Solutions of equations reducible to the quadratic equations

In this section we will discuss the equations which are not quadratic but can be reduced to quadratic equations.

<u>Type I</u>

Equations of the form $ax^{2n} + bx^n + c = 0$

Example 1: Solve the equation	y = 3 or y = -2
$x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0 \qquad - \rightarrow (1)$	When $y = 3$
Let $x^{\frac{1}{4}} = y$	$x^{\frac{1}{4}} = 3$
$\Rightarrow x^{\frac{1}{2}} = y^2$	$x = 3^4$
Therefore equation (1) becomes,	x = 81
$y^2 - y - 6 = 0$	When $y = -2$
$y^2 - 3y + 2y - 6 = 0$	$x^{\frac{1}{4}} = -2$
y(y-3) + 2(y-3) = 0	$x = (-2)^4$
(y-3)(y+2) = 0	<i>x</i> = 16
y - 3 = 0 or y + 2 = 0	Hence solution set is {16, 81}

Type II

Equations of the form (x + a)(x + b)(x + c)(x + d) = k, a scalar

Where a + b = c + d

Example 2: Solve (x - 7)(x - 3)(x + 1)(x + 5) - 1680 = 0

Solution: $(x-7)(x-3)(x+1)(x+5) - 1680 = 0 \rightarrow (1)$

Rearranging equation (1), we have

$$[(x-7)(x+5)][(x-3)(x+1)] - 1680 = 0$$
$$(x^2 - 2x - 35)(x^2 - 2x - 3) - 1680 = 0$$

Now we let $x^2 - 2x = y$

$$(y - 35)(y - 3) - 1680 = 0$$
$$y^{2} - 38y + 105 - 1680 = 0$$
$$y^{2} - 38y - 1575 = 0$$
$$y^{2} - 38y - 1575 = 0$$

Using quadratic formula

$$y = \frac{38 \pm \sqrt{(38)^2 - 4(1)(-1575)}}{2}$$

$$y = \frac{38 \pm \sqrt{1444 + 6300}}{2}$$

$$y = \frac{38 \pm \sqrt{7744}}{2}$$

$$y = \frac{38 \pm 88}{2}$$

$$y = \frac{38 \pm 88}{2} \text{ or } y = \frac{38 - 88}{2}$$

$$y = 63 \text{ or } y = -25$$
When $y = 63$

$$x^2 - 2x = 63$$

$$x^2 - 2x - 63 = 0$$

$$x(x - 9) + 7(x - 9) = 0$$

$$(x - 9)(x + 7) = 0$$

$$x - 9 = 0 \text{ or } x + 7 = 0$$

$$x = 9 \text{ or } x = -7$$
When $y = -25$

$$x^2 - 2x = -25$$

$$x^2 - 2x = -25$$

$$x^2 - 2x + 25 = 0$$

$$y = \frac{38 \pm \sqrt{7744}}{2}$$
Using quadratic formula
$$x = \frac{2 \pm \sqrt{4 - 4(1)(25)}}{2}$$

$$x = \frac{2 \pm \sqrt{4 - 4(1)(25)}}{2}$$

$$x = \frac{2 \pm \sqrt{4 - 100}}{2}$$

$$x = \frac{2 \pm \sqrt{-96}}{2}$$

$$x = 1 \pm 2\sqrt{6}$$
Hence solution set is
$$\{-7, 9, 1 + 2\sqrt{6} i, 1 - 2\sqrt{6} i\}$$

<u>Type III</u> Exponential Equations

Equations in which variable occurs in exponent, are called exponential equations.

Example 3: Solve the equation $2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$

Solution:	$\implies 2^{2x} - 12 \cdot 2^x + 32 = 0$
$2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$	Now let $2^x = y$, we have
$\implies 2^{2x} - 3 \cdot 2^x \cdot 2^2 + 32 = 0$	$\implies y^2 - 12y + 32 = 0$
$\Rightarrow 2^{2x} - 3 \cdot 2^x \cdot 4 + 32 = 0$	$\implies y^2 - 4y - 8y + 32 = 0$

$\implies y(y-4) - 8(y-4) = 0$	$\implies x = 2$
$\implies (y-4)(y-8) = 0$	When $y = 8$
$\implies y-4=0 or y-8=0$	$\implies 2^x = 8$
\Rightarrow y = 4 or y = 8	$\Rightarrow 2^x = 2^3$
When $y = 4$	$\implies x = 3$
$\Rightarrow 2^x = 4$	Hence solution set is {2, 3}
$\implies 2^x = 2^2$	

Example 4: Solve the equation $4^{1+x} + 4^{1-x} = 10$

 \Rightarrow y - 2 = 0 or 2y - 1 = 0 Solution: \implies y = 2 or $y = \frac{1}{2}$ $4^{1+x} + 4^{1-x} = 10$ $\implies 4^1.4^x + 4^1.4^{-x} = 10$ When y = 2 $\implies 4.4^x + \frac{4}{4^x} = 10$ $\Rightarrow 4^x = 2$ $\Rightarrow 2^{2x} = 2^1$ Multiplying by 4^x $\implies 2x = 1$ \implies 4.4^x.4^x + 4 = 10.4^x \implies 4.4^{2x} + 4 = 10.4^x $\implies x = \frac{1}{2}$ Now let $4^x = y$, we have When $y = \frac{1}{2}$ $\Rightarrow 4y^2 + 4 = 10y$ $\implies 4^x = \frac{1}{2}$ $\Rightarrow 4y^2 - 10y + 4 = 0$ $\implies 2^{2x} = 2^{-1}$ On dividing by 2, we get $\Rightarrow 2x = -1$ $2y^2 - 5y + 2 = 0$ $\implies x = -\frac{1}{2}$ $\implies 2y^2 - 4y - y + 2 = 0$ $\implies 2y(y-2) - 1(y-2) = 0$ Hence solution set is $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ \Rightarrow (y-2)(2y-1) = 0

Type IV Reciprocal Equations

An equation which remain unchanged when x is replaced by $\frac{1}{x}$.

