
$2\sqrt{(x+3)(x+8)} = 5x + 20 - 2x - 11$	\Rightarrow $x = -3$ or $x = 1$	
$2\sqrt{x^2 + 11x + 24} = 3x + 9$	Checking: let $x = -3$	
$2\sqrt{x^2 + 11x + 24} = 3(x+3)$	$\implies \qquad \sqrt{9 - 6 - 3} + \sqrt{9 - 21 - 8} = \sqrt{5(9 - 9 - 4)}$	
	$\implies \sqrt{0} + \sqrt{-20} = \sqrt{5(-4)}$	
Again squaring on both sides $\Rightarrow 4(x^2 + 11x + 24) = 9(x + 3)^2$	$\Rightarrow \sqrt{-20} = \sqrt{-20}$ True	
$\Rightarrow 4(x^{2} + 11x + 24) = 9(x + 3)^{2}$ $\Rightarrow 4x^{2} + 44x + 96 = 9(x^{2} + 6x + 9)$	\Rightarrow $x = -3$ is root of equation (1)	
$\Rightarrow 4x^{2} + 44x + 96 = 9x^{2} + 54x + 81$	let $x = 1$	
$\Rightarrow 4x^{2} + 44x + 96 - 9x^{2} - 54x - 81 = 0$	$\implies \qquad \sqrt{1+2-3} + \sqrt{1+7-8} = \sqrt{5(9-9-4)}$	
$\Rightarrow -5x^2 - 10x + 15 = 0$	$\implies \qquad \sqrt{0} + \sqrt{0} = \sqrt{5(0)}$	
$\Rightarrow -5(x^2 + 2x - 3) = 0$	\Rightarrow 0 = 0 True	
$\Rightarrow x^2 + 2x - 3 = 0$	\Rightarrow x = 1 is root of equation (1)	
	Hence solution set = $\{-3, 1\}$	
Q# 8: $\sqrt{2x^2 - 5x - 3} + 3\sqrt{2x + 1} = \sqrt{2}$	$2x^2 + 25x + 12$	
Solution: $\sqrt{2x^2 - 5x - 3} + 3\sqrt{2x + 1} = \sqrt{2x^2 + 25x + 12}$ (1)		
$\sqrt{2x^2 - 6x + x - 3} + 3\sqrt{2x + 1} = \sqrt{2x^2 + 24x + x + 12}$		
$\sqrt{2x(x-3) + 1(x+3)} + 3\sqrt{2x+1} = \sqrt{2x(x+12) + 1(x+12)}$		
$\sqrt{(x-3)(2x+1)} + 3\sqrt{2x+1} = \sqrt{(x+12)(2x+1)}$		
$\sqrt{(x-3)(2x+1)} + 3\sqrt{2x+1} - \sqrt{(x+12)(2x+1)} = 0$		
$\sqrt{2x+1} \left[\sqrt{x-3} + 3 - \sqrt{x+12} \right] = 0$		
$\Rightarrow \sqrt{2x+1} = 0 \ or \ \sqrt{x-3} + 3 - \sqrt{x+12} = 0$		
\Rightarrow 2x + 1 = 0 or $\sqrt{x-3} - \sqrt{x+12} = -3$		
\Rightarrow $x = -\frac{1}{2}$ or $\sqrt{x-3} - \sqrt{x+12} = -3$		
Now solving $\sqrt{x-3} - \sqrt{x+12} = -3$ Squaring on both sides		

P- 8

P- 9

Adding equation (2) and (4) 2a = 14 \Rightarrow a = 7 \Rightarrow $a = 7 \implies \sqrt{3x^2 - 2x + 9} = 7$ \Rightarrow $3x^2 - 2x + 9 = 49$ $\implies 3x^2 - 2x + 9 - 49 = 0$ \Rightarrow $3x^2 - 2x - 40 = 0$ $\implies \qquad x = \frac{2 \pm \sqrt{4 - 4(3)(-40)}}{6}$ $\implies \qquad x = \frac{2 \pm \sqrt{4 + 480}}{6}$ $\implies x = \frac{2\pm\sqrt{484}}{6}$ $\implies x = \frac{2\pm 22}{6}$ \Rightarrow $x = \frac{2+22}{6}$ or $x = \frac{2-22}{6}$ \Rightarrow x = 4 or $x = -\frac{10}{3}$ **Checking:** Let x = 4 $\Rightarrow \sqrt{48 - 8 + 9} + \sqrt{48 - 8 - 4} = 13$ $\Rightarrow \sqrt{49} + \sqrt{36} = 13$ \Rightarrow 7 + 6 = 13 \Rightarrow 13 = 13 True \Rightarrow *x* = 4 is root of equation (1) Let $x = -\frac{10}{2}$ $\implies \sqrt{\frac{100}{3} + \frac{20}{3} + 9} + \sqrt{\frac{100}{3} + \frac{20}{3} - 4} = 13$ $\Rightarrow \sqrt{\frac{100+20+27}{3}} + \sqrt{\frac{100+20-12}{3}} = 13$ $\Rightarrow \sqrt{\frac{147}{3}} + \sqrt{\frac{108}{3}} = 13$

 \Rightarrow 7 + 6 = 13 $\Rightarrow 13 = 13$ True $\Rightarrow x = -\frac{10}{3}$ is root of equation (1) **Hence solution set** = $\left\{4, -\frac{10}{3}\right\}$ O# 12: $\sqrt{5x^2 + 7x + 2} - \sqrt{4x^2 + 7x + 18} = x - 4$ Solution: $\sqrt{5x^2 + 7x + 2} - \sqrt{4x^2 + 7x + 18} = x - 4 \rightarrow (1)$ let $\sqrt{5x^2 + 7x + 2} = a$ $\sqrt{4x^2 + 7x + 18} = b$ \Rightarrow a-b=x-4···→ (2) $now \ a^2 - b^2 = x^2 - 16$ ---) (3) Dividing equation (3) by equation (2) $\frac{a^2-b^2}{a-b} = \frac{x^2-16}{x-4}$ $\implies \qquad \frac{(a+b)(a-b)}{a-b} = \frac{(x+4)(x-4)}{x-4}$ a + b = x + 4 \Rightarrow ··· (4) Adding equation (2) and (4) $\Rightarrow 2a = 2x$ \Rightarrow a = x $\Rightarrow \sqrt{5x^2 + 7x + 2} = x$ \Rightarrow $5x^2 + 7x + 2 = x^2$ $\implies \qquad 4x^2 + 7x + 2 = 0$ $\implies \qquad x = \frac{-7 \pm \sqrt{49 - 4(4)(2)}}{8}$ $\implies \qquad x = \frac{-7 \pm \sqrt{49 - 32}}{8}$ $\implies x = \frac{-7 \pm \sqrt{17}}{8}$ Checking: Do yourself. Hence solution set = $\left\{\frac{-7\pm\sqrt{17}}{9}\right\}$