MGQs – Gk # 2: F.Sc Part 1

TEXT BOOK OF ALGEBRA AND TRIGONOMETRY CLASS XI Available online at http://www.mathcity.org, Version: 1.0.0

SETS, FUNGTIONS AND GROUPS

- 1) If $x \in L \cup M$, then
 - A) $x \notin L$ or $x \notin M$

MathCity.org

Merging man and maths

- B) $x \notin L \text{ or } x \in M$
- C) $x \in L \text{ or } x \notin M$
- D) $x \in L \text{ or } x \in M$
- 2) Let $A = \{a, b, c, d\} B = \{b, c, d\}$ then $A \cap B =$
 - A) $\{b, c, d\}$
 - B) $\{a, b, c\}$
 - C) $\{a, b, c, d\}$
 - D) $\{a, c, d\}$

3) If $x \in B' = U - B$ then

- A) $x \in B$ and $x \in U$ B) $x \notin B$ and $x \in U$ C) $x \notin B$ and $x \notin U$ D) $x \in B$ and $x \notin U$
- 4) Let $A = (1, 2, 3, 4, 5 \dots)$, $B = \{2, 4, 6, 8 \dots\}$ The $A \cup B$ is
 - A) {1, 2, 3}
 B) {1, 2, 3, 4, 5,}
 C) {2, 4, 6, 8,}
 D) {6, 7, 8, 8,}
 - D) {6, 7, 8, 9}
- 5) $L \cup M = L \cap M$ then L is equal to
 - A) M
 - B) L
 - C) **(**
 - D) M'
- 6) Which of the following sets has only one subset.
 A) {Y, Z}
 B) {Y}
 C) {0}
 - D) { }

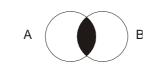
7) $A \subseteq B$ then

- A) $A \cap B = A$ B) $A \cap B' = A$
- C) A B = A
- D) A B = B
- 8) If $x \in L M$ then
 - A) $x \in L$ and $x \in M$
 - B) $x \in L$ and $x \notin M$
 - C) $x \notin L$ and $x \in M$
 - D) $x \notin L$ and $x \notin M$

- 9) Total number of subsets that can be formed from the set {x, y, z} is
 - A) 1
 - B) 2
 - C) 5
 - D) 8
- 10) If $x \in L \cap M$ then
 - A) $x \in L$ and $x \in M$
 - B) $x \in L$ and $x \notin M$
 - C) $x \notin L$ and $x \in M$
 - D) $x \notin L$ and $x \notin M$
- 11) Let A and B be any none empty sets then $A \cup (A \cap B)$ is
 - A) $B \cap A$
 - B) A
 - C) B
 - D) $A \cup B$
- 12) Let A, B, C be any sets. Let $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then B set is equal to
 - A) $A \cup B$
 - B) $A \cap B$
 - C) A
 - D) C
- 13) If S contains n elements then power set of S, P (s) contains elements. Which are?
 - A) 2ⁿ
 - B) 4ⁿ
 - C) 5ⁿ
 - D) 6ⁿ
- 14) A set is a collection of objects which are
 - A) well defined
 - B) well defined and distinct
 - C) identical
 - D) not defined
- 15) The power set of a set S containing six numbers is the set whose elements are
 - A) three subsets of S
 - B) two subsets of S
 - C) five subsets of S
 - D) all possible subsets of S

