Solutions of equations reducible to the quadratic equations

In this section we will discuss the equations which are not quadratic but can be reduced to quadratic equations.

Type I

Equations of the form $a x^{2 n}+b x^{n}+c=0$

Example 1: Solve the equation

$x^{\frac{1}{2}}-x^{\frac{1}{4}}-6=0$
Let $x^{\frac{1}{4}}=y$
$\Rightarrow x^{\frac{1}{2}}=y^{2}$
Therefore equation (1) becomes,
$y^{2}-y-6=0$
$y^{2}-3 y+2 y-6=0$
$y(y-3)+2(y-3)=0$
$(y-3)(y+2)=0$
$y-3=0$ or $y+2=0$

$$
\begin{aligned}
& y=3 \text { or } y=-2 \\
& \text { When } y=3 \\
& x^{\frac{1}{4}}=3 \\
& x=3^{4} \\
& x=81 \\
& \text { When } y=-2 \\
& x^{\frac{1}{4}}=-2 \\
& x=(-2)^{4} \\
& x=16
\end{aligned}
$$

Hence solution set is $\{16,81\}$

Type II

Equations of the form $(x+a)(x+b)(x+c)(x+d)=k$, a scalar
Where $a+b=c+d$
Example 2: \quad Solve $(x-7)(x-3)(x+1)(x+5)-1680=0$

Solution: $\quad(x-7)(x-3)(x+1)(x+5)-1680=0 \rightarrow$
Rearranging equation (1), we have

$$
\begin{gathered}
{[(x-7)(x+5)][(x-3)(x+1)]-1680=0} \\
\left(x^{2}-2 x-35\right)\left(x^{2}-2 x-3\right)-1680=0
\end{gathered}
$$

Now we let $x^{2}-2 x=y$

$$
\begin{gathered}
(y-35)(y-3)-1680=0 \\
y^{2}-38 y+105-1680=0 \\
y^{2}-38 y-1575=0 \\
y^{2}-38 y-1575=0
\end{gathered}
$$

Using quadratic formula

$$
\begin{gathered}
y=\frac{38 \pm \sqrt{(38)^{2}-4(1)(-1575)}}{2} \\
y=\frac{38 \pm \sqrt{1444+6300}}{2} \\
y=\frac{38 \pm \sqrt{7744}}{2} \\
y=\frac{38 \pm 88}{2} \\
y=\frac{38+88}{2} \text { or } y=\frac{38-88}{2} \\
y=63 \text { or } y=-25
\end{gathered}
$$

When $y=63$
$x^{2}-2 x=63$
$x^{2}-2 x-63=0$
$x^{2}-9 x+7 x-63=0$
$x(x-9)+7(x-9)=0$
$(x-9)(x+7)=0$
$x-9=0$ or $x+7=0$
$x=9$ or $x=-7$
When $y=-25$
$x^{2}-2 x=-25$
$x^{2}-2 x+25=0$

Using quadratic formula

$$
\begin{aligned}
& x=\frac{2 \pm \sqrt{4-4(1)(25)}}{2} \\
& x=\frac{2 \pm \sqrt{4-100}}{2} \\
& x=\frac{2 \pm \sqrt{-96}}{2} \\
& x=\frac{2 \pm 4 \sqrt{6}}{2} \\
& x=1 \pm 2 \sqrt{6}
\end{aligned}
$$

Hence solution set is

$$
\{-7,9,1+2 \sqrt{6} i, 1-2 \sqrt{6} i\}
$$

Type III Exponential Equations

Equations in which variable occurs in exponent, are called exponential equations.
Example 3: Solve the equation $2^{2 x}-3.2^{x+2}+32=0$

Solution:

$$
\begin{aligned}
& 2^{2 x}-3 \cdot 2^{x+2}+32=0 \\
\Rightarrow & 2^{2 x}-3 \cdot 2^{x} \cdot 2^{2}+32=0 \\
\Rightarrow & 2^{2 x}-3 \cdot 2^{x} \cdot 4+32=0
\end{aligned}
$$

$$
\Rightarrow 2^{2 x}-12.2^{x}+32=0
$$

Now let $2^{x}=y$, we have

$$
\begin{aligned}
& \Rightarrow \quad y^{2}-12 y+32=0 \\
& \Rightarrow \quad y^{2}-4 y-8 y+32=0
\end{aligned}
$$

$\Rightarrow y(y-4)-8(y-4)=0$
$\Rightarrow(y-4)(y-8)=0$
$\Rightarrow y-4=0$ or $y-8=0$
$\Rightarrow y=4$ or $y=8$
When $y=4$
$\Rightarrow \quad 2^{x}=4$
$\Rightarrow \quad 2^{x}=2^{2}$
$\Rightarrow \quad x=2$

When $y=8$
$\Rightarrow \quad 2^{x}=8$
$\Rightarrow \quad 2^{x}=2^{3}$
$\Rightarrow \quad x=3$

Hence solution set is $\{2,3\}$

Example 4: Solve the equation $4^{1+x}+4^{1-x}=10$

Solution:

$$
\begin{aligned}
& 4^{1+x}+4^{1-x}=10 \\
\Rightarrow & 4^{1} \cdot 4^{x}+4^{1} \cdot 4^{-x}=10 \\
\Rightarrow & 4 \cdot 4^{x}+\frac{4}{4^{x}}=10
\end{aligned}
$$

Multiplying by 4^{x}
$\Rightarrow 4.4^{x} \cdot 4^{x}+4=10.4^{x}$
$\Rightarrow 4.4^{2 x}+4=10.4^{x}$
Now let $4^{x}=y$, we have
$\Rightarrow 4 y^{2}+4=10 y$
$\Rightarrow 4 y^{2}-10 y+4=0$
On dividing by 2 , we get

$$
\begin{aligned}
& 2 y^{2}-5 y+2=0 \\
\Rightarrow & 2 y^{2}-4 y-y+2=0 \\
\Rightarrow & 2 y(y-2)-1(y-2)=0 \\
\Rightarrow & (y-2)(2 y-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y-2=0 \text { or } 2 y-1=0 \\
& \Rightarrow y=2 \text { or } y=\frac{1}{2}
\end{aligned}
$$

When $y=2$
$\Rightarrow \quad 4^{x}=2$
$\Rightarrow \quad 2^{2 x}=2^{1}$
$\Rightarrow \quad 2 x=1$
$\Rightarrow \quad x=\frac{1}{2}$
When $y=\frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \quad 4^{x}=\frac{1}{2} \\
& \Rightarrow \quad 2^{2 x}=2^{-1} \\
& \Rightarrow \quad 2 x=-1 \\
& \Rightarrow \quad x=-\frac{1}{2}
\end{aligned}
$$

Hence solution set is $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$

Type IV Reciprocal Equations

An equation which remain unchanged when x is replaced by $\frac{1}{x}$.
Example 5: \quad Solve the equation $x^{4}-3 x^{3}+4 x^{2}-3 x+1=0$