Example 5: Solve the equation $x^4 - 3x^3 + 4x^2 - 3x + 1 = 0$

Solution: $x^4 - 3x^3 + 4x^2 - 3x + 1 = 0 \quad \rightarrow (1)$ Dividing by x^2 $\Rightarrow x^2 - 3x + 4 - \frac{3}{x} + \frac{1}{x^2} = 0$

Now re-arranging the terms	On multiplying by x	
$\implies \left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) + 4 = 0 \rightarrow (2)$	$x^2 + 1 = 2x$	
Let $x + \frac{1}{x} = y$	$\implies x^2 - 2x + 1 = 0$	
$\Rightarrow \left(r + \frac{1}{2}\right)^2 - y^2$	$\implies (x-1)^2 = 0$	
$\rightarrow (x + x) = y$	$\implies x-1=0$	
$\implies x^2 + \frac{1}{x^2} + 2 = y^2$	$\Rightarrow x = 1$	
$\implies x^2 + \frac{1}{x^2} = y^2 - 2$	When $y = 1$	
Using these values in equation (2)	$\implies x + \frac{1}{x} = 1$	
$y^2 - 2 - 3y + 4 = 0$	On multiplying by x	
$\implies y^2 - 3y + 2 = 0$	$x^2 + 1 = x$	
$\implies y^2 - 2y - y + 2 = 0$	$\implies x^2 - x + 1 = 0$	
$\implies y^2 - 2y - y + 2 = 0$	$\Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
$\implies y(y-2) - 1(y-2) = 0$	$1\pm\sqrt{1-4}$	
$\implies (y-2)(y-1) = 0$	$\Rightarrow x = \frac{1}{2}$	
$\Rightarrow y-2=0 or y-1=0$	$\implies x = \frac{1 \pm \sqrt{-3}}{2}$	
\Rightarrow y = 2 or y = 1	$\implies x = \frac{1 \pm \sqrt{3} i}{2}$	
When $y = 2$	$(.1\pm\sqrt{3}i)$	
$\implies x + \frac{1}{x} = 2$	Hence solution set is $\{1, \frac{1}{2}\}$	
Exercise 4.2		
Solve the following equations.	$\implies y-4=0 or y-2=0$	
Q #1: $x^4 - 6x^2 + 8 = 0$	$\Rightarrow y = 4 \text{ or } y = 2$	
Solution: $x^4 - 6x^2 + 8 = 0 \rightarrow (1)$	When $y = 4 \implies x^2 = 4$	
Let $x^2 = y \implies x^4 = y^2$	$\Rightarrow x = \pm 2$	
Putting values in (1)	When $y = 2 \implies x^2 = 2$	
$y^2 - 6y + 8 = 0$	$\Rightarrow x = \pm \sqrt{2}$	

Hence solution set = $\{\pm 2, \pm \sqrt{2}\}$

Q #2: $x^{-2} - 10 = 3x^{-1}$

Solution: $x^{-2} - 10 = 3x^{-1} \rightarrow (1)$

M. Shahid Nadeem, Scholars Academy, Shah Wali Colony, Wah Cantt. (03332823123,) P-4

 $\Rightarrow y^2 - 4y - 2y + 8 = 0$

 $\Rightarrow (y-4)(y-2) = 0$

 $\Rightarrow y(y-4) - 2(y-4) = 0$

Let $x^{-1} = v \implies x^{-2} = v^2$ $\Rightarrow x = 2$ Putting values in (1) or $x = \frac{-2 \pm \sqrt{4 - 4(1)(4)}}{2}$ $v^2 - 10 = 3v$ $x = \frac{-2\pm\sqrt{4-16}}{2}$ $y^2 - 3y - 10 = 0$ $v^2 - 5v + 2v - 10 = 0$ $x = \frac{-2 \pm \sqrt{-12}}{2}$ y(y-5) + 2(y-5) = 0 $x = \frac{(-2\pm 2\sqrt{3}\,i\,)}{2}$ (y-5)(y+2) = 0 $x = -1 \pm \sqrt{3} i$ v - 5 = 0 or v + 2 = 0When $y = 1 \implies x^3 = 1$ $y = 5 \ or \ y = -2$ When $y = 5 \implies x^{-1} = 5$ $\Rightarrow x^3 - 1 = 0$ $\Rightarrow \frac{1}{r} = 5 \qquad \Rightarrow x = \frac{1}{5}$ \Rightarrow $(x - 1)(x^2 + x + 1) = 0$ $\Rightarrow x - 1 = 0$ or $x^2 + x + 1 = 0$ When $y = -2 \implies x^{-1} = -2$ $\Rightarrow x = 1$ $\Rightarrow \frac{1}{x} = -2 \qquad \Rightarrow x = -\frac{1}{2}$ or $x = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{2}$ Hence solution set = $\left\{-\frac{1}{2}, \frac{1}{5}\right\}$ $x^6 - 9x^3 + 8 = 0$ O #3: $x = \frac{-1 \pm \sqrt{1-4}}{2}$ **Solution:** $x^6 - 9x^3 + 8 = 0 \rightarrow (1)$ Let $x^3 = y \implies x^6 = y^2$ $x = \frac{-1 \pm \sqrt{-3}}{2}$ Putting values in (1) $x = \frac{-1 \pm \sqrt{3} i}{2}$ $v^2 - 9v + 8 = 0$ Hence solution set is $\Rightarrow v^2 - 8v - v + 8 = 0$ $\left\{1, 2, -1 \pm \sqrt{3} i, \frac{-1 \pm \sqrt{3} i}{2}\right\}$ $\Rightarrow y(y-8) - 1(y-8) = 0$ O # 4: $8x^6 - 19x^3 - 27 = 0$ $\Rightarrow (y-8)(y-1) = 0$ $\Rightarrow y - 8 = 0 \text{ or } y - 1 = 0$ **Solution:** $8x^6 - 19x^3 - 27 = 0$ $y = 8 \ or \ y = 1$ Let $x^3 = y \implies x^6 = y^2$ When $y = 8 \implies x^3 = 8$ $8v^2 - 19v - 27 = 0$ $\Rightarrow x^3 = 2^3$ $8v^2 + 8v - 27v - 27 = 0$ $\Rightarrow x^3 - 2^3 = 0$ 8y(y+1) - 27(y+1) = 0 $\Rightarrow (x-2)(x^2+2x+4) = 0$ (y+1)(8y-27) = 0y + 1 = 0 or 8y - 27 = 0 $\Rightarrow x - 2 = 0 \text{ or } x^2 + 2x + 4 = 0$

$$y = -1 \quad or \quad y = \frac{27}{8}$$
When $y = -1$

$$\Rightarrow x^{3} = -1$$

$$\Rightarrow x^{3} + 1 = 0$$

$$\Rightarrow x^{3} + 1^{3} = 0$$

$$\Rightarrow (x + 1)(x^{2} - x + 1) = 0$$

$$\Rightarrow (x + 1) = 0 \quad or \quad (x^{2} - x + 1) = 0$$

$$\Rightarrow x = -1$$

$$or \quad x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2}$$

$$x = \frac{1 \pm \sqrt{1 - 4}}{2}$$

$$x = \frac{1 \pm \sqrt{3}i}{2}$$
When $y = \frac{27}{8} \Rightarrow x^{3} = \frac{27}{8}$

$$\Rightarrow x^{3} - \frac{27}{8} = 0$$

$$\Rightarrow x^{3} - \left(\frac{3}{2}\right)^{3} = 0$$

$$\Rightarrow (x - \frac{3}{2}) \left(x^{2} + \frac{3}{2}x + \frac{9}{4}\right) = 0$$

