

University of Sargodha

B.A / B.Sc 2nd Annual Exam 2010

Paper: A

Math General

Maximum Marks: 100

(9)

Time Allowed: 3 Hours

Note: Attempt any two questions from each section.

Section-I

Q.1. a. Let $f(x) = \begin{cases} x+2 & if \quad x \le -1 \\ ax^2 & if \quad x > -1 \end{cases}$ (3)

b. Evaluate $x \xrightarrow{\text{Lim}} 1\left\{\frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}\right\}$ (3)

Q.2. a. Find
$$f'(x) \quad if \quad f(x) = -\frac{\cos x}{2\sin^2 x} + \frac{1}{2}\tan\left(\frac{x}{2}\right)$$
 (9)

b. If
$$y = (\sin^{-1} x)^2$$
 then find $y^{(n)}(0)$ i.e; $y^{(n)}$ at $x = 0$ (9)

Q.3. a. Find
$$x^2 f_{xx} - y^2 f_{yy}$$
 for $f(x, y) = \sin xy$ (9)
(9)

Q.4. a. Use Newton-Raphson method to approximate, upto four places of decimal, one (9)

root of

 $x^3 - 3x - 3 = 0$ at $x_0 = 2$.

b. If $V = p^m$ where $p^2 = x^2 + y^2 + z^2$, show that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = m(m+1)p^{m-2}$ (8)

Section-II

Q.5. a. Show that in any conic semi-latus rectum is the harmonic mean between segments (8) of a focal chord.

b. Show that the locus of the point of intersection of tangent at two points on the (8)

ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \sec^2 \lambda$ where 2λ is the difference of the eccentric angles of the two points.

P.T.O

(14)
Q.6. a Find pedal equation of
$$\frac{t}{r} = 1 + \cos \theta$$
 (8)
b. Find equation of Tangent and Normal at $\theta = \frac{\pi}{2}$ to the cycloid (8)
 $x = a(\theta - \sin \theta)$
 $y = a(1 - \cos \theta)$
Q.7. a. Find asymptotes of $2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy - 4x + 1 = 0$ (8)
b. Find the point on the straight line $2x - 7y + 5 = 0$ which is closest to the (8)
origin.
Q.8. a. Find position and nature of the singular points of the curve (8)
(2y + x + 1)² - 4(1 - x)³ = 0
b. Find pedal equation of $p^2(a^2 + b^2 - r^2) = a^2b^2$ (8)
Section-III
Q.9. a. Calculate $\int \frac{dx}{1(x-2)^{2/3}}$ (9)
b. Evaluate $\int \frac{dx}{1+\sin x + \cos x}$ (9)
Q.10. a. Show that the shortest distance between the lines $x + a = 2y = -12z$ (9)
and $x = y + 2a = 6(a - a)$ is $2a$.
b. If a, b, c are intercepts of a plane on the coordinate axes and r is the distance of the
origin from the plane, prove that
 $\frac{1}{r^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$ (9)
b. Evaluate $\int \frac{dx}{\sqrt{1+x^2}}$ with $n = 4$ (9)
b. Evaluate $\int \frac{dx}{\sqrt{1+x^2}}$ with $n = 4$ (9)
b. Evaluate $\int \frac{dx}{\sqrt{1+x^2}}$ (9)
c. Show that length of are of the curve $r\theta = a$ from $r = a$ to $r = 2a$ is (8)
 $a \left\{ \sqrt{5} - \sqrt{2} + \ln \left(\frac{2 + \sqrt{8}}{1 + \sqrt{5}} \right) \right\}$
Available at
www.mathclity.org,
