## mathcity.org

## MGQs - Gk # 14: F.Sc Part 1

Merging man and maths

TEXT BOOK OF ALGEBRA AND TRIGONOMETRY CLASS XI Available online at http://www.mathcity.org, Version: 1.0.0

## Choose the correct answer.

1. The solution of the equation 
$$\sin x = \frac{1}{2}$$
 is

(a) 
$$\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$$

(a) 
$$\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$$
 (b)  $\left\{\frac{\pi}{4} + 2n\pi\right\} \cup \left\{\frac{5\pi}{4} + 2n\pi\right\}, n \in \mathbb{Z}$ 

(c) 
$$\left\{\frac{\pi}{6} + 2n\pi\right\} \cup \left\{\frac{5\pi}{6} + 2n\pi\right\}, n \in \mathbb{Z}$$

2. The solution of the equation 
$$3 \tan^2 x = 1$$
 is

(a) 
$$\left\{\frac{\pi}{6} + n\pi\right\} \cup \left\{\frac{5\pi}{6} + n\pi\right\}, n \in \mathbb{Z}$$

(b) 
$$\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$$

(c) 
$$\left\{\frac{\pi}{4} + n\pi\right\} \cup \left\{\frac{5\pi}{4} + n\pi\right\}, n \in \mathbb{Z}$$

3. The solution of the equation 
$$4\cos^2 x - 3 = 0$$
 is

(a) 
$$\left\{\frac{\pi}{6} + 2n\pi\right\} \cup \left\{\frac{7\pi}{6} + 2n\pi\right\}, n \in \mathbb{Z}$$
 (b)  $\left\{\frac{\pi}{3} + n\pi\right\} \cup \left\{\frac{2\pi}{3} + n\pi\right\}, n \in \mathbb{Z}$ 

(b) 
$$\left\{\frac{\pi}{3} + n\pi\right\} \cup \left\{\frac{2\pi}{3} + n\pi\right\}, n \in \mathbb{Z}$$

(c) 
$$\left\{ \frac{\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{11\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{5\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{7\pi}{6} + 2n\pi \right\}, n \in \mathbb{Z}$$

(d) none of these

4. The solution set of the equation 
$$1 + \cos x = 0$$
 is

(a) 
$$\left\{\frac{\pi}{2} + 2n\pi\right\} \cup \left\{\frac{3\pi}{2} + 2n\pi\right\}, n \in \mathbb{Z}$$

(b) 
$$\{\pi + 2n\pi\}, n \in Z$$

(c) 
$$\left\{\frac{\pi}{4} + 2n\pi\right\} \cup \left\{\frac{5\pi}{4} + 2n\pi\right\}, n \in \mathbb{Z}$$

(d) none of these

5. The solution of the equation 
$$\cos ec^2x = \frac{4}{3}$$
 is

(a) 
$$\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\} \cup \left\{\frac{4\pi}{3} + 2n\pi\right\} \cup \left\{\frac{5\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$$

(b) 
$$\left\{\frac{\pi}{3} + n\pi\right\} \cup \left\{\frac{2\pi}{3} + n\pi\right\}, n \in \mathbb{Z}$$
 (c)  $\left\{\frac{\pi}{4} + 2n\pi\right\} \cup \left\{\frac{5\pi}{4} + 2n\pi\right\}, n \in \mathbb{Z}$ 

(c) none of these

6. The solution of the equation 
$$\sec^2 x = \frac{4}{3}$$
 is

(a) 
$$\left\{ \frac{\pi}{3} + 2n\pi \right\} \cup \left\{ \frac{2\pi}{3} + 2n\pi \right\} \cup \left\{ \frac{4\pi}{3} + 2n\pi \right\} \cup \left\{ \frac{5\pi}{3} + 2n\pi \right\}, n \in \mathbb{Z}$$

(b) 
$$\left\{ \frac{\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{11\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{5\pi}{6} + 2n\pi \right\} \cup \left\{ \frac{7\pi}{6} + 2n\pi \right\}, n \in \mathbb{Z}$$

(c) 
$$\left\{\frac{\pi}{6} + n\pi\right\} \cup \left\{\frac{5\pi}{6} + n\pi\right\}, n \in \mathbb{Z}$$