$$\Rightarrow x - \frac{3}{2} = 0 \quad or \quad x^{2} + \frac{3}{2}x + \frac{9}{4} = 0$$

$$\Rightarrow x = \frac{3}{2} \quad or \quad 4x^{2} + 6x + 9 = 0$$

$$or \quad x = \frac{-6 \pm \sqrt{36 - 4(4)(9)}}{8}$$

$$x = \frac{-6 \pm \sqrt{-108}}{8}$$

 $x = \frac{3\left(-1\pm\sqrt{3}\,i\right)}{4}$ Hence solution set $= \left\{-1, \frac{3}{2}, \frac{1\pm\sqrt{3}i}{2}, \frac{3(-1\pm\sqrt{3}i)}{4}\right\}$ Q #5: $x^{\frac{2}{5}} + 8 = 6x^{\frac{1}{5}}$ **Solution:** $x^{\frac{2}{5}} + 8 = 6x^{\frac{1}{5}}$ Let $x^{\frac{1}{5}} = y \implies x^{\frac{2}{5}} = y^2$ $y^2 + 8 = 6y$ $y^2 - 6y + 8 = 0$ $y^2 - 4y - 2y + 8 = 0$ y(y-4) - 2(y-4) = 0(y-4)(y-2) = 0(y-4) = 0 or (y-2) = 0y = 4 or y = 2When $y = 4 \implies x^{\frac{1}{5}} = 4$ $\Rightarrow x = 4^5$ $\Rightarrow x = 1024$ When $y = 2 \implies x^{\frac{1}{5}} = 2$ $\Rightarrow x = 2^5$ $\Rightarrow x = 32$

Hence solution set is $\{32, 1024\}$ Q# 6: (x + 1)(x + 2)(x + 3)(x + 4) = 24Solution: $(x + 1)(x + 2)(x + 3)(x + 4) = 24 \rightarrow (1)$ Re arranging equation (1), we have (x + 1)(x + 4)(x + 2)(x + 3) = 24

$$(x + 1)(x + 4)(x + 2)(x + 3) = 24$$
$$(x^{2} + 5x + 4)(x^{2} + 5x + 6) = 24$$
Let $x^{2} + 5x = y$
$$\Rightarrow (y + 4)(y + 6) = 24$$

$$\Rightarrow y^{2} + 10y + 24 = 24$$

$$\Rightarrow y^{2} + 10y + 24 - 24 = 0$$

$$\Rightarrow y^{2} + 10y = 0$$

$$\Rightarrow y(y + 10) = 0$$

$$\Rightarrow y = 0 \quad or \quad y + 10 = 0$$

$$or \quad y = -10$$

When $y = 0 \Rightarrow x^{2} + 5x = 0$

$$\Rightarrow x = 0 \quad or \quad x + 5 = 0$$

$$\Rightarrow x = 0 \quad or \quad x = -5$$

When $y = -10 \Rightarrow x^{2} + 5x = -10$

$$\Rightarrow x^{2} + 5x + 10 = 0$$

$$\Rightarrow x = \frac{-5 \pm \sqrt{25 - 40}}{2}$$

$$\Rightarrow x = \frac{-5 \pm \sqrt{25 - 40}}{2}$$

$$\Rightarrow x = \frac{-5 \pm \sqrt{-15}}{2}$$

Hence solution set = $\left\{-5, 0, \frac{-5 \pm \sqrt{15}i}{2}\right\}$
Q #7: $(x - 1)(x + 5)(x + 8)(x + 2) - 880 = 0$
Solution:
 $(x - 1)(x + 5)(x + 8)(x + 2) - 880 = 0$
Re arranging
 $(x - 1)(x + 8)(x + 5)(x + 2) = 880$
 $(x^{2} + 7x - 8)(x^{2} + 7x + 10) = 880$
Let $x^{2} + 7x = y$

$$\Rightarrow (y - 8)(y + 10) = 880$$

$$\Rightarrow y^{2} + 2y - 80 = 880$$

$$\Rightarrow y^{2} + 2y - 80 - 880 = 0$$

$$\Rightarrow y^{2} + 2y - 960 = 0$$

$$\Rightarrow y = \frac{-2 \pm \sqrt{4 - 4(1)(-960)}}{2}$$

$$\Rightarrow y = \frac{-2 \pm \sqrt{4 + 3840}}{2}$$

$$\Rightarrow y = \frac{-2 \pm \sqrt{3844}}{2}$$

$$\Rightarrow y = \frac{-2 \pm 62}{2}$$
 or $y = \frac{-2 - 62}{2}$

$$\Rightarrow y = 30 \quad \text{or } y = -32$$

When $y = 30 \Rightarrow x^{2} + 7x = 30$

$$\Rightarrow x^{2} + 7x - 30 = 0$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{49 - 4(1)(-30)}}{2}$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{49 - 4(1)(-30)}}{2}$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{169}}{2}$$

$$\Rightarrow x = 3 \quad \text{or } x = -10$$

When $y = -32 \Rightarrow x^{2} + 7x = -32$

$$\Rightarrow x^{2} + 7x + 32 = 0$$

$$\Rightarrow x^{2} + 7x + 32 = 0$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{49 - 4(1)(32)}}{2}$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{49 - 128}}{2}$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{-79}}{2}$$

$$\Rightarrow x = \frac{-7 \pm \sqrt{79} i}{2}$$
Hence solution set = $\left\{-10, 3, \frac{-7 \pm \sqrt{79} i}{2}\right\}$
Q #8:
 $(x-5)(x-7)(x+6)(x+4) - 504 = 0$
Solution:
 $(x-5)(x-7)(x+6)(x+4) - 504 = 0 \rightarrow (1)$
Re arranging equation (1), we have
 $(x-5)(x+4)(x-7)(x+6) = 504$
 $(x^2 - x - 20)(x^2 - x - 42) = 504$
Let $x^2 - x = y$
 $\Rightarrow (y-20)(y-42) = 504$
 $\Rightarrow y^2 - 62y + 840 = 504$
 $\Rightarrow y^2 - 62y + 840 = 504$
 $\Rightarrow y^2 - 62y + 840 = 504$
 $\Rightarrow y^2 - 62y + 336 = 0$
 $\Rightarrow y = \frac{62 \pm \sqrt{2500}}{2}$
 $\Rightarrow y = \frac{62 \pm \sqrt{2500}}{2}$
 $\Rightarrow y = \frac{62 \pm 50}{2}$
 $\Rightarrow y = \frac{62 \pm \sqrt{2500}}{2}$
 $\Rightarrow y = \frac{62 \pm \sqrt{2500}}{2}$
 $\Rightarrow y = 56 \quad \text{or } y = 6$
When $y = 56 \Rightarrow x^2 - x = 56$
 $\Rightarrow x^2 - x - 56 = 0$
 $\Rightarrow x = \frac{1 \pm \sqrt{1-4(1)(-56)}}{2}$
 $\Rightarrow x = \frac{1 \pm \sqrt{225}}{2}$
 $\Rightarrow x = \frac{1 \pm 15}{2}$

