## UNIVERSITY OF THE PUNJAB

A/2011
Examination:-B.A/B.SC.

Subject: B Course of Mathematics PAPER: 3

TIME ALLOWED: 3 hrs .
MAX MaKS: io

Attempt SIX questions in all, selectlog TWO questions from Section I \& II each and ONE question from Section II \& IV each.

## Section-I

Q.1. a) Find the six, 6-th roois of $(1+i)$
b) If $\operatorname{Sin}(\theta+i \varphi)=\operatorname{Cos} \dot{c}+i \operatorname{Sin} \alpha$; prove that $\operatorname{Cos}^{2} \theta= \pm \operatorname{Sin} \alpha$
Q.2. a) Evaluate the sum of infinite series
$1+c \operatorname{Cos} \theta+\frac{c^{2}}{2!} \operatorname{Cos} 2 \theta+\frac{c^{3}}{3!} \operatorname{Cos} 3 \theta+\cdots$
b) Find the direction of Qibla of Faisal Masjad Islamabad if;

Latitude $=33^{\circ} \cdot 40^{\prime} \mathrm{N}$
Longitude $=73^{\circ} \cdot 8^{\prime} E$
The Latitude \& Longitude of Khana-Kaba are $21^{\circ} \cdot 25^{\prime} \mathrm{N}$ \& $39^{\circ} \cdot 49^{\prime} E$ respectively.
Q.3. a) Let $f(x, y)=\left\{\begin{array}{cc}x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$

Show that $\quad f_{x y}(0,0) \neq f_{y x}(0,0)$
b) If $\quad \mathrm{U}=\frac{\ln \left(x^{2}+y^{2}\right)}{x+y}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$
Q.4. -a) Examine for relative extrema
$f(x, y)=x^{2}-x y+y^{2}+6 x$
b) Show that the sphere $x^{2}+y^{2}+z^{2}=18$ and the cone $x^{2}+z^{2}=(y-6)^{2}$ are tangent along their intersection.

## Section-II

Q.5. a) Use limit comparison"Test" to investigate the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{\ln (n+1)}{n^{2}}$
b) Apply appropriate 'Test' to determine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{1^{n}+2^{n}}{3^{n}}$
Q.6. a) Determine the value of $x$ for which the series (i) converges aboslutely
(ii) converges conditionally (iii) Diverges $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
b) Find radius of convergence \& interval of convergence of $\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{n}}$
Q.7. a) Find the volume generated by revolving the area in first Quadrant bounded by parabola $y^{2}=8 x$ and its latus rectum about the $x$-axis.
b) Determine whether the integral $\int_{0}^{3} \frac{d x}{x^{2}+2 x-3}$ converges or diverges. If converges, then evaluate.
Q.8. a) Evaluate the integral $\int_{1}^{2} \int_{0}^{3}(x+y) d x d y$ $9+8$
b) Use spherical co-ordinates to evaluate $1=\iiint_{S} z^{2} d x d y d z$ where $S$ is the quarter $x^{2}+y^{2}+z^{2} \leq 1 . \quad y \geq 0 ; z \geq 0$

## Section-III

Available at http://www.MathCity.org
Q.9. a) State and prove Lagranges' Theorem.
b) Show that the set $\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ is a group under multiplication modulo 9. Find order of each element of $S$.
Q.10. a) Show that set $S_{n}$ of all permuations on a set $X$ with n-elements is a group under the operation of composition of permutations.
b) -. Determine whether the permutation $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1\end{array}\right)$ is even or odd

## Section-IV

Q.11. a) Let $(X, d)$ be a metric space, show that ' $d_{1}$ ' defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ is a metric.
b) Let $x, y$ be two points of $R^{n}$ or $C^{n}$ then show that

$$
\ldots \cdot\left\{\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{2}\right\}^{1 / 2} \leq\left\{\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right\}^{1 / 2}+\left\{\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right\}^{1 / 2}
$$

Q.12. a) Prove that any open ball in a metric space is an open set.
b) If $A, B$ are two subsets of a metric space $X$; then show that
i) $\bar{A} \cup \bar{B}=\bar{A} \cup \bar{B}$
ii) $\bar{A} \cap \bar{B} \subseteq \bar{A} \cap \bar{B}$