Solution:

$$
x^{4}-3 x^{3}+4 x^{2}-3 x+1=0 \rightarrow(1)
$$

Dividing by x^{2}
$\Rightarrow x^{2}-3 x+4-\frac{3}{x}+\frac{1}{x^{2}}=0$

Now re-arranging the terms
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)-3\left(x+\frac{1}{x}\right)+4=0 \rightarrow(2)$
Let $\quad x+\frac{1}{x}=y$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=y^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=y^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=y^{2}-2$
Using these values in equation (2)

$$
\begin{aligned}
& y^{2}-2-3 y+4=0 \\
& \Rightarrow y^{2}-3 y+2=0 \\
& \Rightarrow y^{2}-2 y-y+2=0 \\
& \Rightarrow y^{2}-2 y-y+2=0 \\
& \Rightarrow y(y-2)-1(y-2)=0 \\
& \Rightarrow(y-2)(y-1)=0 \\
& \Rightarrow y-2=0 \text { or } y-1=0 \\
& \Rightarrow y=2 \text { or } y=1
\end{aligned}
$$

When $y=2$

$$
\Rightarrow \quad x+\frac{1}{x}=2
$$

On multiplying by x
$x^{2}+1=2 x$
$\Rightarrow x^{2}-2 x+1=0$
$\Rightarrow(x-1)^{2}=0$
$\Rightarrow x-1=0$
$\Rightarrow \quad x=1$

When $y=1$
$\Rightarrow \quad x+\frac{1}{x}=1$
On multiplying by x
$x^{2}+1=x$
$\Rightarrow x^{2}-x+1=0$
$\Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow \quad x=\frac{1 \pm \sqrt{1-4}}{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{-3}}{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{3} i}{2}$
Hence solution set is $\left\{1, \frac{1 \pm \sqrt{3} i}{2}\right\}$

Exercise 4.2

Solve the following equations.

Q \#1: $\quad x^{4}-6 x^{2}+8=0$
Solution: $x^{4}-6 x^{2}+8=0 \rightarrow(1)$
Let $x^{2}=y \Rightarrow x^{4}=y^{2}$
Putting values in (1)
$y^{2}-6 y+8=0$
$\Rightarrow y^{2}-4 y-2 y+8=0$
$\Rightarrow y(y-4)-2(y-4)=0$
$\Rightarrow(y-4)(y-2)=0$
$\Rightarrow y-4=0$ or $y-2=0$
$\Rightarrow y=4$ or $y=2$

When $y=4 \quad \Rightarrow x^{2}=4$

$$
\Rightarrow x= \pm 2
$$

When $y=2 \quad \Rightarrow x^{2}=2$

$$
\Rightarrow x= \pm \sqrt{2}
$$

Hence solution set $=\{ \pm 2, \pm \sqrt{2}\}$
Q \#2: $\quad x^{-2}-10=3 x^{-1}$
Solution: $x^{-2}-10=3 x^{-1} \rightarrow(1)$

Let $x^{-1}=y \Rightarrow x^{-2}=y^{2}$
Putting values in (1)
$y^{2}-10=3 y$
$y^{2}-3 y-10=0$
$y^{2}-5 y+2 y-10=0$
$y(y-5)+2(y-5)=0$
$(y-5)(y+2)=0$
$y-5=0$ or $y+2=0$
$y=5$ or $y=-2$
When $y=5 \quad \Rightarrow x^{-1}=5$
$\Rightarrow \frac{1}{x}=5 \quad \Rightarrow x=\frac{1}{5}$
When $y=-2 \quad \Rightarrow x^{-1}=-2$
$\Rightarrow \frac{1}{x}=-2 \quad \Rightarrow x=-\frac{1}{2}$
Hence solution set $=\left\{-\frac{1}{2}, \frac{1}{5}\right\}$
Q \#3:

$$
x^{6}-9 x^{3}+8=0
$$

Solution: $x^{6}-9 x^{3}+8=0 \rightarrow(1)$
Let $x^{3}=y \Rightarrow x^{6}=y^{2}$
Putting values in (1)
$y^{2}-9 y+8=0$
$\Rightarrow y^{2}-8 y-y+8=0$
$\Rightarrow y(y-8)-1(y-8)=0$
$\Rightarrow(y-8)(y-1)=0$
$\Rightarrow y-8=0$ or $y-1=0$
$y=8$ or $y=1$
When $\quad y=8 \quad \Rightarrow x^{3}=8$

$$
\begin{aligned}
& \Rightarrow x^{3}=2^{3} \\
& \Rightarrow x^{3}-2^{3}=0 \\
& \Rightarrow(x-2)\left(x^{2}+2 x+4\right)=0 \\
& \quad \Rightarrow x-2=0 \text { or } x^{2}+2 x+4=0
\end{aligned}
$$

$\Rightarrow x=2$
or $\quad x=\frac{-2 \pm \sqrt{4-4(1)(4)}}{2}$

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{4-16}}{2} \\
& x=\frac{-2 \pm \sqrt{-12}}{2} \\
& x=\frac{(-2 \pm 2 \sqrt{3} i)}{2} \\
& x=-1 \pm \sqrt{3} i
\end{aligned}
$$

When $y=1 \Rightarrow x^{3}=1$
$\Rightarrow x^{3}-1=0$
$\Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
$\Rightarrow x-1=0 \quad$ or $\quad x^{2}+x+1=0$
$\Rightarrow x=1$

$$
\begin{array}{rl}
\text { or } x & x=\frac{-1 \pm \sqrt{1-4(1)(1)}}{2} \\
x & =\frac{-1 \pm \sqrt{1-4}}{2} \\
x=\frac{-1 \pm \sqrt{-3}}{2} \\
x=\frac{-1 \pm \sqrt{3} i}{2}
\end{array}
$$

Hence solution set is

$\left\{1,2,-1 \pm \sqrt{3} i, \frac{-1 \pm \sqrt{3} i}{2}\right\}$
Q \# 4: $\quad 8 x^{6}-19 x^{3}-27=0$
Solution: $\quad 8 x^{6}-19 x^{3}-27=0$
Let $x^{3}=y \Rightarrow x^{6}=y^{2}$
$8 y^{2}-19 y-27=0$
$8 y^{2}+8 y-27 y-27=0$
$8 y(y+1)-27(y+1)=0$
$(y+1)(8 y-27)=0$
$y+1=0 \quad$ or $\quad 8 y-27=0$

$$
y=-1 \text { or } y=\frac{27}{8}
$$

When $y=-1$
$\Rightarrow x^{3}=-1$
$\Rightarrow x^{3}+1=0$
$\Rightarrow x^{3}+1^{3}=0$
$\Rightarrow(x+1)\left(x^{2}-x+1\right)=0$
$\Rightarrow(x+1)=0 \quad$ or $\left(x^{2}-x+1\right)=0$
$\Rightarrow x=-1$

$$
\begin{array}{r}
\text { or } x=\frac{1 \pm \sqrt{1-4(1)(1)}}{2} \\
x=\frac{1 \pm \sqrt{1-4}}{2} \\
x=\frac{1 \pm \sqrt{-3}}{2} \\
x=\frac{1 \pm \sqrt{3} i}{2}
\end{array}
$$