$$\Rightarrow x = \frac{1+15}{2} \quad or \quad \frac{1-15}{2}$$

$$\Rightarrow x = 8 \quad or \quad x = -7$$
When $y = 6 \Rightarrow x^2 - x = 6$

$$\Rightarrow x^2 - x - 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow x(x - 3) + 2(x - 3) = 0$$

$$\Rightarrow (x - 3)(x + 2) = 0$$

$$\Rightarrow (x - 3) = 0 \quad or \quad (x + 2) = 0$$

$$\Rightarrow x = 3 \quad or \quad x = -2$$
Hence solution set = $\{-7, -2, 3, 8\}$
Q #9:
 $(x - 1)(x - 2)(x - 8)(x + 5) + 360 = 0$
Solution:
 $(x - 1)(x - 2)(x - 8)(x + 5) + 360 = 0 \rightarrow (1)$
Re arranging equation (1), we have
 $(x - 1)(x - 2)(x - 8)(x + 5) = -360$
 $(x^2 - 3x + 2)(x^2 - 3x - 40) = -360$
Let $x^2 - 3x = y$

$$\Rightarrow (y + 2)(y - 40) = -360$$

$$\Rightarrow y^2 - 38y - 80 = -360$$

$$\Rightarrow y^2 - 38y - 80 + 360 = 0$$

$$\Rightarrow y^2 - 38y - 80 + 360 = 0$$

$$\Rightarrow y^2 - 38y + 280 = 0$$

$$\Rightarrow y = \frac{38 \pm \sqrt{1444 - 4(1)(280)}}{2}$$

$$\Rightarrow y = \frac{38 \pm \sqrt{324}}{2}$$

$$\Rightarrow y = \frac{38 \pm 18}{2}$$

$$\Rightarrow y = 28 \quad or \quad y = 10$$
When $y = 56 \Rightarrow x^{2} - 3x = 28$

$$\Rightarrow x^{2} - 3x - 28 = 0$$

$$\Rightarrow x^{2} - 7x + 4x - 28 = 0$$

$$\Rightarrow x(x - 7) + 4(x - 7) = 0$$

$$\Rightarrow (x - 7)(x + 4) = 0$$

$$\Rightarrow (x - 7) = 0 \quad or \quad (x + 4) = 0$$

$$\Rightarrow (x - 7) = 0 \quad or \quad (x + 4) = 0$$

$$\Rightarrow x = 7 \quad or \quad x = -4$$
When $y = 10 \Rightarrow x^{2} - 3x = 10$

$$\Rightarrow x^{2} - 3x - 10 = 0$$

$$\Rightarrow x^{2} - 5x + 2x - 10 = 0$$

$$\Rightarrow x(x - 5) + 2(x - 5) = 0$$

$$\Rightarrow (x - 5)(x + 2) = 0$$

$$\Rightarrow (x - 5)(x + 2) = 0$$

$$\Rightarrow (x - 5)(x + 2) = 0$$

$$\Rightarrow x = 5 \quad or \quad x = -2$$
Hence solution set = $\{-4, -2, 5, 7\}$
Q #10:
(x + 1)(2x + 3)(2x + 5)(x + 3) = 945
Solution:
(x + 1)(2x + 3)(2x + 5)(x + 3) = 945 - \rightarrow (1)
Re arranging equation (1), we have
(x + 1) 2 $\left(x + \frac{3}{2}\right) 2 \left(x + \frac{5}{2}\right) (x + 3) = 945$

$$= 4(x + 1)(x + 3) \left(x + \frac{3}{2}\right) \left(x + \frac{5}{2}\right) = 945$$

$$= 4(x^{2} + 4x + 3) \left(x^{2} + 4x + \frac{15}{4}\right) = 945$$

$$\Rightarrow (y+3)(4y+15) = 945$$

$$\Rightarrow 4y^{2} + 27y + 45 = 945$$

$$\Rightarrow 4y^{2} + 27y - 900 = 0$$

$$\Rightarrow y = \frac{-27 \pm \sqrt{729 - 4(4)(-900)}}{8}$$

$$\Rightarrow y = \frac{-27 \pm \sqrt{729 + 14400}}{8}$$

$$\Rightarrow y = \frac{12}{8} \quad \text{or} \quad y = -\frac{75}{4}$$

When $y = 48 \Rightarrow x^{2} + 4x = 12$

$$\Rightarrow x^{2} + 4x - 12 = 0$$

$$\Rightarrow x^{2} + 6x - 2x - 12 = 0$$

$$\Rightarrow x^{2} + 6x - 2x - 12 = 0$$

$$\Rightarrow x(x + 6) - 2(x + 6) = 0$$

$$\Rightarrow (x + 6)(x - 2) = 0$$

$$\Rightarrow (x + 6)(x - 2) = 0$$

$$\Rightarrow (x + 6) = 0 \quad \text{or} \quad (x - 2) = 0$$

$$\Rightarrow (x + 6) = 0 \quad \text{or} \quad (x - 2) = 0$$

$$\Rightarrow 4x^{2} + 16x = -75$$

$$\Rightarrow 4x^{2} + 16x + 75 = 0$$

$$\Rightarrow x = \frac{-16 \pm \sqrt{256 - 1200}}{8}$$

$$\Rightarrow x = \frac{-16 \pm \sqrt{256 - 1200}}{8}$$

$$\Rightarrow x = \frac{-16 \pm \sqrt{256 - 1200}}{8}$$

$$\Rightarrow x = \frac{-16 \pm 4\sqrt{-59}}{8}$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{-59}}{2}$$
Hence solution set = $\left\{-6, 2, \frac{-4 \pm \sqrt{-59}}{2}\right\}$
Q #11:
(2x - 7)(x² - 9)(2x + 5) - 91 = 0
Solution:
(2x - 7)(x² - 9)(2x + 5) - 91 = 0 - \rightarrow (1)
(2x - 7)(x + 3)(x - 3)(2x + 5) = 91
2(x - $\frac{7}{2}$)(x + 3)(x - 3) 2(x + $\frac{5}{2}$) = 91
4(x - $\frac{7}{2}$)(x + 3)(x - 3)(x + $\frac{5}{2}$) = 91
4(x² - $\frac{1}{2}x - \frac{21}{2}$)(x² - $\frac{1}{2}x - \frac{15}{2}$) = 91
2(x² - $\frac{1}{2}x - \frac{21}{2}$)2(x² - $\frac{1}{2}x - \frac{15}{2}$) = 91
(2x² - x - 21)(2x² - x - 15) = 91
Let 2x² - x = y
 \Rightarrow (y - 21)(y - 15) = 91
 \Rightarrow y² - 36y + 315 = 91
 \Rightarrow y² - 36y + 315 - 91 = 0
 \Rightarrow y² - 36y + 224 = 0
 \Rightarrow y = $\frac{36 \pm \sqrt{1296 - 4(1)(224)}}{2}$
 \Rightarrow y = $\frac{36 \pm \sqrt{1296 - 896}}{2}$
 \Rightarrow y = $\frac{36 \pm \sqrt{1296 - 896}}{2}$
 \Rightarrow y = $\frac{36 \pm \sqrt{1296 - 896}}{2}$
 \Rightarrow y = 28 or y = 8

