8

A/2001BA/BSc NEW_COURSE

B- COURSE OF MATHEMATICSPAPER: **B**

TIME ALLOWED: 3 hours MAX MARKS: 100

Attempt SIX questions in all selecting TWO questions from section (I), TWO questions from section (II), ONE from section (III) and ONE from section (IV)

SECTION - I

1. a) Prove that
$$\left(\frac{1+\sin x + i\cos x}{1+\sin x - i\cos x}\right)^n = \cos\left(\frac{\pi}{2} - x\right) + i\sin\left(\frac{\pi}{2} - x\right)$$
 8

b) Sum the series to infinity.
$$\cos\theta - \frac{1}{2}\cos 2\theta + \frac{1}{3}\cos 3\theta - \frac{1}{2}\cos 4\theta + \dots$$
 9

2. a) Prove that
$$\tan^{-1}\left(\frac{x+iy}{x-iy}\right) = \frac{\pi}{4} + \frac{i}{2} \ln \frac{x+y}{x-y}$$
 if $x > y > 0$

3. a) Examine the continuity of
$$\begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
 at (0,0) and f_v (0,0) exit?

b) If:
$$f(x, y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) + y^2 \tan^{-1} \left(\frac{x}{y}\right)$$

show that: $\frac{\partial^2 f}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$

4. a) If
$$u = f(x,y)$$
 is a homogeneous function of degree n, then prove that: $x^2 f_{xx} + 2xyf_{xy} + y^2 f_{yy} = n(n-1)f$.

b) Examine $f(x,y) = 2x^2 - 4x + xy^2 - 1$ for relative extrema.

SECTION - II

5. a) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent when $p \le 1$ and convergent when p > 1

b) Use alternating series test to check the series
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{n+4}{n^2+n} \right)$$

for convergence or divergence.

6. a) State Cauchy's root test for convergence or divergence of infinite series apply, this test on
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3}$$
 to check convergence or divergence.

		Find the radius of convergence and the interval of convergence of the power series. $\sum_{n=0}^{\infty} \cdot \frac{(-1)^{n+1} (x+1)^{2n}}{(n+1)^2 5^n}.$	9
7.	a)	Evaluate $\iint_D \frac{x^2}{(x^2+y^2)^2} dA$ where D is the region in the	8
		first quadrant enclosed by the circles $x^2+y^2=a^2$, $x^2+y^2=b^2$, 0	
	b)	Find the volume of a right pyramid whose height is h and has a square base with each side of length a.	8
8.	a)	Evaluate the improper integral $\int x \ln x dx$	8
	b)	Evaluate $\iiint_S 15 \times z^2 dx^0 dy dz$	8
		where S is bounded by $x^2+y^2=1$ and $x^2+z^2=1$	
SEC'	TI(on – III	
9.	a)	Let (G,\cdot) be a group. Such that $(ab)^n = a^n b^n$ for three consecutive natural numbers and all a , b in G . Show that G is abelian.	8
·	b)	The Union HUK of two subgroups H and K of a group G is a subgroup of G if and only if either. HCK or KCH.	8
30.		Let H and K be two prime, prove that $H \cap K = \{e\}$	8
	b)	Define a transposition and determine whether the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$ is even or odd	8
SEC	TI	ON - IV	
11.	a)	Let (X,d) be a metric space and let $d'(XxX) \rightarrow R$ be given by $d'(x_1, x_2) = \frac{d(x_1, x_2)}{1 + d(x_1, x_2)}$	8
		prove that d' is a metric	
	b)	Prove that open sphere in a metric space is an open set.	8
12.	a)	Define the following:	8
		 i) Closed sphere in a metric space X ii) Open set in a metric space X iii) Closure of a set A in X iv) Limit point of a set A in X 	
	b)	If A and B are two subsets of a metric space X, then prove that.	8

Int (A) \cap Int (B) = Int (A \cap B)

ii) Int (A) U Int (B) \subseteq Int (AUB)