When $y=\frac{27}{8} \Rightarrow x^{3}=\frac{27}{8}$
$\Rightarrow x^{3}-\frac{27}{8}=0$
$\Rightarrow x^{3}-\left(\frac{3}{2}\right)^{3}=0$
$\Rightarrow\left(x-\frac{3}{2}\right)\left(x^{2}+\frac{3}{2} x+\frac{9}{4}\right)=0$
$\Rightarrow x-\frac{3}{2}=0 \quad$ or $\quad x^{2}+\frac{3}{2} x+\frac{9}{4}=0$
$\Rightarrow x=\frac{3}{2} \quad$ or $\quad 4 x^{2}+6 x+9=0$
or $\quad x=\frac{-6 \pm \sqrt{36-4(4)(9)}}{8}$
$x=\frac{-6 \pm \sqrt{36-144}}{8}$
$x=\frac{-6 \pm \sqrt{-108}}{8}$
$x=\frac{-6 \pm 6 \sqrt{-3}}{8}$
$x=\frac{6(-1 \pm \sqrt{3} i)}{8}$

$$
x=\frac{3(-1 \pm \sqrt{3} i)}{4}
$$

Hence solution set

$=\left\{-1, \frac{3}{2}, \frac{1 \pm \sqrt{3} i}{2}, \frac{3(-1 \pm \sqrt{3} i)}{4}\right\}$
Q \#5: $\quad x^{\frac{2}{5}}+8=6 x^{\frac{1}{5}}$
Solution: $\quad x^{\frac{2}{5}}+8=6 x^{\frac{1}{5}}$
Let $\quad x^{\frac{1}{5}}=y \Rightarrow x^{\frac{2}{5}}=y^{2}$
$y^{2}+8=6 y$
$y^{2}-6 y+8=0$
$y^{2}-4 y-2 y+8=0$
$y(y-4)-2(y-4)=0$
$(y-4)(y-2)=0$
$(y-4)=0$ or $(y-2)=0$
$y=4$ or $y=2$
When $y=4 \Rightarrow x^{\frac{1}{5}}=4$

$$
\begin{aligned}
& \Rightarrow x=4^{5} \\
& \Rightarrow x=1024
\end{aligned}
$$

When $y=2 \Rightarrow x^{\frac{1}{5}}=2$

$$
\begin{aligned}
& \Rightarrow x=2^{5} \\
& \Rightarrow x=32
\end{aligned}
$$

Hence solution set is $\{32,1024\}$

Q\# 6:

$$
(x+1)(x+2)(x+3)(x+4)=24
$$

Solution:

$$
(x+1)(x+2)(x+3)(x+4)=24 \rightarrow(1)
$$

Re arranging equation (1), we have

$$
\begin{aligned}
& (x+1)(x+4)(x+2)(x+3)=24 \\
& \left(x^{2}+5 x+4\right)\left(x^{2}+5 x+6\right)=24
\end{aligned}
$$

Let $x^{2}+5 x=y$
$\Rightarrow(y+4)(y+6)=24$
$\Rightarrow y^{2}+10 y+24=24$
$\Rightarrow y^{2}+10 y+24-24=0$
$\Rightarrow y^{2}+10 y=0$
$\Rightarrow y(y+10)=0$
$\Rightarrow y=0 \quad$ or $\quad y+10=0$
or $\quad y=-10$
When $y=0 \Rightarrow x^{2}+5 x=0$
$\Rightarrow x(x+5)=0$
$\Rightarrow x=0 \quad$ or $\quad x+5=0$
$\Rightarrow x=0 \quad$ or $\quad x=-5$
When $y=-10 \Rightarrow x^{2}+5 x=-10$
$\Rightarrow x^{2}+5 x+10=0$
$\Rightarrow x=\frac{-5 \pm \sqrt{25-4(1)(10)}}{2}$
$\Rightarrow x=\frac{-5 \pm \sqrt{25-40}}{2}$
$\Rightarrow x=\frac{-5 \pm \sqrt{-15}}{2}$
$\Rightarrow x=\frac{-5 \pm \sqrt{15} i}{2}$

Hence solution set $=\left\{-5,0, \frac{-5 \pm \sqrt{15} i}{2}\right\}$

Q \#7: $(x-1)(x+5)(x+8)(x+2)-880=0$

Solution:

$$
(x-1)(x+5)(x+8)(x+2)-880=0
$$

Re arranging
$(x-1)(x+8)(x+5)(x+2)=880$
$\left(x^{2}+7 x-8\right)\left(x^{2}+7 x+10\right)=880$
Let $x^{2}+7 x=y$
$\Rightarrow(y-8)(y+10)=880$
$\Rightarrow y^{2}+2 y-80=880$
$\Rightarrow y^{2}+2 y-80-880=0$
$\Rightarrow y^{2}+2 y-960=0$
$\Rightarrow y=\frac{-2 \pm \sqrt{4-4(1)(-960)}}{2}$
$\Rightarrow y=\frac{-2 \pm \sqrt{4+3840}}{2}$
$\Rightarrow y=\frac{-2 \pm \sqrt{3844}}{2}$
$\Rightarrow y=\frac{-2 \pm 62}{2}$
$\Rightarrow y=\frac{-2+62}{2} \quad$ or $\quad y=\frac{-2-62}{2}$
$\Rightarrow y=30 \quad$ or $\quad y=-32$
When $y=30 \Rightarrow x^{2}+7 x=30$
$\Rightarrow x^{2}+7 x-30=0$
$\Rightarrow x=\frac{-7 \pm \sqrt{49-4(1)(-30)}}{2}$
$\Rightarrow x=\frac{-7 \pm \sqrt{49+120}}{2}$
$\Rightarrow x=\frac{-7 \pm \sqrt{169}}{2}$
$\Rightarrow x=\frac{-7 \pm 13}{2}$
$\Rightarrow x=3 \quad$ or $\quad x=-10$
When $y=-32 \Rightarrow x^{2}+7 x=-32$
$\Rightarrow x^{2}+7 x+32=0$
$\Rightarrow x=\frac{-7 \pm \sqrt{49-4(1)(32)}}{2}$
$\Rightarrow x=\frac{-7 \pm \sqrt{49-128}}{2}$
$\Rightarrow x=\frac{-7 \pm \sqrt{-79}}{2}$
$\Rightarrow x=\frac{-7 \pm \sqrt{79} i}{2}$
Hence solution set $=\left\{-10,3, \frac{-7 \pm \sqrt{79} i}{2}\right\}$

Q \#8:

$$
(x-5)(x-7)(x+6)(x+4)-504=0
$$

Solution:

$(x-5)(x-7)(x+6)(x+4)-504=0 \rightarrow(1)$
Re arranging equation (1), we have
$(x-5)(x+4)(x-7)(x+6)=504$
$\left(x^{2}-x-20\right)\left(x^{2}-x-42\right)=504$
Let $x^{2}-x=y$
$\Rightarrow(y-20)(y-42)=504$
$\Rightarrow y^{2}-62 y+840=504$
$\Rightarrow y^{2}-62 y+840-504=0$
$\Rightarrow y^{2}-62 y+336=0$
$\Rightarrow y=\frac{62 \pm \sqrt{3844-4(1)(336)}}{2}$
$\Rightarrow y=\frac{62 \pm \sqrt{2500}}{2}$
$\Rightarrow y=\frac{62 \pm 50}{2}$
$\Rightarrow y=\frac{62+50}{2} \quad$ or $\quad y=\frac{62-50}{2}$
$\Rightarrow y=56 \quad$ or $\quad y=6$
When $y=56 \Rightarrow x^{2}-x=56$
$\Rightarrow x^{2}-x-56=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1-4(1)(-56)}}{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{225}}{2}$
$\Rightarrow x=\frac{1 \pm 15}{2}$
$\Rightarrow x=\frac{1+15}{2} \quad$ or $\quad \frac{1-15}{2}$
$\Rightarrow x=8 \quad$ or $\quad x=-7$
When $y=6 \Rightarrow x^{2}-x=6$
$\Rightarrow x^{2}-x-6=0$
$\Rightarrow x^{2}-3 x+2 x-6=0$
$\Rightarrow x(x-3)+2(x-3)=0$
$\Rightarrow(x-3)(x+2)=0$
$\Longrightarrow(x-3)=0 \quad$ or $\quad(x+2)=0$
$\Rightarrow x=3 \quad$ or $\quad x=-2$