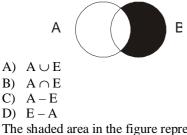
16) A is a subset of B if

- A) Every element of $A \in B$
- B) Some element of $A \in B$
- C) Every element of $A \notin B$
- D) Every element of $B \in A$
- 17) The complement of set A relative to universal set U is the set
 - A) $\{x/x \in U \text{ and } x \in A\}$
 - B) $\{x/x \notin U \text{ and } x \notin A\}$
 - C) $\{x/x \notin U \text{ and } x \in A\}$
 - D) $\{x/x \in U \text{ and } x \notin A\}$
- 18) If $A \setminus B = A$ then
 - A) $A \cap B = A$
 - B) $A \cap B = A'$
 - C) $A \cap B = B$
 - D) $A \cap B = \phi$
- 19) If B A = B then
 - A) $A \cap B = \phi$
 - B) $A \cap B = A$
 - C) $A \cap B \neq \phi$
 - D) $A \cap B = B$
- 20) The union of the sets A and B is defined as
 - A) $A \cup B = \{x/x \in A \text{ or } x \in B\}$ B) $A \cup B = \{x/x \notin A \text{ or } x \in B\}$ C) $A \cup B = \{x/x \notin A \text{ or } x \notin B\}$ D) $A \cup B = \{x/x \in A \text{ or } x \notin B\}$
- 21) If Q, R are any sets then Q R =
 - A) $Q (Q \cap R)$ B) $Q \cap (Q - R)$ C) $Q + (Q \cap R)$ D) $Q - (Q \cup R)$
- 22) If A and B are any two sets and A' B' are Their compliments relative to the universal set U, the $(A \cup B)' =$
 - A) $A' \cup B'$
 - B) A∪B
 - C) A'∩B'
- D) $A \cap B$ Answer: C
- 23) Difference between two sets $A \setminus B$ is defined as
 - A) $\{x/x \in A \land x \in B\}$ B) $\{x/x \in A \land x \notin B\}$
 - C) $\{x/x \notin A \land x \in B\}$
 - D) $\{x/x \notin A \land x \notin B\}$
- 24) For union Associative Law is


- A) $(A \cup B) \cup C = A \cup (B \cup C)$
- B) $(A \cup B) \cup C = A \cap (B \cap C)$
- C) $(A \cap B) \cup C = A \cup (B \cup C)$
- D) $(A \cup B) \cup C = A (B C)$
- 25) The set of odd numbers between 1 and 9 is
 - A) $\{1, 3, 5, 7\}$
 - B) $\{3, 5, 7, 9\}$
 - C) $\{1, 3, 5, 7, 9\}$
 - D) $\{3, 5, 7\}$
- 26) The set of rational numbers between 5 and 9 is
 - A) Finite
 - B) Infinite
 - C) $\{5, 6, 7, 8, 9\}$
 - D) {6, 7, 8}
- 27) If x is a set having 6 elements then the numbers in P(x) is:
 - A) 6²
 - B) 6
 - C) 6(2)
 - D) 2^{6}
- 28) If $B \subseteq A$ then A' is subset of
 - A) A
 - B) B
 - C) B'
 - D) $A \cup B$
- 29) The set $A \cap (A \cup B) =$
 - A) A
 - B) B
 - C) $A \cup B$
 - D) None of these
- 30) The set $A \cup (A \cap B) =$
 - A) B
 - B) A
 - C) $A \cup B$
 - D) None of these
- 31) If A and B are any two sets and A', B' are their complements relative to the universal set U, then $(A \cap B)' =$
 - A) $A' \cup B'$
 - B) $A' \cap B'$
 - C) $A' \cup B$
 - D) $A \cap B'$
- 32) If $A \subseteq U$ then A' relative to U is equal to
 - A) A B
 - B) B A
 - C) U A
 - D) A U

33) The shaded area in the figure represents the set

А A) $A \cap E \cap C$


В

- B) $A \cup E \cup C$
- C) $A \cup E \cap C$
- D) $A \cap E \cup C$

The shaded area in the figure represents the set:

- A) $A \cup E$
- B) $A \cap E$
- C) A E $D) \quad E-A$
- 35) The shade area in the figure represents the set:

- Well defined collection of distinct objects is called 37)
 - а_ A) a function
 - B) a set

 - C) a real number
 - D) none
- 38) A diagram which represents a set is called ____ diagram.
 - A) Venn's
 - B) Argand
 - C) Plane
 - D) None
- 39) If a set A is the subset of B & A \neq B, then A of B.
 - A) Proper subset

- B) Improper subset
- C) None D) None
- 40) Every set is the _____ ____ of itself.
 - A) proper subset
 - B) improper subset
 - C) super set
 - D) none
- 41) The set of real Nos. (points) belonging to interval (a, b) is
 - A) finite set
 - B) empty set
 - C) singleton set
 - D) infinite set
- 42) The power set of an empty set is _____
 - A) null set
 - B) singleton set
 - C) super set
 - D) none

Answer: B
43)
$$X' =$$

- A) A
- B) A
- C) --
- D) X
- 44) Two set A & B are called overlapping if $A \cap B =$
 - A) $A \subseteq B, B \subseteq A$ B) $A \subset B$ C) $A \subseteq B, B \subseteq A$ D) None
- 45) Which one is always true.
 - A) $A \subseteq B$
 - B) $A \cap B \subseteq B$
 - C) $B \subseteq A$
 - D) none
- 46) Every recurring non terminating decimal represents
 - A) Q B) Q[/] C) R D) none
- 47) If X & Y are two sets & n(X) = 18, n(Y) = 24, n(XUY) = 40 then n(X I Y) =
 - A) 3
 - B) 4
 - C) 6
 - D) 2 E) 1

