B.A/B. Sc $1^{\text {st }}$ Annual Examination 2012.
b. Solve the equation. $\quad\left(D^{2}+6 D+9\right) y=0 \quad y(0)=2 \quad y^{\prime}(0)=-3$
Q.2. a. Solve differential equation. $\quad \frac{d y}{d x}=\frac{x+3 y-5}{x-y-1}$
b. Solve by the method of U.C $\quad y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$

Time Allowed: 3 Hours
Q.3. a. Solve

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+4 x y=\frac{1}{\left(1+x^{2}\right)^{2}} \tag{9}
\end{equation*}
$$

b. Solve $\quad: \quad x^{2} \frac{d_{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5}$

$$
\begin{equation*}
x^{2} \frac{d_{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5} \tag{8}
\end{equation*}
$$

Q.4. a. Find orthogonal trajectories of family of cardiods. $r=a(1+\cos \theta)$

$$
\begin{equation*}
y^{\prime \prime}-x^{2} y=0 \quad \text { around } \quad x=0 \tag{8}
\end{equation*}
$$

Section-II
Compute the Laplace transformation of $\cos ^{2} a t$
Q.6. a. Using Newton Raphson method find a root of $f(x)=x^{3}-2 x-5=0$
b. Solve the transcendental equation $\quad f(x)=e^{-x}-\sin \left(\frac{\pi x}{2}\right)=0$ to a positive real root by Bisection method.
Q.7. a. Use the trapezoidal rule with $n=4$ to approximate. $\quad I=\int_{0}^{4} \sqrt{x^{2}+1} d x$
b. Use Simpson's rule to approximate the \ln tegral $\quad \int_{1}^{2} \ln x d x$ with $\quad n=4$.
Q.8. a. Find the first and second order derivatives of the function from the following data at $x=2$.

x	1	2	3	4	5
$f(x)$	3	10	29	66	127

b. Find a bound on the error in approximating the given integral using:
i. Trapezoidal rule
ii. Simpson's rule.
$\int_{-1}^{2} x^{5} d x \quad$ with $\quad n=10$

Section- III

Q.9. a. Minimize $z=2 x_{1}+x_{2}$ subject to the conditions

$$
\begin{gather*}
x_{1}+x_{2} \geq 1 \tag{9}\\
x_{1}-x_{2} \geq-1 \\
x_{1}+2 x_{2} \geq 4 \\
x_{1}, x_{2} \geq 0 \tag{8}
\end{gather*}
$$ $z=10 x_{1}+11 x_{2}$ with the condition

$$
\begin{gather*}
3 x_{1}+4 x_{2} \leq 9 \\
5 x_{1}+2 x_{2} \leq 8 \\
x_{1}+2 x_{2} \leq 1 \\
x_{1} \geq 0 \text { and } x_{2} \geq 0 \tag{8}
\end{gather*}
$$

Q.10. a. A set of eight cards contains one joker. A and B are two players and A choose 5 cards at random, B taking the remaining 3 cards. What is the probability that A has the joker?
b. A pair of fair dice is thrown. If the two numbers appearing are different, find the probability that sum is (i) 6 (ii) sum is 4 or less.
Q.11. a. If $f(x)=\frac{1}{n}(x=1,2,3$
$n)$ then find $E(x)$ and $\operatorname{Var}(x)$
b. Suppose that the life length (in hours) of a certain radio tube is continuous random variable
x with probability density function $\quad f(x)=\frac{100}{x^{2}} \quad x>100$
And zero elsewhere. What is the probability that a tube will last less than 200 hours, if it is known that tube is still functioning after 150 hours of service?
Q.12. a. An event has the probability $P=3 / 8$, Find the complete Binomial distribution for $n=5$ trials?
b. Let X be random variable having a binomial distribution with parameters $n=25$ and $P=0.2$

$$
\text { evaluate } \quad P[x<\mu-2 \sigma]
$$