Hence solution set $=\{-7,-2,3,8\}$
Q \#9:

$$
(x-1)(x-2)(x-8)(x+5)+360=0
$$

Solution:

$$
\begin{equation*}
(x-1)(x-2)(x-8)(x+5)+360=0 \tag{1}
\end{equation*}
$$

Re arranging equation (1), we have
$(x-1)(x-2)(x-8)(x+5)=-360$
$\left(x^{2}-3 x+2\right)\left(x^{2}-3 x-40\right)=-360$
Let $x^{2}-3 x=y$
$\Rightarrow(y+2)(y-40)=-360$
$\Rightarrow y^{2}-38 y-80=-360$
$\Rightarrow y^{2}-38 y-80+360=0$
$\Rightarrow y^{2}-38 y+280=0$
$\Rightarrow y=\frac{38 \pm \sqrt{1444-4(1)(280)}}{2}$
$\Rightarrow y=\frac{38 \pm \sqrt{324}}{2}$
$\Rightarrow y=\frac{38 \pm 18}{2}$
$\Rightarrow y=\frac{38+18}{2} \quad$ or $\quad y=\frac{38-18}{2}$
$\Rightarrow y=28 \quad$ or $\quad y=10$
When $y=56 \Rightarrow x^{2}-3 x=28$
$\Rightarrow x^{2}-3 x-28=0$
$\Rightarrow x^{2}-7 x+4 x-28=0$
$\Rightarrow x(x-7)+4(x-7)=0$
$\Rightarrow(x-7)(x+4)=0$
$\Rightarrow(x-7)=0 \quad$ or $\quad(x+4)=0$
$\Rightarrow x=7 \quad$ or $\quad x=-4$
When $y=10 \Rightarrow x^{2}-3 x=10$
$\Rightarrow x^{2}-3 x-10=0$
$\Rightarrow x^{2}-5 x+2 x-10=0$
$\Rightarrow x(x-5)+2(x-5)=0$
$\Rightarrow(x-5)(x+2)=0$
$\Rightarrow(x-5)=0 \quad$ or $\quad(x+2)=0$
$\Rightarrow x=5 \quad$ or $\quad x=-2$
Hence solution set $=\{-4,-2,5,7\}$

Q \#10:

$$
(x+1)(2 x+3)(2 x+5)(x+3)=945
$$

Solution:

$$
(x+1)(2 x+3)(2 x+5)(x+3)=945 \rightarrow(1)
$$

Re arranging equation (1), we have
$(x+1) 2\left(x+\frac{3}{2}\right) 2\left(x+\frac{5}{2}\right)(x+3)=945$
$4(x+1)(x+3)\left(x+\frac{3}{2}\right)\left(x+\frac{5}{2}\right)=945$
$4\left(x^{2}+4 x+3\right)\left(x^{2}+4 x+\frac{15}{4}\right)=945$
Let $x^{2}+4 x=y$
$\Rightarrow 4(y+3)\left(y+\frac{15}{4}\right)=945$

$$
\begin{aligned}
& \Rightarrow(y+3)(4 y+15)=945 \\
& \Rightarrow 4 y^{2}+27 y+45=945 \\
& \Rightarrow 4 y^{2}+27 y+45-945=0 \\
& \Rightarrow 4 y^{2}+27 y-900=0 \\
& \Rightarrow y=\frac{-27 \pm \sqrt{729-4(4)(-900)}}{8} \\
& \Rightarrow y=\frac{-27 \pm \sqrt{729+14400}}{8} \\
& \Rightarrow y=\frac{-27 \pm 123}{8} \\
& \Rightarrow y=\frac{-27+123}{8} \quad \text { or } \quad y=\frac{-27-123}{8} \\
& \Rightarrow y=12 \quad \text { or } \quad y=-\frac{75}{4}
\end{aligned}
$$

When $y=48 \Rightarrow x^{2}+4 x=12$
$\Rightarrow x^{2}+4 x-12=0$
$\Rightarrow x^{2}+6 x-2 x-12=0$
$\Rightarrow x^{2}+6 x-2 x-12=0$
$\Rightarrow x(x+6)-2(x+6)=0$
$\Rightarrow(x+6)(x-2)=0$
$\Rightarrow(x+6)=0 \quad$ or $\quad(x-2)=0$
$\Rightarrow \quad x=-6 \quad$ or $\quad x=2$
When $y=-\frac{75}{4} \Rightarrow x^{2}+4 x=-\frac{75}{4}$
$\Rightarrow 4 x^{2}+16 x=-75$
$\Rightarrow 4 x^{2}+16 x+75=0$
$\Rightarrow x=\frac{-16 \pm \sqrt{256-4(4)(75)}}{8}$
$\Rightarrow x=\frac{-16 \pm \sqrt{256-1200}}{8}$
$\Rightarrow x=\frac{-16 \pm \sqrt{-944}}{8}$
$\Rightarrow x=\frac{-16 \pm 4 \sqrt{-59}}{8}$
$\Rightarrow x=\frac{-4 \pm \sqrt{-59}}{2}$
Hence solution set $=\left\{-6,2, \frac{-4 \pm \sqrt{-59}}{2}\right\}$

Q \#11:

$$
(2 x-7)\left(x^{2}-9\right)(2 x+5)-91=0
$$

Solution:

$(2 x-7)\left(x^{2}-9\right)(2 x+5)-91=0 \rightarrow(1)$
$(2 x-7)(x+3)(x-3)(2 x+5)=91$
$2\left(x-\frac{7}{2}\right)(x+3)(x-3) 2\left(x+\frac{5}{2}\right)=91$
$4\left(x-\frac{7}{2}\right)(x+3)(x-3)\left(x+\frac{5}{2}\right)=91$
$4\left(x^{2}-\frac{1}{2} x-\frac{21}{2}\right)\left(x^{2}-\frac{1}{2} x-\frac{15}{2}\right)=91$
$2\left(x^{2}-\frac{1}{2} x-\frac{21}{2}\right) 2\left(x^{2}-\frac{1}{2} x-\frac{15}{2}\right)=91$
$\left(2 x^{2}-x-21\right)\left(2 x^{2}-x-15\right)=91$
Let $2 x^{2}-x=y$
$\Rightarrow(y-21)(y-15)=91$
$\Rightarrow y^{2}-36 y+315=91$
$\Rightarrow y^{2}-36 y+315-91=0$
$\Rightarrow y^{2}-36 y+224=0$
$\Rightarrow y=\frac{36 \pm \sqrt{1296-4(1)(224)}}{2}$
$\Rightarrow y=\frac{36 \pm \sqrt{1296-896}}{2}$
$\Rightarrow y=\frac{36 \pm \sqrt{400}}{2}$
$\Rightarrow y=\frac{36+20}{2} \quad$ or $\quad y=\frac{36-20}{2}$
$\Rightarrow y=28 \quad$ or $\quad y=8$

