

University of Sargodha

B.A/B.Sc 1st Annual Examination 2011

Paper: B

<u>Pure Math</u>

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Attempt any two questions from each section.

Section-I

Q .1.	a.	Evaluate	$\int \frac{dx}{(x^2-1)\sqrt{x^2}}$	$\overline{x^2+1}$	(8)
	b.	Evaluate	$\int_{a}^{b} x^{k} dx$	by definition.	(9)
Q.2.	a.	Evaluate	$\int_{0}^{1} \frac{\ln(1+x)}{1+x^{2}} dx$	r	(8)
	b.	Find the asymptotes of the curve		$y(x-y)^2 = x+y$	(9)
Q.3.	a.	Find the point of inflection of the	e curve	$a^2 y^2 = (a^2 - x^2)x^2$	 (8)
	b.	Find the length of the loop of the	curve	$3ay^2 = x(a-x)^2$	(9)
Q.4.	a.	Evaluate	$\int_{0}^{2\pi}\int_{0}^{1-\cos\theta}\gamma^{3}\cos\theta$	$s^2 \theta d\gamma d\theta$	(8)
b. Prove that intrinsic equation of the cycloid					(9)
		$x=a(\theta+\sin\theta),$	$y = a(1 - \cos \theta)$	$s\theta$) is $S = 4a\sin\alpha$	

Section-II

Q.5.	a.	Let (X, d) be a metric space. Show that d_1 , defined by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$	(8)
		is also a metrix on X.	
	b.	Let (X, \mathcal{F}) be a topological space and let O be a subset of X, then O is open if and	(8)
		only if it is a neighbourhood of each of its points.	
Q.6.	a.	Prove that co-finite topology on X is discrete if and only if X is finite.	(8)
	b.	Prove that a subset U of a metric space X is open if and only if U is a union of open	(8)
		spheres.	

Q.7. a. Let (X, \mathcal{F}) be a topological space and let A be any subset of X. then A° is an open (8) set and it is largest open set contained in A.

P.T.O

- b. Let (X, \mathcal{F}) be topological space and let A be any subset of X. then prove that $F_r(A) \cap A^\circ = \phi$ (8)
 (8)
- Q.8. a. Let (X, d) be a metric space and {F_α : α ∈ I} be a family of closed sub sets of X.
 prove that i. ∩ {F_α : α ∈ I} is closed set ii. F₁ ∪ F₂ ∪ F₃ ∪ ∪ F_n is closed,
 each F_i, i = 1,2,3.....,n being closed.
 - b. Let (X, \mathcal{F}) be a topological space and let A, B be any subsets of X. Prove that (8) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$

Section-III

0.9.	a.	If G be a cyclic group of order n generated by a , then prove that for each positive	(8)				
X		divisor d of n , there is a unique subgroup of G of order d .					
	b.	If the matrices A , B and C are conformable for the product, then prove that					
		A(BC) = (AB)C	(0)				
Q.10.	a.	$1 w w^2 w^3$	(8)				
		Show that $\begin{bmatrix} 1 & w^2 & w^4 & w \\ & & 3 & & & & \\ & & & & & & & \\ & & & &$					
		$\begin{bmatrix} 1 & w^3 & w & w \\ 1 & w^4 & w^3 & w^2 \end{bmatrix}$					
	b.	Let G be a group such that $(ab)^n = a^n b^n$ for three consecutive natural numbers n and	(9)				
		all $a, b \in G$. Show that G is abelian.					
Q.11.	a.	Let G be a group and H is a subgroup of G. then prove that the set					
		$aHa^{-1} = \left\{aha^{-1} : h \in H\right\}$ is subgroup of G.					
	b.	Find an equation defining the subspace W of R^3 spanned by $V_1 = (1, -3, 2)$,	(9)				
		$V_2 = (-2, 1, 2), V_3 = (-3, -1, 6)$ by expressing an arbitrary element $(x, y, z) \in \mathbb{R}^3$ as a					
		linear combination of V_1 , V_2 , V_3 .	(8)				
Q.12.	a.	Examine the following homogenous system for nontrivial solution.	(8)				
		$x_1 - x_2 + 2x_3 + x_4 = 0$					
		$3x_1 + 2x_2 + x_4 = 0$					
		$4x_1 + x_2 + 2x_3 + 2x_4 = 0$	(9)				
	b.	Express the vector $(2, -5, 3)$ in \mathbb{R}^3 as a linear combination of the vectors $(1, -5, -5)$					
		(2, -4, -1) and $(1, -5, 7)Available at$					
		www.machely					