Department of Mathematics

M. Phil. Admission test

Total Time: $\mathbf{2} \mathbf{H}$

Max Marks: $\mathbf{8 0}$

Note; Attempt any 8 questions all questions carry equal marks.

Q. 1. (a) Detine the following
(i) Order of Diff. Eq. (ii) Ordinary Diff. Eq. (iii) Degree of Diff. Eq. (iv) Linear Diff. Eq. (v) Trivial solution
(b) Solve the given differential equation

$$
x \frac{d y}{d x}-y=x^{3} e^{y / x}
$$

Q.2. (a) Define the following
(i) Parallel axis theorem (ii) Perpendicular axis theorem
(iii) Chasles theorem (iv) Rigid bodies (v) Moment of inertia
(b) Find the moment of inertia of a uniform disc of radius a and mass m about a tangent line on the radius.
Q. 3. (a) Define the following
(i) Harmonic functions
(iii) Isolated singular point
an analytic function
(ii) Simply connected domain
(iv) Pole of order m (v) Zeros of
(b) Find the residues of the function

$$
f(z)=\frac{z}{z^{4}+4}
$$ at its singular points.

Q. 4. (a) Define the following
(i) Gage pressure (ii) Viscosity (iii) Vorticity vector (iv) Newtonian and non Newtonian fluids (v) Fully developed
(b) A body weighs 1000 lbf then exposed to a standatd earth gravity $g=32.174 \mathrm{ft} / \mathrm{s}^{2}$
(i) what is its mass in kg ?
(ii) what will be the weight of this body in N if it is exposed to the moon's standard acceleration $\dot{g}_{\text {moon }}=1.62 \mathrm{~m} / \mathrm{s}^{2}$
Q.5. (a) Define the following
(i) Inertial frame of reference (ii) Einstein two postulates
(b)
(i) $\quad t=\frac{t_{0}}{\sqrt{1-v^{2} / c^{2}}}$ is called -----
(ii) $l=\frac{l_{0}}{\sqrt{1-v^{2} / c^{2}}}$ is called $-\cdots-\cdots$
(iii) $m=\frac{m_{0}}{\sqrt{1-v^{2}}}$ is called $-\cdots-\cdots$
(c) Show that the Lorentz traisformations leaves the expression $x^{2}+y^{2}+z^{2}-c t^{2}$
invariant.
Q. 6 (a) Mark true or false

0
(i) Let G be a group and $a, b \in G$, let there be an $x \in G$ such that $b=x a x^{-1}$. Then a and b have same order.
(ii) The group of order 4 is non abelian.
(iii) A linear transformation T is surjective if and only if $\operatorname{ker} T=0$
(iv) Degree of symmetric group S_{4} is 24 .
(v) Group of Quaternion has 8 elements.
(vi) Centre of $S_{;}$has 3 elements.
(vii) Every vector space has a finite basis.
(viii) A group of order 37 is non cyclic.
(b) Define the following.
$\begin{array}{lll}\text { (i) Basis } & \text { (ii) normalizer } & \text { (iii) Factor group }\end{array}$
(c) Find order of the permutations
(i) (9675438)
(ii) $(123)(456789)$
(iii) (ab)
Q. 7 (a) Find the units of $R(\sqrt{-5})$.
(b) Define the following corcepts
(i) Primitive root of m (ii) arithmetic function (iii) jacobi symbol (iv) Symmetric polynomial (v) Degree of polynomial.
Q. 8 (a) Define the following
(i) Discrete Topology (ii) open base of a topology
(iii) Open cover (iv) closure point
(b) (i) let $X=\{a, b, c\}$, then write the discrete and indiscrete topology on X.
(ii) Let $X=\{a, b, c, d\}, T=\{\varphi, X,\{a\},\{a, d\},\{a, b, d\}\}$, $A=\{a, c, d\}$. Then write the interior of A.
Q. 9 (a) Define and give two examples of norm space and Banach space.
(b) Let C be convex in vecpor space X and $T: X \rightarrow Y$ be a linear transformation, then show that $T(C)$ is convex.
Q. 10 (a) State true or false
(i) Every Cauchy sequence is not convergent.
(ii) The subsequence of a convergent sequence is converge to one and same limit.
(iii) If f is continuous in [a.b], then it is bounded on $[a, b]$.
(iv)The upper and lower integral is defined for every bounded function.
(v) \sqrt{x} is unifomly continuous on $(0,1]$.
(vi) The sequence $\left\{\mathrm{ai}^{n-1}\right\}, r>1$ is not bounded above.
(b) Show that the equat on $x^{3}-2 x^{2}-3 x+1$ has a solution $c \in[-1,1]$.
(c) Show that there is no real number p such that $p^{2}=2$

