DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF SARGODHA
 ADMISSION TEST PH.D

Max Marks: 70
Date: 28-01-12
Time: 1.5 Hours

Instructions:

- Attempt all questions.
- Read all questions very carefully before answering them.
- Write only solutions of the problems on answer sheet.

Question 1 (a). Suppose f is defined and differentiable for every $x>0$ and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$. Put $g(x)=f(x+1)-f(x)$, then prove that $g(x) \rightarrow 0$ as $x \rightarrow+\infty$.
(b). Let E be the set of all continuous real valued functions $u:[0,1] \rightarrow \mathbb{R}$ satisfying

$$
|u(x)-u(y)| \leq|x-y|, \quad 0 \leq x, y \leq 1, \quad u(0)=0
$$

Let $\mathrm{f}: \mathrm{E} \rightarrow \mathbb{R}$ be define by

$$
f(u)=\int_{0}^{1}\left(u^{2}(x)-u(x)\right) d x
$$

Show that the maximum value of f on E is $5 / 6$, that is, $|f(u)| \leq 5 / 6$ for $u \in E$.
Question 2(a). If $A_{i j} B_{j}$ is a vector where B_{j} is an arbitrary vector. Prove that $A_{i j}$ is also a tensor of rank 2.
(b). Show that the general rigid body motion is a screw motion.

Question 3(a).
(i) Write CR-equation in rectangular coordinates.
(ii) Write CR-equation in polar coordinates.
(iii) When C is any positively oriented simple closed contour surrounding the origin then

$$
\int_{C} \frac{d z}{z}=
$$

\qquad
(iv) Show that $u(x, y)=2 x(1-y)$ is harmonic.
(v) $\operatorname{Arg}(-z)=$ \qquad
(b). Use residues to evaluate the improper integral

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d x}{x^{2}+1} \tag{3}
\end{equation*}
$$

Question 4(a). Determine whether the following statements true or false.
(i) Every subset of a discrete metric space is open. (T/F)
(ii) $\operatorname{Int}(A) \cup \operatorname{Int}(B)=\operatorname{Int}(A \cup B) .(T / F)$
(iii) A Cauchy sequence in a metric space converges in the space. (T/F)
(b). Fill in the blanks.
(i) In a metric space (X, d) every \qquad sequence is Cauchy.
(ii) X is a Hausdorff space iff the diagonal $D=\{(x, x) \mid x \in X\}$ is \qquad in $X \times X$.
(iii) Cofinite topology of finite set is a \qquad topology.
(b). Let $X=\{a, b, c, d, e\}$ and $\tau=\{\varphi, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\}$ be topology on X. Find interior of $A=\{b, c, d\} \subset X$.
Question 5(a). Fill in the blanks meaningfully:
(i) A group homomorphism f is injective iff \qquad
(ii) The only non-trivial proper subgroup of \mathbb{Z}_{4} under addition modulo is \qquad
(iii) The characteristic of ring of integers is \qquad
(iv) Index of the alternating group A_{n} in S_{n} is \qquad
(v) Centre of an abelian group is \qquad
(vi) If the characteristic polynomial of a matrix A is $x^{2}-5 x+6$, then its eigen values are
\qquad
(b). Define Normalizer of a subgroup of a group G, show that $N_{G}(H)$ is a subgroup.
(c). If $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is linear transformation define by

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, x_{3}\right)=\left(\mathrm{x}_{1}+2 \mathrm{x}_{2}-x_{3}, 2 \mathrm{x}_{1}+\mathrm{x}_{3}, \mathrm{x}_{1}-2 \mathrm{x}_{2}+2 x_{3}\right)
$$

then find imT and kerT.
Question 6(a). Define eigenvalue problem and find the eigen solution of

$$
\frac{\mathrm{d}^{2} \mathfrak{u}}{\mathrm{dx} x^{2}}+\lambda u=0 \quad \text { with } \quad, \mathfrak{u}(0)=0, \mathfrak{u}(a)=0
$$

(b). Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} .
$$

Question 7(a). Solve the following system of equation using Gaussian elimination method.

$$
\begin{aligned}
2 x+3 y-z & =5 \\
4 x+4 y-3 z & =3 \\
-2 x+3 y-z & =1
\end{aligned}
$$

Good Luck
Available at
http://www.MathCity.org
@Facebook@
https://www.facebook.com/MathCity.org
@Google+@
https://plus.google.com/b/113196409348253197516/

