	67	•
	University of Sargodha	
· .	B.A/B. Sc 1 st Annual Examination 2012.	Available at www.mathcity.org
	Applied Math Paper: A	· · · · · · · · · · · · · · · · · · ·
iviaxin	num Marks: 100	Time Allowed: 3 Hours
Note:	Attempt any two questions from each section.	
·	Section- I	
Q.1.	a. Solve the initial value problem $\frac{dy}{dx} = \frac{x(x^2+1)}{4y^3}$ $y(0) = \frac{-1}{\sqrt{2}}$ b. Solve the equation. $(D^2 + 6D + 9)y = 0$ $y(0) = 2$ y	(8)
•	b. Solve the equation. $(D^2 + 6D + 9)y = 0$ $y(0) = 2$ y	'(0) = -3 (9)
Q.2.	a. Solve differential equation. b. Solve by the method of U.C $\frac{dy}{dx} = \frac{x+3y-5}{x-y-1}$ $y'' - 4y' + 4y = e^{2x}$	(8)
	b. Solve by the method of U.C $y'' - 4y' + 4y = e^{2x}$	(9)
Q.3.	a. Solve $(1+x^2)\frac{dy}{dx} + 4xy = \frac{1}{(1+x^2)^2}$	(8)
	b. Solve $x^2 \frac{d_2 y}{dx^2} + 7x \frac{dy}{dx} + 5y = x^5$	(9)
Q.4.	a. Find orthogonal trajectories of family of cardiods. $r = a(1 + cos)$ b. Find a series solution of differential equation around indicated point	εθ) (8)
•	b. Find a series solution of differential equation around indicated point $y'' - x^2y = 0$ around $x = 0$	(9)
~` -	Section-II	
Q.5.	a. Compute the Laplace transformation of $\cos^2 a t$ b. Compute the inverse Laplace transformation of $95-67$	(8)
Q.6.	b. Compute the inverse Laplace transformation of a. Using Newton Raphson method find a root of $f(x) = x^3 - 2x - x^3$	(8)
~~~	b. Solve the transcendental equation $f(x) = e^{-x} - sin\left(\frac{\pi x}{2}\right) = 0$ to a	-5 = 0 (8) positive real root by (8)
	Bisection method.	positive real root by
Q.7.	a. Use the trapezoidal rule with $n = 4$ to approximate. $I = \int_0^4 \sqrt{x^2 + 1}$	dx (8)
	b. Use Simpson's rule to approximate the Integral $\int_{1}^{2} \ln x dx$ with	
Q.8.	a. Find the first and second order derivatives of the function from the follo	owing data at $x = 2$. (8)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	b. Find a bound on the error in approximating the given integral using:	(8)
		with $n = 10$
Q.9.	a. Minimize $z = 2x_1 + x_2$ subject to the conditions	(0)
••••	$x_1 + \bar{x_2} \ge 1$	(9)
	$\begin{aligned} x_1 - x_2 &\ge -1 \\ x_1 + 2x_2 &\ge 4 \end{aligned}$	
	$x_1, x_2 \ge 0$	
	b. Use the simplex method to find the maximum value of object function $z = 10x_1 + 11x_2$ with the condition	(8)
	$3x_1 + 4x_2 \le 9$	
	$5x_1 + 2x_2 \le 8$ $x_1 + 2x_2 \le 1$	
	$x_1 \ge 0$ and $x_2 \ge 0$	
2.10.	a. A set of eight cards contains one joker. A and B are two players and A	A choose 5 cards at (8)
	random, B taking the remaining 3 cards. What is the probability that A h b. A pair of fair dice is thrown. If the two numbers appearing are different,	nas the joker? , find the probability (9)
	that sum is (i) 6 (ii) sum is 4 or less.	
.11.	a. If $f(x) = \frac{1}{n}(x = 1, 2, 3, \dots, n)$ then find $E(x)$ and $Var(x)$	(8)
	b. Suppose that the life length (in hours) of a certain radio tube is continue x with probability density function $f(x) = \frac{100}{x^2}$ x > 100	ous random variable (9)
	And zero elsewhere. What is the probability that a tube will last less that	an 200 hours, if it is
117	known that tube is still functioning after 150 hours of service?	
Q.12.	a. An event has the probability $P = 3/8$, Find the complete Binomial dis trials?	tribution for $n = 5$ (9)
	b. Let X be random variable having a binomial distribution with parameters evaluate $P[X < \mu - 2\sigma]$	s n = 25 and P = 0.2 (8)

•

•

.

. * *

• •

.....

.

• •.•