36)

34)

- The shaded area in the figure represents the set:

3

4

- 48) A real number is always
 - A) a natural no
 - B) positive integer
 - C) Rational number
 - D) complex number

Groups

1) The set N of natural numbers is closed with respect to A) Addition B) Multiplication

C) Both A & B

С

D) Subtraction

Answer:

- The set Z of integers is closed with respect to 2)
 - A) Addition
 - B) Multiplication
 - C) Subtraction
 - D) A, B and C are correct
- 3) The set $R - \{0\}$ of real numbers is closed with respect to
 - A) Addition
 - B) Multiplication
 - C) Division
 - D) A,B & C are correct
- 4) In the set $S = \{0, 1\}$ the binary operation defined is
 - A) –
 - B) +
 - C) ×
 - D) ÷
- The set $S = \{-1, 1, -i, i\}$ is a group with respect to 5) the binary operation
 - A) ÷
 - B) ×
 - C) +
 - D) –
- The set $S = \{1, \omega, \omega^2\}$ is a group with respect to the 6) binary operation
 - A) ×
 - B) ÷ C) +

 - D) –

- 7) If set is a group with respect to addition then the number of identity elements in S is
 - A) Unique
 - B) Two
 - C) Three
 - D) None
- 8) If set S is a group with respect to addition then each element of S has inverse.
 - A) Unique
 - B) Two
 - C) Three
 - D) None
- 9) $R - \{0\}$ is a group w.r.t the binary operation
 - A) +
 - B) ×
 - C) ÷
 - D) –

10) $Q - \{0\}$ is a group w.r.t the binary operation

- A) +
 - B) ×
 - C) ÷
- D) –

11)R is a group w.r.t the binary operation.

- A) +
- B) ×
- C) ÷
- D) –

12) Q is a group w.r.t the binary operation.

- A) +
 - B) ×
- C) ÷
- D) –

13) $S = \{1, -1\}$ is a group w.r.t the binary operation.

- C) -
- 14) $S = \{0\}$ is a trivial group under
 - - B) ×
 - C) ÷
 - D) –
- $S = \{1\}$ is trivial group under 15)
 - A) +
 - B) ×
 - C) –
 - D) division
- A non empty set S which is closed with a binary 16)operation '*' is called group if

- A) + B) ×
- - D) none of these

A) +

- A) The binary operation is associative
- B) There exists identity element with respect to the binary operation.
- C) There exist a unique inverse of each element of S with respect to the binary operation.
- D) All A, B & C hold. rer: D

Answer:

- 17) In a proposition if $p \rightarrow q$ then $q \rightarrow p$ is called
 - A) inverse of $p \rightarrow q$
 - B) converse of $p \rightarrow q$
 - C) contrapasitive $p \rightarrow q$
 - D) none
- 18) Truth table containing all false values is called
 - A) Tautology
 - B) Selfcontridiction
 - C) Equivallent
 - D) None
- 19) Truth table containing all true values is called
 - A) Tautology
 - B) Selfcontridiction
 - C) Equivallent
 - D) None

- 20) In a proposition if $p \rightarrow q$ then contrapasitive of this proposition is denoted by
 - $\begin{array}{ll} A) & q \rightarrow p \\ B) & \sim q \rightarrow p \end{array}$
 - $C) \quad \sim q \rightarrow \sim p$
 - D) None
- 21) In a proposition if $p \rightarrow q$ then inverse of this proposition is denoted by
 - $\begin{array}{ll} A) & q \rightarrow p \\ B) & \sim q \rightarrow p \\ C) & \sim p \rightarrow \sim q \\ \hline \end{array}$

D) None

- 22) In a proposition if $p \rightarrow q$ then converse of this proposition is denoted by
 - A) $q \rightarrow p$
 - B) $\sim q \rightarrow p$
 - $C) ~~ \sim q ~ \rightarrow ~ \sim p$
 - D) None

Written by NAUMAN IDREES (nomi255@yahoo.com) FSc (Session: 2007-09) ICMS College System Hayatabad, Peshawar