When $v = 28 \implies 2x^2 - x = 28$ $\Rightarrow 2x^2 - x - 28 = 0$ $\Rightarrow 2x^2 - 8x + 7x - 28 = 0$ $\Rightarrow 2x(x-4) + 7(x-4) = 0$ $\Rightarrow (x-4)(2x+7) = 0$ $\Rightarrow (x-4) = 0 \qquad or \qquad (2x+7) = 0$ \Rightarrow x = 4 or $x = -\frac{7}{2}$ When $y = 10 \implies 2x^2 - x = 8$ $\Rightarrow 2x^2 - x - 8 = 0$ $\Rightarrow y = \frac{1 \pm \sqrt{1 - 4(2)(-8)}}{4}$ $\Rightarrow y = \frac{1 \pm \sqrt{65}}{4}$ Hence solution set = $\left\{-\frac{7}{2}, 4, \frac{1\pm\sqrt{65}}{4}\right\}$ Q #12: $(x^{2}+6x+8)(x^{2}+14x+48) = 105$ Solution: $(x^{2} + 6x + 8)(x^{2} + 14x + 48) = 105 \rightarrow (1)$ $(x^{2} + 4x + 2x + 8) (x^{2} + 8x + 6x + 48) = 105$ (x(x+4) + 2(x+4))(x(x+8) + 6(x+8)) = 105 $(x + 4)(x + 2)(x + 8)(x + 6) = 105 \rightarrow (2)$ Re arranging equation (2), we have (x + 4)(x + 6)(x + 2)(x + 8) = 105 $(x^{2} + 10x + 24) (x^{2} + 10x + 16) = 105$ Let $x^2 + 10x = y$ $\Rightarrow (y+24)(y+16) = 105$ $\Rightarrow y^2 + 40y + 384 = 105$ $\Rightarrow y^2 + 40y + 384 - 105 = 0$

 \Rightarrow $y^2 + 40y + 279 = 0$ $\Rightarrow y = \frac{-40 \pm \sqrt{1600 - 4(1)(279)}}{2}$ $\Rightarrow y = \frac{-40 \pm \sqrt{1600 - 1116}}{2}$ $\Rightarrow y = \frac{-40 \pm \sqrt{484}}{2}$ $\Rightarrow y = \frac{-40+22}{2}$ or $y = \frac{-40-22}{2}$ $\Rightarrow y = -9$ or y = -31When $y = -9 \implies x^2 + 10x = -9$ $\Rightarrow x^2 + 10x + 9 = 0$ $\Rightarrow x^2 + 9x + x + 9 = 0$ $\Rightarrow x(x+9) + 1(x+9) = 0$ $\Rightarrow (x+9)(x+1) = 0$ \Rightarrow (x + 9) = 0 or (x + 1) = 0 \Rightarrow x = -9 or x = -1When $v = -31 \implies x^2 + 10x = -31$ $\Rightarrow x^2 + 10x + 31 = 0$ $\Rightarrow y = \frac{-10 \pm \sqrt{100 - 4(1)(31)}}{2}$ $\Rightarrow y = \frac{-10 \pm \sqrt{100 - 124}}{2}$ $\Rightarrow y = \frac{-10 \pm \sqrt{-24}}{2}$ $\Rightarrow y = -5 \pm \sqrt{-6}$ Hence solution set = $\{-1, -9, -5 \pm \sqrt{-6}\}$ **Q #13:** $(x^{2}+6x-27)(x^{2}-2x-35)=385$ Solution: $(x^2 + 6x - 27)(x^2 - 2x - 35) = 385 \rightarrow (1)$

 $(x^{2} - 3x + 9x - 27) (x^{2} - 7x + 5x - 35) = 385$ (x(x-3) + 9(x-3))(x(x-7) + 5(x-7)) = 385 $(x-3)(x+9)(x-7)(x+5) = 385 \rightarrow (2)$ Re arranging equation (2), we have (x-3)(x+5)(x+9)(x-7) = 385 $(x^{2} + 2x - 15)(x^{2} + 2x - 63) = 385$ Let $x^2 + 2x = y$ $\Rightarrow (y - 15)(y - 63) = 385$ \Rightarrow $y^2 - 78y + 945 = 385$ $\Rightarrow v^2 - 78v + 945 - 385 = 0$ $\Rightarrow y^2 - 78y + 560 = 0$ $\Rightarrow y^2 - 8y - 70y + 560 = 0$ $\Rightarrow y(y-8) - 70(y-8) = 0$ $\Rightarrow (y-8)(y-70) = 0$ \Rightarrow y - 8 = 0 or y - 70 = 0 $\Rightarrow y = 8$ or y = 70When $y = 8 \implies x^2 + 2x = 8$ $\Rightarrow x^2 + 2x - 8 = 0$ $\Rightarrow x^2 + 4x - 2x - 8 = 0$ $\Rightarrow x(x+4) - 2(x+4) = 0$ $\Rightarrow (x+4)(x-2) = 0$ \Rightarrow (x + 4) = 0 or (x - 2) = 0 \Rightarrow x = -4 or x = 2When $y = 70 \implies x^2 + 2x = 70$ $\Rightarrow x^2 + 2x - 70 = 0$ $\Rightarrow y = \frac{-2 \pm \sqrt{4 - 4(1)(-70)}}{2}$ $\Rightarrow y = \frac{-2 \pm \sqrt{4 + 280}}{2}$