(d) none of these

- 7. The solution of the equation  $\cot^2 x = \frac{1}{2}$  is
  - (a)  $\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{2\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$  (b)  $\left\{\frac{\pi}{6} + n\pi\right\} \cup \left\{\frac{2\pi}{3} + n\pi\right\}, n \in \mathbb{Z}$
  - (c)  $\left\{ \frac{\pi}{4} + n\pi \right\} \cup \left\{ \frac{3\pi}{4} + n\pi \right\}, n \in \mathbb{Z}$
- (d) none of these
- 8. The solution of the  $\cot x = \frac{1}{\sqrt{3}}$  in  $[0,2\pi]$  is
  - (a)  $\frac{\pi}{6}, \frac{5\pi}{6}$
- (b)  $\frac{\pi}{2}, \frac{4\pi}{3}$
- (c)  $\frac{\pi}{4}, \frac{5\pi}{4}$
- (d)  $\frac{\pi}{2}, \frac{3\pi}{2}$

- The solution of the  $\cos ecx = 2$  in  $[0,2\pi]$  is
  - (a)  $\frac{\pi}{\epsilon}$ ,  $\frac{5\pi}{\epsilon}$
- (b)  $\frac{\pi}{2}, \frac{4\pi}{2}$
- (c)  $\frac{\pi}{2}, \frac{2\pi}{2}$

- 10. The solution of the  $\sec x = -2$  in  $[0,2\pi]$  is
  - (a)  $\frac{\pi}{6}, \frac{5\pi}{6}$
- (b)  $\frac{\pi}{2}, \frac{4\pi}{2}$
- (c)  $\frac{2\pi}{3}, \frac{4\pi}{3}$

- 11. The solution set of the  $\cos x = \frac{1}{2}$  is

  - (a)  $\left\{\frac{\pi}{3} + 2n\pi\right\} \cup \left\{\frac{5\pi}{3} + 2n\pi\right\}, n \in \mathbb{Z}$  (b)  $\left\{\frac{\pi}{6} + 2n\pi\right\} \cup \left\{\frac{7\pi}{6} + 2n\pi\right\}, n \in \mathbb{Z}$
  - (c)  $\left\{\frac{\pi}{3} + n\pi\right\} \cup \left\{\frac{5\pi}{3} + n\pi\right\}, n \in \mathbb{Z}$
- (d) none of these
- 12. In which quadrant is the solution of the equation  $\sin x + 1 = 0$  (a)  $1^{st}$  and  $2^{nd}$  (b)  $2^{nd}$  and  $3^{rd}$  (c)  $3^{rd}$  and  $4^{th}$
- (c) 3<sup>rd</sup> and 4<sup>th</sup>
- (d) none of these
- 13. In which quadrant is the solution of the equation  $\cot x = \frac{1}{\sqrt{3}}$ 
  - (a)  $1^{st}$  and  $2^{nd}$
- (b)  $1^{st}$  and  $3^{rd}$
- (c) 2<sup>nd</sup> and 4<sup>th</sup>
- (d) none of these

14. The solution of the equation  $\sin x + \cos x = 0$  is

(a) 
$$\left\{ \frac{3\pi}{4} + n\pi \right\}, n \in \mathbb{Z}$$
 (b)  $\left\{ \frac{5\pi}{6} + n\pi \right\}, n \in \mathbb{Z}$  (c)  $\left\{ \frac{\pi}{2} + n\pi \right\}, n \in \mathbb{Z}$  (d)  $\left\{ \frac{\pi}{3} + n\pi \right\}, n \in \mathbb{Z}$ 

- 15. The equation containing at least one trigonometric function is called
  - (a) exponential equation

- (b) logarithmic equation
- (c) trigonometric equation

(d) Algebraic equation

- 16. If  $\sin x = 0$  then x =
  - (a)  $n\pi, n \in \mathbb{Z}$
- (b)  $n\frac{\pi}{2}, n \in \mathbb{Z}$
- (c) 0
- (d) none of these
- 17. The number of the solutions of the trigonometric functions is
  - (a) unique
- (b) finite
- (c) infinite
- (d) zero

- 18. The equation which contain  $e^x$  is called
  - (a) exponential equation
    - (c) trigonometric equation
- (b) logarithmic equation
  - (d) Algebraic equation

- 19.  $\sec x = \tan x$  is a
  - (a) exponential equation
  - (c) trigonometric equation

- (b) logarithmic equation
- (d) Algebraic equation



Made by MUHAMMAD IMRAN QURESHI (http://www.mathcity.org/imran)