UNIVERSITY OF THE PUNJAB

A/2010Examination: B.A./B.Sc.

Roll No.

Subject: Mathematics-A Course

PAPER: A

TIME ALLOWED: 3 hrs.

MAX. MARKS: 100

Attempt any SIX questions by selecting TWO from each Section I & II and ONE from each Section III & IV.

Section-I

Q.1. a) Given that
$$\lim_{x\to 0} (1+x)^{1/x} = e$$
, show that $\lim_{y\to 0} \frac{a^{y-1}}{y} = \ln a$, $(a > 1)$ 9,8

b) If
$$f(x, y) = arc \sin(\frac{x}{y})$$
, verify that $f_{xy} = f_{yx}$

Q.2. a) Find k such that

9,8

9,8

$$f(x) = \begin{cases} \frac{1 - \sqrt{x}}{x - 1} & , & if & 0 \le x < 1\\ k & , & if & x = 1 \end{cases}$$

is CONTINUOUS for all $x \in [0,1]$

b) Using NEWTON-RAPHSON Method, find a root of $f(x) = x^3 - 2x - 5 = 0$

Q.3. a) If
$$y = arc (\tan x)$$
, show that $(1 + x^2)y'' + 2xy' = 0$, Hence find 9,8 $y^{(n)}(0)$

- Give statement of Rolle's Theorem. Is it valid for $f(x) = x^2 3x + 2$ on b) [1,2]? If valid, find $c \in]1,2[$ such that $f'^{(c)} = 0$
- Prove that $f(x) = \frac{\ln(x+1)}{x}$ decreases on $[0, \infty[$ Q.4. a)
 - Show that $\lim_{x\to 0} (\cot x)^{\sin 2x} = 1$ b)

- Show that the point $(at^2, 2at)$ always lies on the parabola $y^2 = 4ax$. Show Q.5. a) 9,8 that its tangent at the above point is $x - yt + at^2 = 0$
 - Examine whether the given equation $6x^2 15y^2 xy + 16x + 24y = 0$ b) represents two straight lines? If so, find equation of each of the straight line.

- Q.6. a) Express $3y^2 16y x^2 + 16 = 0$ in POLAR form, find the eccentricity 9,8 and equation of the directrix. Also, identify the curve.
 - b) Find the measure of the angle of intersection of the curves $r = a\theta$, $r\theta = a$
- Q.7. a) Find the equation of the perpendicular from the point P (1,6,3) to the 9,8 straight line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$
 - Find the distance of the point A(3,-1,2) to the plane 2x + y z 4 = 0. Also, reduce the equation of the plane in the NORMAL FORM and find its distance from the origin.
- Q.8. a) Find equation of the plane through the points (1,0,1) & (2,2,1) and 9,8 perpendicular to the plane x-y-z+4=0.
 - Show that the SHORTEST DISTANCE between the straight lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \quad \& \quad \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5} \quad \text{is } \frac{1}{\sqrt{6}} \text{ and equation of the line}$ perpendicular to both lines is 11x + 2y 7z + 6 = 0 = 7x + y 5z + 7

Section-III

- Q.9. a) Find the intervals in which the curve $y = (x^2 + 4x + 5)e^{-x}$ faces up or 8,8 down. Also, find its points of inflection if any.
 - b) Find equations of ASYMPTOTES of the curve $y(x y)^2 = x + y$
- Q.10. a) Find the entire length of the CARDIOID $r = a(1 \cos \theta)$, a > 0 8,8
 - Prove that for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $\rho = \frac{a^2b^2}{p^3}$ where p is the length of the perpendicular from the centre C(0,0) to the tangent to the ellipse at any point p(x,y).

Section-IV

Q.11. Integrate the following

8,8

i)
$$\int \frac{1}{\sin(x-a)\sin(x-b)} dx$$
 ii)
$$\int e^{x} \frac{(1-\sin x)}{(1-\cos x)} dx$$

Q.12. a) Evaluate
$$\int_{-3}^{3} |x| dx$$
 8,8

b) Evaluate
$$\int_0^{\frac{\pi}{2}} \sin^3 x \cos^4 x \, dx$$