$\Rightarrow y = \frac{-2 \pm \sqrt{284}}{2}$	Solution: $2^x + 2^{-x+6} - 20 = 0 \rightarrow (1)$
2	$2^x + 2^{-x} \cdot 2^6 - 20 = 0$
$\Rightarrow y = \frac{-2 \pm 2\sqrt{71}}{2}$	$2^x + 2^6 \cdot 2^{-x} - 20 = 0$
$\implies y = -1 \pm \sqrt{71}$	$2^x + 64.\frac{1}{2^x} - 20 = 0$
Hence solution set = $\{-4, 2, -1 \pm \sqrt{71}\}$	$2^{2x} + 64 - 20.2^{x} = 0 \to (2)$
Q #14: 4. $2^{2x+1} - 9.2^x + 1 = 0$	Let $2^x = y \implies 2^{2x} = y^2$
Solution: $4.2^{2x+1} - 9.2^x + 1 = 0 \rightarrow (1)$	Then equation (2) becomes
$4.2^{2x}.2 - 9.2^x + 1 = 0$	$y^2 + 64 - 20y = 0$
$8.2^{2x} - 9.2^{x} + 1 = 0 - \to (2)$	$\implies y^2 - 20y + 64 = 0$
Let $2^x = y \Longrightarrow 2^{2x} = y^2$	$\implies y^2 - 16y - 4y + 64 = 0$
Then equation (2) becomes	$\implies y(y-16) - 4(y-16) = 0$
$8y^2 - 9y + 1 = 0$	$\implies (y-16)(y-4) = 0$
$\implies 8y^2 - 8y - y + 1 = 0$	$\implies y - 16 = 0 \qquad or \qquad y - 4 = 0$
$\implies 8y(y-1) - 1(y-1) = 0$	\Rightarrow y = 1 6 or y = 4
$\implies (y-1)(8y-1) = 0$	When $y = 16 \implies 2^x = 16$
$\Rightarrow y-1=0 \qquad or \qquad 8y-1=0$	$\Rightarrow 2^x = 2^4$
$\Rightarrow y = 1$ or $y = \frac{1}{8}$	$\implies x = 4$
When $y = 1 \implies 2^x = 1$	When $y = 4 \implies 2^x = 4$
$\Rightarrow 2^x = 2^0$	$\Rightarrow 2^x = 2^2$
$\Rightarrow x = 0$	$\implies x = 2$
When $y = \frac{1}{2} \implies 2^x = \frac{1}{2}$	Hence solution set = $\{2, 4\}$
when $y = \frac{1}{8}$ $\rightarrow 2 = \frac{1}{8}$	Q #16: $4^x - 3 \cdot 2^{x+3} + 128 = 0$
$\implies 2^{\chi} = \frac{1}{2^3}$	Solution: $4^x - 3 \cdot 2^{x+3} + 128 = 0 \longrightarrow (1)$
$\implies 2^x = 2^{-3}$	$2^{2x} - 3 \cdot 2^x \cdot 2^3 + 128 = 0$
$\implies x = -3$	$2^{2x} - 3 \cdot 2^3 \cdot 2^x + 128 = 0$
Hence solution set = $\{-3, 0\}$	$2^{2x} - 24.2^x + 128 = 0 \rightarrow (2)$
Q #15: $2^x + 2^{-x+6} - 20 = 0$	Let $2^x = y \Longrightarrow 2^{2x} = y^2$

Then equation (2) becomes $y^2 - 24y + 128 = 0$ $\Rightarrow y^2 - 16y - 8y + 128 = 0$ $\Rightarrow \quad y(y-16) - 8(y-16) = 0$ \Rightarrow (y-16)(y-8) = 0 $\Rightarrow y - 16 = 0 \qquad or \qquad y - 8 = 0$ \Rightarrow y = 1 6 or y = 8 When $y = 16 \implies 2^x = 16$ $\implies 2^x = 2^4$ $\Rightarrow x = 4$ When $y = 8 \implies 2^x = 8$ $\implies 2^x = 2^3$ $\implies x = 3$ Hence solution set = $\{3, 4\}$ Q #17: $3^{2x-1} - 12 \cdot 3^x + 81 = 0$ **Solution:** $3^{2x-1} - 12 \cdot 3^x + 81 = 0 \rightarrow (1)$ $3^{2x} \cdot 3^{-1} - 12 \cdot 3^{x} + 81 = 0$ $\frac{3^{2x}}{3} - 12.3^x + 81 = 0$ $3^{2x} - 36.3^{x} + 243 = 0 \rightarrow (2)$ Let $3^x = y \implies 3^{2x} = y^2$ Then equation (2) becomes $y^2 - 36y + 243 = 0$ \Rightarrow $y^2 - 27y - 9y + 243 = 0$ \Rightarrow y(y-27) - 9(y-27) = 0 $\Rightarrow (y-27)(y-9) = 0$ $\Rightarrow y - 27 = 0 \qquad or \qquad y - 9 = 0$ \Rightarrow y = 27 or y = 9

When
$$y = 27 \Rightarrow 3^x = 27$$

 $\Rightarrow 3^x = 3^3$
 $\Rightarrow x = 3$
When $y = 9 \Rightarrow 3^x = 9$
 $\Rightarrow 3^x = 3^2$
 $\Rightarrow x = 2$
Hence solution set = $\{2, 3\}$
 $Q \# 18: (x + \frac{1}{x})^2 - 3(x + \frac{1}{x}) - 4 = 0$
Solution:
 $(x + \frac{1}{x})^2 - 3(x + \frac{1}{x}) - 4 = 0 \rightarrow (1)$
Let $(x + \frac{1}{x}) = y \Rightarrow (x + \frac{1}{x})^2 = y^2$
Using these values in (1), we have
 $y^2 - 3y - 4 = 0$
 $\Rightarrow y^2 - 4y + y - 4 = 0$
 $\Rightarrow y(y - 4) + 1(y - 4) = 0$
 $\Rightarrow (y - 4)(y + 1) = 0$
 $\Rightarrow y - 4 = 0 \quad \text{or} \quad y + 1 = 0$
 $\Rightarrow y = 4 \quad \text{or} \quad y = -1$
When $y = 4 \Rightarrow x + \frac{1}{x} = 4$
 $\Rightarrow x^2 + 1 = 4x$
 $\Rightarrow x^2 - 4x + 1 = 0$
 $\Rightarrow x = \frac{4 \pm \sqrt{16 - 4(1)(1)}}{2}$
 $\Rightarrow x = \frac{4 \pm \sqrt{16 - 4}}{2}$
 $\Rightarrow x = \frac{4 \pm \sqrt{16 - 4}}{2}$

$$\Rightarrow x = \frac{4 \pm 2\sqrt{3}}{2}$$

$$\Rightarrow x = 2 \pm \sqrt{3}$$
When $y = -1 \Rightarrow x + \frac{1}{x} = -1$

$$\Rightarrow x^{2} + 1 = -x$$

$$\Rightarrow x^{2} + x + 1 = 0$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{2}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4}}{2}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{3} i}{2}$$
Hence solution set = $\left\{2 \pm \sqrt{3}, \frac{-1 \pm \sqrt{3} i}{2}\right\}$
Q #19: $x^{2} + x - 4 + \frac{1}{x} + \frac{1}{x^{2}} = 0$
Solution: $x^{2} + x - 4 + \frac{1}{x} + \frac{1}{x^{2}} = 0 \rightarrow (1)$
Re-arranging (1), we have
$$\left(x^{2} + \frac{1}{x^{2}}\right) + \left(x + \frac{1}{x}\right) - 4 = 0 \rightarrow (2)$$
Let $\left(x + \frac{1}{x}\right) = y \Rightarrow \left(x + \frac{1}{x}\right)^{2} = y^{2}$
Using these values in (2), we have
$$x^{2} + \frac{1}{x^{2}} + 2 = y^{2}$$