When $y=28 \Rightarrow 2 x^{2}-x=28$
$\Rightarrow 2 x^{2}-x-28=0$
$\Rightarrow 2 x^{2}-8 x+7 x-28=0$
$\Rightarrow 2 x(x-4)+7(x-4)=0$
$\Rightarrow(x-4)(2 x+7)=0$
$\Rightarrow(x-4)=0 \quad$ or $\quad(2 x+7)=0$
$\Rightarrow \quad x=4 \quad$ or $\quad x=-\frac{7}{2}$
When $y=10 \Rightarrow 2 x^{2}-x=8$
$\Rightarrow 2 x^{2}-x-8=0$
$\Rightarrow y=\frac{1 \pm \sqrt{1-4(2)(-8)}}{4}$
$\Rightarrow y=\frac{1 \pm \sqrt{65}}{4}$
Hence solution set $=\left\{-\frac{7}{2}, 4, \frac{1 \pm \sqrt{65}}{4}\right\}$

Q \#12:

$$
\left(x^{2}+6 x+8\right)\left(x^{2}+14 x+48\right)=105
$$

Solution:

$$
\begin{aligned}
& \left(x^{2}+6 x+8\right)\left(x^{2}+14 x+48\right)=105 \rightarrow(1) \\
& \left(x^{2}+4 x+2 x+8\right)\left(x^{2}+8 x+6 x+48\right)=105
\end{aligned}
$$

$(x(x+4)+2(x+4))(x(x+8)+6(x+8))=105$
$(x+4)(x+2)(x+8)(x+6)=105 \rightarrow(2)$
Re arranging equation (2), we have
$(x+4)(x+6)(x+2)(x+8)=105$
$\left(x^{2}+10 x+24\right)\left(x^{2}+10 x+16\right)=105$
Let $x^{2}+10 x=y$
$\Rightarrow(y+24)(y+16)=105$
$\Rightarrow y^{2}+40 y+384=105$
$\Rightarrow y^{2}+40 y+384-105=0$
$\Rightarrow y^{2}+40 y+279=0$
$\Rightarrow y=\frac{-40 \pm \sqrt{1600-4(1)(279)}}{2}$
$\Rightarrow y=\frac{-40 \pm \sqrt{1600-1116}}{2}$
$\Rightarrow y=\frac{-40 \pm \sqrt{484}}{2}$
$\Rightarrow y=\frac{-40+22}{2} \quad$ or $\quad y=\frac{-40-22}{2}$
$\Rightarrow y=-9 \quad$ or $\quad y=-31$
When $y=-9 \Rightarrow x^{2}+10 x=-9$
$\Rightarrow x^{2}+10 x+9=0$
$\Rightarrow x^{2}+9 x+x+9=0$
$\Rightarrow x(x+9)+1(x+9)=0$
$\Rightarrow(x+9)(x+1)=0$
$\Rightarrow(x+9)=0 \quad$ or $\quad(x+1)=0$
$\Rightarrow \quad x=-9 \quad$ or $\quad x=-1$

When $y=-31 \Rightarrow x^{2}+10 x=-31$
$\Rightarrow x^{2}+10 x+31=0$
$\Rightarrow y=\frac{-10 \pm \sqrt{100-4(1)(31)}}{2}$
$\Rightarrow y=\frac{-10 \pm \sqrt{100-124}}{2}$
$\Rightarrow y=\frac{-10 \pm \sqrt{-24}}{2}$
$\Rightarrow y=-5 \pm \sqrt{-6}$
Hence solution set $=\{-1,-9,-5 \pm \sqrt{-6}\}$

Q \#13:
$\left(x^{2}+6 x-27\right)\left(x^{2}-2 x-35\right)=385$

Solution:

$\left(x^{2}+6 x-27\right)\left(x^{2}-2 x-35\right)=385 \rightarrow$

$$
\begin{align*}
& \left(x^{2}-3 x+9 x-27\right)\left(x^{2}-7 x+5 x-35\right)=385 \\
& (x(x-3)+9(x-3))(x(x-7)+5(x-7))=385 \\
& (x-3)(x+9)(x-7)(x+5)=385 \rightarrow(2) \tag{2}
\end{align*}
$$

Re arranging equation (2), we have
$(x-3)(x+5)(x+9)(x-7)=385$
$\left(x^{2}+2 x-15\right)\left(x^{2}+2 x-63\right)=385$
Let $x^{2}+2 x=y$
$\Rightarrow(y-15)(y-63)=385$
$\Rightarrow y^{2}-78 y+945=385$
$\Rightarrow y^{2}-78 y+945-385=0$
$\Rightarrow y^{2}-78 y+560=0$
$\Rightarrow y^{2}-8 y-70 y+560=0$
$\Rightarrow y(y-8)-70(y-8)=0$
$\Rightarrow(y-8)(y-70)=0$
$\Rightarrow y-8=0 \quad$ or $\quad y-70=0$
$\Rightarrow y=8 \quad$ or $\quad y=70$
When $y=8 \Rightarrow x^{2}+2 x=8$
$\Rightarrow x^{2}+2 x-8=0$
$\Rightarrow x^{2}+4 x-2 x-8=0$
$\Rightarrow x(x+4)-2(x+4)=0$
$\Rightarrow(x+4)(x-2)=0$
$\Rightarrow(x+4)=0 \quad$ or $\quad(x-2)=0$
$\Rightarrow \quad x=-4 \quad$ or $\quad x=2$
When $y=70 \Rightarrow x^{2}+2 x=70$
$\Rightarrow x^{2}+2 x-70=0$
$\Rightarrow y=\frac{-2 \pm \sqrt{4-4(1)(-70)}}{2}$
$\Rightarrow y=\frac{-2 \pm \sqrt{4+280}}{2}$
$\Rightarrow y=\frac{-2 \pm \sqrt{284}}{2}$
$\Rightarrow y=\frac{-2 \pm 2 \sqrt{71}}{2}$
$\Rightarrow y=-1 \pm \sqrt{71}$
Hence solution set $=\{-4,2,-1 \pm \sqrt{71}\}$
Q \#14: $\quad 4.2^{2 x+1}-9.2^{x}+1=0$
Solution: $4.2^{2 x+1}-9.2^{x}+1=0 \rightarrow(1)$
4. $2^{2 x} .2-9.2^{x}+1=0$
8. $2^{2 x}-9.2^{x}+1=0 \rightarrow($

Let $2^{x}=y \Rightarrow 2^{2 x}=y^{2}$
Then equation (2) becomes

$$
\begin{aligned}
& 8 y^{2}-9 y+1=0 \\
\Rightarrow & 8 y^{2}-8 y-y+1=0 \\
\Rightarrow & 8 y(y-1)-1(y-1)=0 \\
\Rightarrow & (y-1)(8 y-1)=0 \\
\Rightarrow & y-1=0 \quad \text { or } \quad 8 y-1=0 \\
\Rightarrow & y=1 \quad \text { or } \quad y=\frac{1}{8}
\end{aligned}
$$

When $y=$

$$
\begin{aligned}
& \Rightarrow \quad 2^{x}=1 \\
& \Rightarrow \quad 2^{x}=2^{0} \\
& \Rightarrow \quad x=0
\end{aligned}
$$

When $y=\frac{1}{8} \quad \Rightarrow \quad 2^{x}=\frac{1}{8}$

$$
\begin{gathered}
\Rightarrow \quad 2^{x}=\frac{1}{2^{3}} \\
\Rightarrow \quad 2^{x}=2^{-3} \\
\Rightarrow \quad x=-3
\end{gathered}
$$

