UNIVERSITY OF THE PUNJAB

A/2011 Examination:- B.A./B.Sc.

Roll No. a 2394a....

Subject: A Course of Mathematics

PAPER: A

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

Attempt any SIX questions by selecting TWO questions from each Section I & II and ONE from each Section III & IV.

Section-I

Q.1. a) Let
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ kx^2 & \text{if } x > -1 \end{cases}$$

8,9

Find k so that $\lim_{x\to -1} f(x)$ exists.

b) Define continuity of a function at a point x = a. Find the points of discontinuty of a function f(x) defined by

$$f(x) = \begin{cases} x+4, & \text{if } -6 \le x < -2 \\ x, & \text{if } -2 \le x < 2 \\ x-4, & \text{if } 2 \le x \le 6 \end{cases}$$

Q.2. a) If
$$x = \frac{3at}{(1+t^2)}$$
, $y = \frac{3at^2}{(1+t^2)}$ show that $\frac{dy}{dx} - x \frac{dt}{dx} = t$

8,9

b) If $f(x) = x^3 - 2x - 5 = 0$, show that a root of f(x) = 0 lies between x = 2 & x = 3

Hence find a root by taking $x_0 = 2$

- Q.3. a) If $y = \cos(\ln x) + \sin(\ln x)$ then by showing $x^2y'' + xy' + y = 0$, 8.5 prove that $x^2y^{(n+2)} + (2n+1)xy^{(n+1)} + (n^2+1)y^{(n)} = 0$
 - b) Let f(x) be a function satisfying the following conditions:
 - i) f(x) is continuous for all $x \in [a, b]$
 - ii) f(x) is differentiable for all $x \in]a, b[$
 - iii) f(a) = f(b)

Then show that there exists at least one point $c \in]a,b[$ such that f'(c)=0

- Q.4. a) Determine the intervals on which $f(x) = 2x^3 15x^2 + 36x + 1$ is 8.9 decreasing or increasing.
 - b) If $\lim_{x\to 0} \frac{\sin 2x + k \sin x}{x^3}$ be finite, find k and find the limit.

Section-II

Q.5. a) Analyze & graph the conic represented by $\sqrt{x} + \sqrt{y} = 1$

8,9

- Find the polar equation of the conic in the form $\frac{1}{r} = 1 + e \cos \theta$; identify b) when this equation will represent.
 - a parabola
- an ellipse
- iii) a hyperbola
- Express $3y^2 16y x^2 + 16 = 0$ into polar form, find the eccentricity Q.6. ~a) 9.8 & equation of the directrix.
 - Find the parametric equations for the cardioid $r = 1 + \sin \theta$; hence find the b) points at which it has vertical tangents.
- Find the equation of the line through the point $(5, \frac{7}{2}, 5)$ and intersecting at 8,9 Q.7. a) right angle an other line with equation x = 4 + 3t, y = 1 + t, z = -3t
 - Find an equation of the plane passing through A(1,0,1), B(2,2,1) and b) perpendicular to the plane x - y - z + 4 = 0.
- Show that the straight line x = z 4, y = 2z 3 lies in the plane Q.8. a) 8,9 $2x-3y+4z-1=0^{^{\Lambda}}$
 - Find the shortest distance between any two opposite edges of the b) tetrahedron formed by the planes y + z = 0, z + x = 0, x + y = 0, x+y+z=a

Section-III

Available at http://www.MathCity.org

Find the asymptotes of the curve $x^2 - y^2 = 1$ Q.9. a)

- 8.8
- b) An open rectangular box is to be made from a sheet of cardboard 8 dm by 5 dm by cutting equal squares from each corner and turning up the sides. Find the edge of the square which gives maximum volume.
- Write down equation of a circle having centre at origin and radius k, where Q.10. a) . 8,8 k is any positive constant. Using integration techniques, show that area of this circle is πk^2
 - b) Show that redius of curvature at any point $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ is given by $\rho = 3(axy)^{2/3}$

Section-IV

Q.11. Integrate the following

5,6,5

i)
$$\int \frac{1}{2\sin^2 x + 3\cos^2 x} dx$$
 ii)
$$\int \frac{dx}{x^4 + 1}$$
 iii)
$$\int \frac{1 - \sin x}{1 + \cos x} dx$$

$$ii) \qquad \int \frac{dx}{x^4+1}$$

$$iii) \qquad \int \frac{1-\sin x}{1+\cos x} \, dx$$

Q.12. a) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$

8,8

Use trapezoidal rule, approximate the integral $\int_{-\infty}^{\infty} e^{-x^2} dx$ with n = 4b)