$$\Rightarrow x^{2} + \frac{1}{x^{2}} = y^{2} - 2$$

$$\Rightarrow y^{2} - 2 + y - 4 = 0$$

$$\Rightarrow y^{2} - 2y + 3y - 6 = 0$$

$$\Rightarrow y(y - 2) + 3(y - 2) = 0$$

(y-2)(y+3) = 0 $\Rightarrow y-2=0 \qquad or \qquad y+3=0$ $\Rightarrow y=2 \qquad or \qquad y=-3$ When $y = 2 \implies x + \frac{1}{x} = 2$ $\Rightarrow x^2 + 1 = 2x$ $\Rightarrow x^2 - 2x + 1 = 0$ $\Rightarrow x^2 - x - x + 1 = 0$ $\Rightarrow x(x-1) - 1(x-1) = 0$ $\Rightarrow (x-1)(x-1) = 0$ $\Rightarrow (x-1) = 0 \qquad or \qquad (x-1) = 0$ \Rightarrow x = 1 or x = 1When $y = 3 \implies x + \frac{1}{x} = -3$ $\Rightarrow x^2 + 1 = -3x$ $\Rightarrow x^2 + 3x + 1 = 0$ $\Rightarrow x = \frac{-3 \pm \sqrt{9 - 4(1)(1)}}{2}$ $\Rightarrow x = \frac{-3 \pm \sqrt{5}}{2}$ Hence solution set = $\left\{1, \frac{-3\pm\sqrt{5}}{2}\right\}$ Q #20: $\left(x - \frac{1}{x}\right)^2 + 3\left(x + \frac{1}{x}\right) = 0$ Solution: $\left(x - \frac{1}{x}\right)^2 + 3\left(x + \frac{1}{x}\right) = 0 \longrightarrow (1)$ Let $\left(x+\frac{1}{x}\right)=y \implies \left(x+\frac{1}{x}\right)^2=y^2$ $\implies x^2 + \frac{1}{x^2} + 2 = y^2$ $\implies x^2 + \frac{1}{x^2} = y^2 - 2$ $\Rightarrow x^2 + \frac{1}{x^2} - 2 = y^2 - 2 - 2$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 = y^2 - 4$$

Using these values in (1), we have
$$y^2 - 4 + 3y = 0$$

$$\Rightarrow y^2 + 3y - 4 = 0$$

$$\Rightarrow y^2 + 4y - y - 4 = 0$$

$$\Rightarrow y(y + 4) - 1(y + 4) = 0$$

$$\Rightarrow (y + 4)(y - 1) = 0$$

$$\Rightarrow y + 4 = 0 \quad or \quad y - 1 = 0$$

$$\Rightarrow y = -4 \quad or \quad y = 1$$

When $y = -4$
$$\Rightarrow x + \frac{1}{x} = -4$$

$$\Rightarrow x^2 + 1 = -4x$$

$$\Rightarrow x^2 + 1 = -4x$$

$$\Rightarrow x^2 + 4x + 1 = 0$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{16 - 4(1)(1)}}{2}$$

$$\Rightarrow x = \frac{-4 \pm \sqrt{12}}{2}$$

$$\Rightarrow x = -2 \pm \sqrt{3}$$

When $y = 1$
$$\Rightarrow x + \frac{1}{x} = 1$$

$$\Rightarrow x^2 + 1 = x$$

$$\Rightarrow x^2 - x + 1 = 0$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{-3}}{2}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{3} i}{2}$$
Hence solution set = $\left\{-2 \pm \sqrt{3}, \frac{1 \pm \sqrt{3} i}{2}\right\}$
Q #21: $2x^4 - 3x^3 - x^2 - 3x + 2 = 0$
Solution:
 $2x^4 - 3x^3 - x^2 - 3x + 2 = 0 \rightarrow (1)$
Dividing equation (1) by x^2
 $2x^2 - 3x - 1 - \frac{3}{x} + \frac{2}{x^2} = 0$
 $2\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) - 1 = 0 \rightarrow (2)$
Let $\left(x + \frac{1}{x}\right) = y \Rightarrow \left(x + \frac{1}{x}\right)^2 = y^2$
 $\Rightarrow x^2 + \frac{1}{x^2} + 2 = y^2$
 $\Rightarrow x^2 + \frac{1}{x^2} = y^2 - 2$
Using these values in (2), we have
 $2(y^2 - 2) - 3y - 1 = 0$
 $\Rightarrow 2y^2 - 4 - 3y - 1 = 0$
 $\Rightarrow 2y^2 - 3y - 5 = 0$
 $\Rightarrow y(2y - 5) + 1(2y - 5) = 0$
 $\Rightarrow (2y - 5)(y + 1) = 0$
 $\Rightarrow 2y - 5 = 0 \quad \text{or} \quad y + 1 = 0$
 $\Rightarrow y = \frac{5}{2} \quad \text{or} \quad y = -1$
When $y = \frac{5}{2} \quad \Rightarrow x^2 + 1 = \frac{5}{2}x$
 $\Rightarrow 2x^2 + 1 = \frac{5}{2}x$
 $\Rightarrow 2x^2 - 5x + 2 = 0$

$$\Rightarrow 2x^{2} - 4x - x + 2 = 0$$

$$\Rightarrow 2x(x - 2) - 1(x - 2) = 0$$

$$\Rightarrow (x - 2)(2x - 1) = 0$$

$$\Rightarrow x - 2 = 0 \quad or \quad 2x - 1 = 0$$

$$\Rightarrow x = 2 \quad or \qquad x = \frac{1}{2}$$

When $y = -1 \Rightarrow x + \frac{1}{x} = -1$

$$\Rightarrow x^{2} + 1 = -x$$

$$\Rightarrow x^{2} + x + 1 = 0$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(1)}}{2}$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{-3}}{2}$$

Hence solution set = $\left\{\frac{1}{2}, 2, \frac{-1 \pm \sqrt{3}i}{2}\right\}$
Q #22: $2x^{4} + 3x^{3} - 4x^{2} - 3x + 2 = 0$
Solution: $2x^{4} + 3x^{3} - 4x^{2} - 3x + 2 = 0$
Dividing by x^{2}
 $2x^{2} + 3x - 4 - \frac{3}{x} + \frac{2}{x^{2}} = 0$
 $2\left(x^{2} + \frac{1}{x^{2}}\right) + 3\left(x - \frac{1}{x}\right) - 4 = 0$
Let $\left(x - \frac{1}{x}\right) = y \qquad \Rightarrow \left(x - \frac{1}{x}\right)^{2} = y^{2}$
 $\Rightarrow x^{2} + \frac{1}{x^{2}} - 2 = y^{2}$
 $\Rightarrow x^{2} + \frac{1}{x^{2}} = y^{2} + 2$
 $\Rightarrow 2(y^{2} + 2) + 3y - 4 = 0$