Hence solution set $=\{-3,0\}$
Q \#15: $\quad 2^{x}+2^{-x+6}-20=0$

Solution: $2^{x}+2^{-x+6}-20=0 \rightarrow(1)$
$2^{x}+2^{-x} \cdot 2^{6}-20=0$
$2^{x}+2^{6} \cdot 2^{-x}-20=0$
$2^{x}+64 \cdot \frac{1}{2^{x}}-20=0$
$2^{2 x}+64-20.2^{x}=0 \rightarrow(2)$
Let $2^{x}=y \Rightarrow 2^{2 x}=y^{2}$
Then equation (2) becomes

$$
\begin{aligned}
& y^{2}+64-20 y=0 \\
& \Rightarrow \quad y^{2}-20 y+64=0 \\
& \Rightarrow \quad y^{2}-16 y-4 y+64=0 \\
& \Rightarrow \quad y(y-16)-4(y-16)=0 \\
& \Rightarrow \quad(y-16)(y-4)=0 \\
& \Rightarrow \quad y-16=0 \quad \text { or } \quad y-4=0 \\
& \Rightarrow \quad y=16 \quad \text { or } \quad y=4 \\
& \text { When } y=16 \quad \Rightarrow 2^{x}=16 \\
& \Rightarrow 2^{x}=2^{4} \\
& \Rightarrow x=4 \\
& \text { When } y=4 \quad \Rightarrow \quad 2^{x}=4 \\
& \Rightarrow 2^{x}=2^{2} \\
& \Rightarrow x=2
\end{aligned}
$$

Hence solution set $=\{2,4\}$
Q \#16: $4^{x}-3.2^{x+3}+128=0$
Solution: $4^{x}-3.2^{x+3}+128=0 \rightarrow(1)$
$2^{2 x}-3 \cdot 2^{x} \cdot 2^{3}+128=0$
$2^{2 x}-3 \cdot 2^{3} \cdot 2^{x}+128=0$
$2^{2 x}-24.2^{x}+128=0 \rightarrow(2)$
Let $2^{x}=y \Rightarrow 2^{2 x}=y^{2}$

Then equation (2) becomes

$$
\begin{aligned}
& y^{2}-24 y+128=0 \\
\Rightarrow & y^{2}-16 y-8 y+128=0 \\
\Rightarrow & y(y-16)-8(y-16)=0 \\
\Rightarrow & (y-16)(y-8)=0 \\
\Rightarrow & y-16=0 \quad \text { or } \quad y-8=0 \\
\Rightarrow & y=16 \quad \text { or } \quad y=8
\end{aligned}
$$

When $y=16 \quad \Rightarrow \quad 2^{x}=16$

$$
\begin{aligned}
& \Rightarrow \quad 2^{x}=2^{4} \\
& \Rightarrow \quad x=4
\end{aligned}
$$

When $y=8 \quad \Rightarrow \quad 2^{x}=8$

$$
\begin{gathered}
\Rightarrow \quad 2^{x}=2^{3} \\
\Rightarrow \quad x=3
\end{gathered}
$$

Hence solution set $=\{3,4\}$
Q \#17: $3^{2 x-1}-12.3^{x}+81=0$
Solution: $\quad 3^{2 x-1}-12.3^{x}+81=0 \rightarrow(1)$
$3^{2 x} \cdot 3^{-1}-12 \cdot 3^{x}+81=0$
$\frac{3^{2 x}}{3}-12.3^{x}+81=0$
$3^{2 x}-36.3^{x}+243=0 \rightarrow(2)$
Let $3^{x}=y \Rightarrow 3^{2 x}=y^{2}$
Then equation (2) becomes

$$
\begin{aligned}
& y^{2}-36 y+243=0 \\
\Rightarrow & y^{2}-27 y-9 y+243=0 \\
\Rightarrow & y(y-27)-9(y-27)=0 \\
\Rightarrow & (y-27)(y-9)=0 \\
\Rightarrow & y-27=0 \quad \text { or } \quad y-9=0 \\
\Rightarrow & y=27 \quad \text { or } \quad y=9
\end{aligned}
$$

When $y=27 \Rightarrow 3^{x}=27$

$$
\begin{aligned}
& \Rightarrow \quad 3^{x}=3^{3} \\
& \Rightarrow \quad x=3
\end{aligned}
$$

When $y=9 \quad \Rightarrow \quad 3^{x}=9$

$$
\begin{gathered}
\Rightarrow \quad 3^{x}=3^{2} \\
\Rightarrow \quad x=2
\end{gathered}
$$

Hence solution set $=\{2,3\}$
Q \#18: $\left(x+\frac{1}{x}\right)^{2}-3\left(x+\frac{1}{x}\right)-4=0$

Solution:

$$
\begin{equation*}
\left(x+\frac{1}{x}\right)^{2}-3\left(x+\frac{1}{x}\right)-4=0 \rightarrow \tag{1}
\end{equation*}
$$

Let $\left(x+\frac{1}{x}\right)=y \quad \Rightarrow\left(x+\frac{1}{x}\right)^{2}=y^{2}$
Using these values in (1), we have

$$
\begin{aligned}
& y^{2}-3 y-4=0 \\
& \Rightarrow y^{2}-4 y+y-4=0 \\
& \Rightarrow y(y-4)+1(y-4)=0 \\
& \Rightarrow(y-4)(y+1)=0 \\
& \Rightarrow y-4=0 \quad \text { or } \quad y+1=0 \\
& \Rightarrow y=4 \quad y=-1 \\
& \text { When } \quad y=4 \quad \Rightarrow \quad x+\frac{1}{x}=4 \\
& \Rightarrow x^{2}+1=4 x \\
& \Rightarrow x^{2}-4 x+1=0 \\
& \Rightarrow x=\frac{4 \pm \sqrt{16-4(1)(1)}}{2} \\
& \Rightarrow x=\frac{4 \pm \sqrt{16-4}}{2} \\
& \Rightarrow x=\frac{4 \pm \sqrt{12}}{2}
\end{aligned}
$$

$\Rightarrow x=\frac{4 \pm 2 \sqrt{3}}{2}$
$\Rightarrow x=2 \pm \sqrt{3}$
When $y=-1 \Rightarrow x+\frac{1}{x}=-1$
$\Rightarrow \quad x^{2}+1=-x$
$\Rightarrow \quad x^{2}+x+1=0$
$\Rightarrow x=\frac{-1 \pm \sqrt{1-4(1)(1)}}{2}$
$\Rightarrow x=\frac{-1 \pm \sqrt{1-4}}{2}$
$\Rightarrow x=\frac{-1 \pm \sqrt{-3}}{2}$
$\Rightarrow x=\frac{-1 \pm \sqrt{3} i}{2}$
Hence solution set $=\left\{2 \pm \sqrt{3}, \frac{-1 \pm \sqrt{3} i}{2}\right\}$
Q \#19: $x^{2}+x-4+\frac{1}{x}+\frac{1}{x^{2}}=0$
Solution: $x^{2}+x-4+\frac{1}{x}+\frac{1}{x^{2}}=\mathbf{0} \rightarrow(\mathbf{1})$
Re-arranging (1), we have
$\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)-4=\mathbf{0} \rightarrow(2)$
Let $\left(x+\frac{1}{x}\right)=y \quad \Rightarrow \quad\left(x+\frac{1}{x}\right)^{2}=y^{2}$
Using these values in (2), we have

$$
\begin{aligned}
& x^{2}+\frac{1}{x^{2}}+2=y^{2} \\
\Rightarrow & x^{2}+\frac{1}{x^{2}}=y^{2}-2 \\
\Rightarrow & y^{2}-2+y-4=0 \\
\Rightarrow & y^{2}+y-6=0 \\
\Rightarrow & y^{2}-2 y+3 y-6=0 \\
\Rightarrow & y(y-2)+3(y-2)=0
\end{aligned}
$$

