UNIVERSITY OF THE PUNJAB

A/2010

Examination:- B.A./B.Sc.

TIME ALLOWED: 3 hrs .
Subject: Mathematics-A Course
PAPER: B
MAX. MARKS: 100
Attempt SIX questions by selecting TWO questions from Section-I, ONE question from Section-II, ONE question from Section-III and TWO questions from Section-IV.

Section-I

Q.1. a) Show every square matrix over C can be expressed in a unique way as $P+i Q$ where P and Q are Hermitian
b) Prove that $\left|\begin{array}{ccc}\frac{a^{2}+b^{2}}{c} & c & c \\ a & \frac{b^{2}+c^{2}}{a} & a \\ b & b & \frac{c^{2}+a^{2}}{b}\end{array}\right|=4 a b c$
Q.2. a) Show that the system

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{3}=a \\
& 3 x_{1}+x_{2}-5 x_{3}=b \\
& -5 x_{1}-5 x_{2}+21 x_{3}=c
\end{aligned}
$$

is in consistent if $\quad c \neq 2 a-3 b$
b) By using elementary row operations, find inverse of matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 3 \\
2 & 4 & 1 \\
1 & 3 & 0
\end{array}\right]
$$

Q.3. a) Let V be a vector space over a field F and let W be a non empty sub set of V then W is sub space of V
If and only if
i) $w_{1}, w_{2} \in W \Rightarrow w_{1}+w_{2} \in W$
ii) $w \in W, a \in F \Rightarrow a w \in W$
b) Let U and W be 2-dimensional subspaces of R^{3}

Show that. $\quad U \cap W \neq\{0\}$
Q.4. a) A linear transformation $T: R^{2} \rightarrow R^{3}$ maps the vectors (1,1) into ($0,1,2$) and the the vectors $(-1,1)$ into $(2,1,0)$ what matrix does T represent with respect to the standard bases for R^{2} and R^{3}.
b) A linear transformation $T: U \rightarrow V$ is one to one if and only if $N(T)=0$

Section-II

Q.5. a) The norm is an inner product space satisfies the following axioms for all $u, v \in V$ and $k \in R$
i) $\quad\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$
ii) $\quad\|k v\|=|k|\|v\|$
iii) $\quad\|u+v\| \leq\|u\|+\|v\|$
b) Find an orthogonal matrix A whose first row is $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$
Q.6. a) Find eigen values and corresponding eigen vectors of the 8,8

$$
\text { matrix }\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

b) Find a real orthogoanal matrix P for which $P^{T} A P$ is diagonal where

$$
A=\left[\begin{array}{cc}
7 & 3 \\
3 & -1
\end{array}\right]
$$

Section-III

Q.7. a) Solve $\frac{d y}{d x}=\frac{x+3 y-5}{x-y-1}$
b) Show that given differential equation is an exat and hence solve it $\frac{d y}{d x}=-\frac{a x+h y}{h x+b y}$
Q.8. a) Solve the differential equation

$$
x \frac{d y}{d x}+3 y=x^{3} y^{2} \quad y(1)=2
$$

b) Solve $\frac{d y}{d x}-y^{2}=-1$ given that $y_{1}=1$ is a particular solution of the given equation.

Section-IV

Q.9. a) Find general solution of the equation

$$
\left(D^{3}-7 D-6\right) y=e^{2 x}(1+x)
$$

b) Solve the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\ln x)
$$

Q.10. a) Solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan x$
b) Find a particular solution of the following

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=e^{-2 x} \sec x
$$

Q.11. Evaluate
i) $\quad \mathcal{L}\left[\frac{\sin a t}{t}\right]$
ii) $\quad \mathcal{L}^{-1}\left[\ln \left(\frac{s^{2}+1}{(s-1)^{2}}\right)\right]$
Q.12. a) Apply power series method to solve the differential equation

$$
y^{\prime}=y\left(1+\frac{1}{x}\right)
$$

b) Use Laplace Transform method to solve the following initial value problem

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}=20 e^{-t} \cos t \\
& y(0)=0=y^{\prime}(0)
\end{aligned}
$$

