University of Sargodha

B.A/B. Sc 1st Annual Exam 2013.

Subject: Applied Math Paper: A

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Attempt any two questions from each section.

Section-I

Q.1.	a.	Solve the initial value problem $\frac{dy}{dx} = \frac{2x}{x + x^2 x}$, $y(0) = -2$	(8)					
	b.	Solve $(x-y)dx + (x+y)dy = 0$	(9)					
Q.2.	a. b.	Solve the differential equation Solve the equation $\frac{dy}{dy} + \frac{xy}{dy} = xy^{\frac{1}{2}}$ $(3x^{2}y + 2)dx + (x^{3} + y)dy = 0$	(8) (9)					
Q.3.	a. b.	Find the orthogonal trajectories of the family of cardiods $r = a(1 + \cos\theta)$ Solve $(D^2 - 5D + 6)Y = \sin 3x$	(8) (9)					
Q.4.	a. b.	Find the general solution of Solve by the method of U.C $y'' - 3y' + 2y = x^2 e^x$ $(D^2 + 3D - 4)Y = 15e^x$	(8) (9)					
		<u>Section- II</u>						
Q.5	a.	Compute the Laplace transformation of e^{at} where a is a constant and $s \neq a$.						
	b.	Find the inverse Laplace transformation of $\frac{3S+17}{S^2+8S+25}$						
Q.6.	a. b.	Solve the equation $f(x) = e^x - 3x = 0$ by bisection method. Using Newton Raphson method, evaluate to two decimal places the root of the equation which lies between 0 and 1, the function is $f(x) = e^x - 3x = 0$	(8) (8)					

lies between 0 and 1, the function is $f(x) = e^x - 3x = 0$ Evaluate $\int_1^3 \frac{1}{x^2} dx$ by using trapezoidal rule for five points. Apply 5 points Simpson's rule to evaluate $\int_0^1 \frac{1}{1+x^2} dx$ Q.7. a. (8) b. (8) Find first and second derivatives of the fu Q.8.

a.	Find first and second de	rivatives of the function from the following data at						t $x=2$.	(8)
		х	1	2	3	4	5		
		f(x)	3	10	29	66	127		

 $\int_0^1 \frac{1}{1+x^2} dx \qquad \text{by using rectangular rule for} \quad n=4.$ b. Evaluate the integral (8)

Section-III

Q.9.	а.	Maximize $z = 10x_1 + 11x_2$ subject to the conditions	(8)
		$3x_1 + 4x_2 \le 9$, $5x_1 + 2x_2 \le 8$, $x_1 - 2x_2 \le 1$ where $x_1, x_2 \ge 0$	
	b.	Use Simplex method to find the maximum value of object function $z = 3x_1 + 2x_2$ with the condition	(9)
		$x_1 + 2x_2 \le 6$, $2x_1 + x_2 \le 8$, $-x_1 + x_2 \le 1$, $x_2 \le 2$ where $x_1, x_2 \ge 0$	
Q.10.	a.	An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8?	(8)
	b.	A card is drawn at random from a deck of ordinary playing cards. What is the probability that it is a diamond, a face card or a king.	(9)
Q.11.	a.	A man tosses two fair dice. What is the conditional probability that the sum of the two dice will be 7, given that:	(8)
		i. the sum is odd ii. the sum is greater than 6 iii. the two dice had same outcome.	
	b.	A pair of fair dice is thrown twice. What is the probability of getting totals of 5 and 11?	(9)
Q.12.	a.	A certain event is believed to follow the binomial distribution. In 1024 samples of 5, the result was observed once 405 times and twice 270 times. Find p and q .	(8)
	L	3	(0)

b. An event has the probability $P = \frac{3}{8}$. Find the complete binomial distribution for n = 5 trials. (9)

Available at www.mathcity.org