$\Rightarrow \quad(y-2)(y+3)=0$
$\Rightarrow \quad y-2=0 \quad$ or $\quad y+3=0$
$\Rightarrow \quad y=2 \quad$ or $\quad y=-3$
When $y=2 \quad \Rightarrow \quad x+\frac{1}{x}=2$
$\Rightarrow \quad x^{2}+1=2 x$
$\Rightarrow x^{2}-2 x+1=0$
$\Rightarrow x^{2}-x-x+1=0$
$\Rightarrow x(x-1)-1(x-1)=0$
$\Rightarrow(x-1)(x-1)=0$
$\Rightarrow(x-1)=0 \quad$ or $\quad(x-1)=0$
$\Rightarrow \quad x=1 \quad$ or $\quad x=1$
When $y=3 \Rightarrow x+\frac{1}{x}=-3$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+1=-3 x \\
& \Rightarrow \quad x^{2}+3 x+1=0 \\
& \Rightarrow x=\frac{-3 \pm \sqrt{9-4(1)(1)}}{2} \\
& \Rightarrow x=\frac{-3 \pm \sqrt{5}}{2}
\end{aligned}
$$

Hence solution set $=\left\{1, \frac{-3 \pm \sqrt{5}}{2}\right\}$
Q \#20: $\left(x-\frac{1}{x}\right)^{2}+3\left(x+\frac{1}{x}\right)=0$
Solution: $\left(x-\frac{1}{x}\right)^{2}+3\left(x+\frac{1}{x}\right)=0 \rightarrow(1)$
Let $\left(x+\frac{1}{x}\right)=y \quad \Rightarrow \quad\left(x+\frac{1}{x}\right)^{2}=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}+2=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}=y^{2}-2$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}-2=y^{2}-2-2$
$\Rightarrow\left(x-\frac{1}{x}\right)^{2}=y^{2}-4$
Using these values in (1), we have

$$
\begin{aligned}
& y^{2}-4+3 y=0 \\
\Rightarrow & y^{2}+3 y-4=0 \\
\Rightarrow & y^{2}+4 y-y-4=0 \\
\Rightarrow & y(y+4)-1(y+4)=0 \\
\Rightarrow & (y+4)(y-1)=0 \\
\Rightarrow & y+4=0 \quad \text { or } \quad y-1=0 \\
\Rightarrow & y=-4 \quad \text { or } \quad y=1
\end{aligned}
$$

When $y=-4$
$\Rightarrow \quad x+\frac{1}{x}=-4$
$\Rightarrow x^{2}+1=-4 x$
$\Rightarrow x^{2}+4 x+1=0$
$\Rightarrow x=\frac{-4 \pm \sqrt{16-4(1)(1)}}{2}$
$\Rightarrow x=\frac{-4 \pm \sqrt{12}}{2}$
$\Rightarrow x=\frac{-4 \pm 2 \sqrt{3}}{2}$
$\Rightarrow x=-2 \pm \sqrt{3}$
When $y=1$
$\Rightarrow \quad x+\frac{1}{x}=1$
$\Rightarrow x^{2}+1=x$
$\Rightarrow \quad x^{2}-x+1=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1-4(1)(1)}}{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{-3}}{2}$
$\Rightarrow x=\frac{1 \pm \sqrt{3} i}{2}$
Hence solution set $=\left\{-2 \pm \sqrt{3}, \frac{1 \pm \sqrt{3} i}{2}\right\}$
Q \#21: $2 x^{4}-3 x^{3}-x^{2}-3 x+2=0$

Solution:

$$
2 x^{4}-3 x^{3}-x^{2}-3 x+2=0 \rightarrow(1)
$$

Dividing equation (1) by x^{2}
$2 x^{2}-3 x-1-\frac{3}{x}+\frac{2}{x^{2}}=0$
$2\left(x^{2}+\frac{1}{x^{2}}\right)-3\left(x+\frac{1}{x}\right)-1=0$
Let $\left(x+\frac{1}{x}\right)=y \quad \Rightarrow \quad\left(x+\frac{1}{x}\right)^{2}=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}+2=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}=y^{2}-2$
Using these values in (2), we have

$$
\begin{aligned}
& 2\left(y^{2}-2\right)-3 y-1=0 \\
\Rightarrow & 2 y^{2}-4-3 y-1=0 \\
\Rightarrow & 2 y^{2}-3 y-5=0 \\
\Rightarrow & 2 y^{2}-5 y+2 y-5=0 \\
\Rightarrow & y(2 y-5)+1(2 y-5)=0 \\
\Rightarrow & (2 y-5)(y+1)=0 \\
\Rightarrow & 2 y-5=0 \quad \text { or } \quad y+1=0 \\
\Rightarrow & y=\frac{5}{2} \quad \text { or } \quad y=-1
\end{aligned}
$$

When $y=\frac{5}{2} \quad \Rightarrow \quad x+\frac{1}{x}=\frac{5}{2}$
$\Rightarrow x^{2}+1=\frac{5}{2} x$
$\Rightarrow 2 x^{2}+2=5 x$
$\Rightarrow 2 x^{2}-5 x+2=0$
$\Rightarrow 2 x^{2}-4 x-x+2=0$
$\Rightarrow 2 x(x-2)-1(x-2)=0$
$\Rightarrow(x-2)(2 x-1)=0$
$\Rightarrow x-2=0 \quad$ or $\quad 2 x-1=0$
$\Rightarrow \quad x=2 \quad$ or $\quad x=\frac{1}{2}$
When $y=-1 \Rightarrow x+\frac{1}{x}=-1$
$\Rightarrow \quad x^{2}+1=-x$
$\Rightarrow \quad x^{2}+x+1=0$
$\Rightarrow x=\frac{-1 \pm \sqrt{1-4(1)(1)}}{2}$
$\Rightarrow x=\frac{-1 \pm \sqrt{-3}}{2}$
$\Rightarrow x=\frac{-1 \pm \sqrt{3} i}{2}$
Hence solution set $=\left\{\frac{1}{2}, \mathbf{2}, \frac{-1 \pm \sqrt{3} i}{2}\right\}$
Q \#22: $2 x^{4}+3 x^{3}-4 x^{2}-3 x+2=0$
Solution: $2 x^{4}+3 x^{3}-4 x^{2}-3 x+2=0$
Dividing by x^{2}
$2 x^{2}+3 x-4-\frac{3}{x}+\frac{2}{x^{2}}=0$
$2\left(x^{2}+\frac{1}{x^{2}}\right)+3\left(x-\frac{1}{x}\right)-4=0$
Let $\left(x-\frac{1}{x}\right)=y \quad \Rightarrow \quad\left(x-\frac{1}{x}\right)^{2}=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}-2=y^{2}$
$\Rightarrow \quad x^{2}+\frac{1}{x^{2}}=y^{2}+2$
$\Rightarrow 2\left(y^{2}+2\right)+3 y-4=0$
$\Rightarrow \quad 2 y^{2}+4+3 y-4=0$
$\Rightarrow 2 y^{2}+3 y=0$
$\Rightarrow \quad y(2 y+3)=0$
$\Rightarrow \quad y=0 \quad$ or $\quad 2 y+3=0$
$\Rightarrow \quad y=0 \quad$ or $\quad y=-\frac{3}{2}$
When $y=0 \quad \Rightarrow \quad x-\frac{1}{x}=0$
$\Rightarrow \quad x^{2}-1=0$
$\Rightarrow x^{2}=1$
$\Rightarrow \quad x= \pm 1$
When $y=-\frac{3}{2} \Rightarrow x-\frac{1}{x}=-\frac{3}{2}$
$\Rightarrow 2 x^{2}-2=-3 x$
$\Rightarrow \quad 2 x^{2}+3 x-2=0$
$\Rightarrow \quad 2 x^{2}+4 x-x-2=$
$\Rightarrow \quad 2 x(x+2)-1(x+2)=0$
$\Rightarrow \quad(x+2)(2 x-1)=0$
$\Rightarrow \quad x+2=0 \quad$ or $\quad 2 x-1=0$
$\Rightarrow \quad x=-2 \quad$ or $\quad x=\frac{1}{2}$
Hence solution set $=\left\{\frac{1}{2},-2, \pm 1\right\}$
Q \#23: $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$
Solution: $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$
Dividing by x^{2}
$6 x^{2}-35 x+62-\frac{35}{x}+\frac{6}{x^{2}}=0$
$6\left(x^{2}+\frac{1}{x^{2}}\right)-35\left(x+\frac{1}{x}\right)+62=0$
Let $\left(x+\frac{1}{x}\right)=y \quad \Rightarrow \quad\left(x+\frac{1}{x}\right)^{2}=y^{2}$

