DEPARTMENT OF MATHEMATICS UNIVERSITY OF SARGODHA ADMISSION TEST M.PHIL/PH.D

Max Marks: 100 Date: 16-09-11 Time: 2 Hours

Instructions:

- Attempt any 10 questions.
- Read all questions very carefully before answering them.
- Write only solutions of the problems on answer sheet.

Question 1. Fill in the blanks.

- (i) In English engineering system of units, unit of temperature is
- (ii) In British Gravitational System of units, unit of mass is
- (iii) In SI system force is a dimension.
- (iv) $1N = \dots Kg.m/s^2$.
- (v) In FMLtT, $1slug = \dots lbm$.
- (vi) Write equation of continuity for steady flow in integral form:
- (vii) Write x component of momentum equation in integral form in absence of body forces:
- (viii) For incompressible flow is constant.
 - (ix) For frictionless flow is zero.
 - (x) For steady flow the law of conservation of mass in different form is

Question 2. Solve the following differential equations:

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+y^2}.$$

(b)
$$y'' - y = \frac{1}{x}$$
.

Question 3(a). If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that maps (1,1) to (3,4) and (-1,1) to (2,2), what's the image of (3,1)? (5) (b). Let G and H be two groups and $f : G \to H$ be isomorphic. Then prove that $f^{-1} : H \to G$ is isomorphic. (5)

Question 4(a). Fill in the blanks.

(i) A function of bounded variation is expressible as the of two monotonically increasing function.

(4)

- (ii) Suppose f is a real differentiable function on some interval [a, b] and suppose $f'(a) < \lambda < f'(b)$ then there exist a point $x \in (a, b)$ such that
- (iii) If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n =$
- (iv) For every real number x there is a set E of rational number such that

(b). Let $\{x_n\}$ and $\{y_n\}$ be two real sequences such that

- (a) $x_n \leq y_n$ for all n;
- (b) $\{x_n\}$ is increasing;
- (c) $\{y_n\}$ is decreasing.

Show that $\{x_n\}$ and $\{y_n\}$ are convergent.

Question 5(a). Define the following.

- (i) Radius of gyration
- (ii) Perpendicular axis theorem

(b). If $\psi(x, y, z)$ be a scalar point function then derive the expression for the curl of the gradient of ψ . (6)

Question 6(a). If A be any subset of a discrete topological space X, show that the derived set A' of A is empty. (4)

(b). Show that

- (i) A convergent sequence is bounded.
- (ii) If $x_n \to x$ and $y_n \to y$, then $d(x_n, y_n) \to d(x, y)$.

Question 7(a). State and prove Newton-Rephson method.

(b). Find the zero of the $f(x) = x^3 - 5$ in the interval [0,3] by regular-falsi method and perform 3-iteration.

Question 8(a). Fill in the blanks.

- (i) The Lebesgue outer measure of an interval is equal to its
- (ii) If $\{A_n\}_1^\infty$ is a decreasing sequence in a measure space (X, \mathcal{A}, μ) , then $\lim_{n \to \infty} A_n = \dots$
- (iii) A measure space in which every subset of a null set is measurable is called
- (iv) For an increasing sequence $\{E_n\}_1^\infty$ in a measure space (X, \mathcal{A}, μ) , we $\mu(\lim_{n\to\infty} E_n) = \dots$
- (b). Answer the following short questions:
 - (i) Let μ^* be an outer measure on a set X. If $E \in P(X)$ with $\mu^*(E) = 0$, then show that every subset E_0 of E is μ^* -measurable.
- (ii) Let G be any open set in \mathbb{R} . Let (X, \mathcal{A}) be a measurable space and f an \mathcal{A} -measurable function on a set $D \in \mathcal{A}$, then show that $f^{-1}G \in \mathcal{A}$
- (iii) Show that in a measure space the sum of two measurable functions is measurable.

Question 9(a). Evaluate Log(z-i) by expressing it in the form u+iv and prove that Cauchy Riemann equations are satisfied where z = x + iy.

(b). Calculate the Residues of $f(z) = \frac{z^3}{(z-1)(z-2)(z-3)}$ at z = 1, 2, 3, and at $z = \infty$.

Question 10(a). Show that the polynomial $x^2 - 2$ is irreducible over \mathbb{Q} , ring of rational numbers. (3)

- **(b).** Describe all ring homomorphisms of $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$. (3)
- (c). Define the following:

(2+2=4)

(6)

(4)

(6)

(4)

- (i) Zero divisor
- (ii) Characteristic of a ring R
- (iii) Irreducible polynomial in F(x), where F is a field.
- (iv) Principle ideal domain.

0	uestion 1	1(a).	Show that	group of (Duaternion i	s Nil	potent (?	3)
×		1 ().	Show that	Group or S		5 1100		,

- (b). Find the upper central series of D_8 , Dihedral group of order 8. (3)
- (c). Define the following
 - (i) Commutator subgroup
- (ii) Sylow p-subgroup
- (iii) Special linear group
- (iv) Write down all elements of order 3 and 4 in S_4 , symmetric group of degree 4.

Question 12(a). Fill in the blanks.

(1+1+2=4)

(4)

- (i) The transformation matrix A is called orthogonal if
- (ii) The mass of a stable nucleus is always the sum of the masses of its constituent particles.
- (iii) The length of plate form in rest frame is 65m. Find the velocity of an observer in a rocket so that the observed length is half of its original length.
- (b). Prove that the composition of two Lorentz transformations is a Lorentz transformation.

Good Luck

Available at http://www.MathCity.org

@Facebook@
https://www.facebook.com/MathCity.org
@Google+@
https://plus.google.com/b/113196409348253197516/