 $\Rightarrow 2y^2 + 3y = 0$

y(2y+3) = 0 $\Rightarrow y = 0 \quad or \quad 2y + 3 = 0$ $\Rightarrow y = 0 \quad or \quad y = -\frac{3}{2}$ When $y = 0 \implies x - \frac{1}{x} = 0$ $\implies x^2 - 1 = 0$ $\Rightarrow x^2 = 1$ $\implies x = \pm 1$ When $y = -\frac{3}{2} \implies x - \frac{1}{x} = -\frac{3}{2}$ $\Rightarrow 2x^2 - 2 = -3x$ $\Rightarrow 2x^2 + 3x - 2 = 0$ $\Rightarrow 2x^2 + 4x - x - 2 =$ $\Rightarrow \quad 2x(x+2) - 1(x+2) = 0$ $\implies (x+2)(2x-1) = 0$ $\implies x+2=0 \qquad or \quad 2x-1=0$ \Rightarrow x = -2 or $x = \frac{1}{2}$ Hence solution set = $\left\{\frac{1}{2}, -2, \pm 1\right\}$ Q #23: $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$ **Solution:** $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$ Dividing by x^2 $6x^2 - 35x + 62 - \frac{35}{x} + \frac{6}{x^2} = 0$ $6\left(x^{2} + \frac{1}{x^{2}}\right) - 35\left(x + \frac{1}{x}\right) + 62 = 0$ Let $\left(x+\frac{1}{x}\right)=y \implies \left(x+\frac{1}{x}\right)^2=y^2$ $\implies x^2 + \frac{1}{x^2} + 2 = y^2$ $\implies x^2 + \frac{1}{r^2} = y^2 - 2$

$$\Rightarrow 6(y^{2}-2) - 35y + 62 = 0$$

$$\Rightarrow 6y^{2} - 12 - 35y + 62 = 0$$

$$\Rightarrow 6y^{2} - 35y + 50 = 0$$

$$\Rightarrow y = \frac{35 \pm \sqrt{1225 - 4(6)(50)}}{12}$$

$$\Rightarrow y = \frac{35 \pm \sqrt{1225 - 1200}}{12}$$

$$\Rightarrow y = \frac{35 \pm 5}{12}$$

$$\Rightarrow y = \frac{35 \pm 5}{12} \text{ or } y = \frac{35 - 5}{12}$$

$$\Rightarrow y = \frac{10}{3} \text{ or } y = \frac{5}{2}$$

When $y = \frac{5}{2} \Rightarrow x + \frac{1}{x} = \frac{5}{2}$

$$\Rightarrow 2x^{2} + 1 = \frac{5}{2}x$$

$$\Rightarrow 2x^{2} - 5x + 2 = 0$$

$$\Rightarrow 2x^{2} - 4x - x + 2 = 0$$

$$\Rightarrow 2x(x - 2) - 1(x - 2) = 0$$

$$\Rightarrow x - 2 = 0 \text{ or } 2x - 1$$

$$\Rightarrow x = 2 \text{ or } x = \frac{1}{2}$$

When $y = \frac{10}{3} \Rightarrow x + \frac{1}{x} = \frac{10}{3}$

$$\Rightarrow 3x^{2} + 3 = 10x$$

$$\Rightarrow 3x^{2} - 9x - x + 3 =$$

$$\Rightarrow 3x(x - 3) - 1(x - 3) = 0$$

$$\Rightarrow (x - 3)(3x - 1) = 0$$

$$\Rightarrow x - 3 = 0 \quad or \quad 3x - 1 = 0$$

$$\Rightarrow x = 3 \quad or \quad x = \frac{1}{3}$$

Hence solution set = $\{\frac{1}{2}, 2, 3, \frac{1}{3}\}$
Q #24: $x^4 - 6x^2 + 10 - \frac{6}{x^2} + \frac{1}{x^4} = 0$
Solution:

$$x^4 - 6x^2 + 10 - \frac{6}{x^2} + \frac{1}{x^4} = 0 \longrightarrow (1)$$

Re-arranging (1), we have

$$\left(x^4 + \frac{1}{x^4}\right) - 6\left(x^2 + \frac{1}{x^2}\right) + 10 = 0 \longrightarrow (2)$$
Let $\left(x^2 + \frac{1}{x^2}\right) = y \implies \left(x^2 + \frac{1}{x^2}\right)^2 = y^2$

$$\implies x^4 + \frac{1}{x^4} + 2 = y^2$$

$$\implies x^4 + \frac{1}{x^4} = y^2 - 2$$

Using these values in (2), we have

 $(y^{2}-2) - 6y + 10 = 0$ $\Rightarrow y^{2} - 2 - 6y + 10 = 0$ $\Rightarrow y^{2} - 6y + 8 = 0$ $\Rightarrow y^{2} - 4y - 2y + 8 = 0$ $\Rightarrow y(y - 4) - 2(y - 4) = 0$ $\Rightarrow (y - 4)(y - 2) = 0$ $\Rightarrow y - 4 = 0 \quad or \quad y - 2 = 0$ $\Rightarrow y = 4 \quad or \quad y = 2$ When $y = 4 \quad \Rightarrow x^{2} + \frac{1}{x^{2}} = 4$ $\Rightarrow x^{4} + 1 = 4x^{2}$ $\Rightarrow x^{4} - 4x^{2} + 1 = 0$ Let $x^{2} = z \quad \Rightarrow x^{4} = z^{2}$

$$\Rightarrow z^{2} - 4z + 1 = 0$$

$$\Rightarrow z = \frac{4 \pm \sqrt{16 - 4}}{2}$$

$$\Rightarrow z = \frac{4 \pm \sqrt{12}}{2}$$

$$\Rightarrow z = \frac{4 \pm 2\sqrt{3}}{2}$$

$$\Rightarrow z = 2 \pm \sqrt{3}$$

$$\Rightarrow x^{2} = 2 \pm \sqrt{3}$$

$$\Rightarrow x = \pm \sqrt{2 \pm \sqrt{3}}$$

When $y = 2 \Rightarrow x^{2} + \frac{1}{x^{2}} = 2$

$$\Rightarrow x^{4} + 1 = 2x^{2}$$

$$\Rightarrow x^{4} - 2x^{2} + 1 = 0$$
Let $x^{2} = z \Rightarrow x^{4} = z^{2}$

$$\Rightarrow z^{2} - 2z + 1 = 0$$

$$\Rightarrow (z - 1)^{2} = 0$$

$$\Rightarrow z - 1 = 0$$

$$\Rightarrow z = 1$$

$$\Rightarrow x^{2} = 1$$

$$\Rightarrow x = \pm 1$$
Hence solution set = $\{\pm 1, \pm \sqrt{2 \pm \sqrt{3}}\}$

"I could never have gone far in any science because on the path of every science the lion Mathematics lies in wait for you."

C.S. Lewis