Maximum Marks: 100

Note: Attempt any two questions from each section.
Time Allowed: 3 Hours
Q.1. a. Prove by using vectors that Section-1
b. Prove thas the vectors that $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
a. $\frac{d a}{d t}=0$.
Q.2. a. Show by using vectors, that the medians of the triangle are concurrent.
b. Prove that if ϕ is scalar and $A_{i j}$ is a second order tensor, then $\mathrm{C}_{\mathrm{ij}}=\phi \mathrm{A}_{\mathrm{ij}}$ is also a second order tensor.
a. . State and prove the $(\lambda-\mu)$-theorem.
b. A system of forces acts on a plane in the form of an equilateral triangle of side $2 a$. The moments of forces about three vertices are $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ respectively. Find the magnitude of the resultaut.
a. The smallest force which can support abody of weight w on a smooth inclined plane, is of magnitude P : show that the horizontal force necessary to support the same body on the plane is of magnitude
$\underset{P W}{ }$ $\frac{P W}{\sqrt{W^{2}-P^{2}}}$
b. A triangular lamina $A B C$, right angled at A , rests with its plane vertical, and with the sides $A C, A B$ supported by smooth fixed pegs D, E in a horizontal line. Prove that the inclination θ of $A C$ to the horizontal is given by $A C \cos \theta-A B \sin \theta=3 D E \cos 2 \theta$

Section- II

Q.5. a. Two uniform solid spheres, composed of the same material and whose diameters are 6 in . and 12 in . respectively, are firmly united. Find the c.m of the combined body.
b. A uniform rod of length $2 a$ rests in equilibrium against a smooth vertical wall and on a smooth peg at a distance b from the wall. Show that, in the position of equilibrium, the beam is inclined to the wall at angle $\sin ^{-1}\left(\frac{b}{a}\right)^{\frac{1}{3}}$.
Q.6. a. A uniform ladder rests in limiting equilibrium with one end on a rough horizontal plane, and the other against a smooth vertical wall. A man ascends the ladder. Show that he cannot go more than half way
b. The least force which will move a weight up an inclined plane is of magnitude P. Show that the least force, acting parallel to the plane, which will move the weight upwards is $P \sqrt{1+\mu^{2}}$ where μ is the co-efficient of friction.
Q.7. a. Find the position of the centriod of a quadrant of an elliptic lamina.
b. A particle moves in a plane in such a way that at any time t, its distance from a fixed point Q is $r=$ $a t+b t^{2}$ and the line connecting O and P makes angle $\theta=c t^{\frac{3}{2}}$ with a fixed line $O A$. Find the radial and transverse components of velocity and acceleration of the particle at $t=1$.
Q.8. a. A particle is projected vertically upwards. After a time t, anther particle is sent up from the same point with the same velocity and meets the first at height h during the downward flight of the first. Find the
velocity of projection. velocity of projection.
b. A point describes simple harmonic motion in such a way that its velocity and acceleration at point P are u and f respectively and the corresponding quantities at another point Q are v and g. Fiod the distance $P Q$.

Section- III

Q.9. a. Prove that the speed required to project a particle form a height h to fall a horizontal distance of from the point of projection is at least $\sqrt{g\left(\sqrt{a^{2}+h^{2}}-h\right)}$ launched with (a) an initial speed equal to $\sqrt{\frac{g\left(R^{2}+16 H^{2}\right)}{8 H}}$ and (b) at an angle with the horizontal given by $\operatorname{Sin}^{-1}\left(\frac{4 H}{\sqrt{2^{2}+16 H^{2}}}\right)$.
Q.10. a. A particle describes the curve $r^{n}=A \cos n \theta+B \sin n \theta$ under the force F to the pole, show that $F \propto \frac{1}{r^{2 n+3}}$:
b. If a particle be describing an ellipse about a centre of force in the center, show that the sum of the reciprocates of its angular velocities about foci is constant.
Find the condition that two straight lines $\frac{x-\alpha}{c_{1}}=\frac{y-\beta}{c_{2}}=\frac{z-\gamma}{c_{3}}$ and $\frac{x-\alpha^{\prime}}{d_{1}}=\frac{y-\beta^{\prime}}{d_{2}}=\frac{z-y^{\prime}}{d_{3}}$ may be
Q.11. a. Find the condition that two straight lines $\frac{x-\alpha}{c_{1}}=\frac{y-\beta}{c_{2}}=$
coplanar. Also find an equation of the plane containing them.
b. Show that the shortest distance between the straight lines.
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ and equations of the straight line perpendicular to both are $11 x+2 y-7 z+6=0=7 x+y-5 z+7$
Q.12. 'a. A sphere of radius K passes through the origin and meets the axes in A, B, C. Prove that the centriod of the triangle $A B C$ lies on the sphere $\quad 9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$
b. Find the direction of Qibla of the Badshai Mosque, Lahore, latitude $=31^{\circ} 35.4^{\prime}$ and longtitude