$$
\Rightarrow \quad x^{2}+\frac{1}{x^{2}}+2=y^{2}
$$

$$
\Rightarrow \quad x^{2}+\frac{1}{x^{2}}=y^{2}-2
$$

$$
\begin{aligned}
& \Rightarrow 6\left(y^{2}-2\right)-35 y+62=0 \\
& \Rightarrow 6 y^{2}-12-35 y+62=0 \\
& \Rightarrow 6 y^{2}-35 y+50=0 \\
& \Rightarrow \quad y=\frac{35 \pm \sqrt{1225-4(6)(50)}}{12} \\
& \Rightarrow \quad y=\frac{35 \pm \sqrt{1225-1200}}{12} \\
& \Rightarrow y=\frac{35 \pm \sqrt{25}}{12} \\
& \Rightarrow \quad y=\frac{35 \pm 5}{12} \\
& \Rightarrow \quad y=\frac{35+5}{12} \quad \text { or } \quad y=\frac{35-5}{12} \\
& \Rightarrow \quad y=\frac{10}{3} \quad \text { or } \quad y=\frac{5}{2} \\
& \text { When } y=\frac{5}{2} \quad \Rightarrow \quad x+\frac{1}{x}=\frac{5}{2} \\
& \Rightarrow x^{2}+1=\frac{5}{2} x \\
& \Rightarrow 2 x^{2}+2=5 x \\
& \Rightarrow 2 x^{2}-5 x+2=0 \\
& \Rightarrow 2 x^{2}-4 x-x+2=0 \\
& \Rightarrow 2 x(x-2)-1(x-2)=0 \\
& \Rightarrow(x-2)(2 x-1)=0 \\
& \Rightarrow x-2=0 \quad \text { or } \quad 2 x-1 \\
& \Rightarrow \quad x=2 \quad \text { or } \quad x=\frac{1}{2}
\end{aligned}
$$

When $y=\frac{10}{3} \Rightarrow x+\frac{1}{x}=\frac{10}{3}$
$\Rightarrow \quad 3 x^{2}+3=10 x$
$\Rightarrow \quad 3 x^{2}-10 x+3=0$
$\Rightarrow \quad 3 x^{2}-9 x-x+3=$
$\Rightarrow \quad 3 x(x-3)-1(x-3)=0$
$\Rightarrow \quad(x-3)(3 x-1)=0$

$$
\begin{aligned}
& \Rightarrow \quad x-3=0 \quad \text { or } \quad 3 x-1=0 \\
& \Rightarrow \quad x=3 \quad \text { or } \quad x=\frac{1}{3}
\end{aligned}
$$

Hence solution set $=\left\{\frac{1}{2}, \mathbf{2}, 3, \frac{1}{3}\right\}$
Q \#24: $x^{4}-6 x^{2}+10-\frac{6}{x^{2}}+\frac{1}{x^{4}}=0$

Solution:

$$
\begin{equation*}
x^{4}-6 x^{2}+10-\frac{6}{x^{2}}+\frac{1}{x^{4}}=0 \rightarrow \tag{1}
\end{equation*}
$$

Re-arranging (1), we have

$$
\begin{equation*}
\left(x^{4}+\frac{1}{x^{4}}\right)-6\left(x^{2}+\frac{1}{x^{2}}\right)+10=0 \rightarrow \tag{2}
\end{equation*}
$$

Let $\left(x^{2}+\frac{1}{x^{2}}\right)=y \Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=y^{2}$

$$
\begin{aligned}
& \Rightarrow \quad x^{4}+\frac{1}{x^{4}}+2=y^{2} \\
& \Rightarrow \quad x^{4}+\frac{1}{x^{4}}=y^{2}-2
\end{aligned}
$$

Using these values in (2), we have

$$
\begin{aligned}
& \quad\left(y^{2}-2\right)-6 y+10=0 \\
& \Rightarrow \quad y^{2}-2-6 y+10=0 \\
& \Rightarrow \quad y^{2}-6 y+8=0 \\
& \Rightarrow \quad y^{2}-4 y-2 y+8=0 \\
& \Rightarrow \quad y(y-4)-2(y-4)=0 \\
& \Rightarrow \quad(y-4)(y-2)=0 \\
& \Rightarrow \quad y-4=0 \quad \text { or } \quad y-2=0 \\
& \Rightarrow \quad y=4 \quad \text { or } y=2 \\
& \text { When } y=4 \quad \Rightarrow \quad x^{2}+\frac{1}{x^{2}}=4 \\
& \quad \Rightarrow \quad x^{4}+1=4 x^{2} \\
& \quad \Rightarrow \quad x^{4}-4 x^{2}+1=0 \\
& \text { Let } x^{2}=z \quad \Rightarrow \quad x^{4}=z^{2}
\end{aligned}
$$

$\Rightarrow \quad z^{2}-4 z+1=0$
$\Rightarrow z=\frac{4 \pm \sqrt{16-4}}{2}$
$\Rightarrow z=\frac{4 \pm \sqrt{12}}{2}$
$\Rightarrow z=\frac{4 \pm 2 \sqrt{3}}{2}$
$\Rightarrow z=2 \pm \sqrt{3}$
$\Rightarrow x^{2}=2 \pm \sqrt{3}$
$\Rightarrow x= \pm \sqrt{2 \pm \sqrt{3}}$
When $y=2 \quad \Rightarrow \quad x^{2}+\frac{1}{x^{2}}=2$
$\Rightarrow \quad x^{4}+1=2 x^{2}$
$\Rightarrow x^{4}-2 x^{2}+1=0$
Let $x^{2}=z \quad \Rightarrow \quad x^{4}=z^{2}$
$\Rightarrow \quad z^{2}-2 z+1=0$
$\Rightarrow(z-1)^{2}=0$
$\Rightarrow \quad z-1=0$
$\Rightarrow \quad z=1$
$\Rightarrow x^{2}=1$
$\Rightarrow \quad x= \pm 1$
Hence solution set $=\{ \pm 1, \pm \sqrt{2 \pm \sqrt{3}}\}$
"I could never have gone far in any science because on the path of every science the lion Mathematics lies in wait for you."
C.S. Lewis

