Test Mathematics

B.Sc.

Method (Chap 3,4), Calculus (Chap 1, Ex. 2.1,2.2,2.3.2.5)

You can skip definitions; these are to make strong concepts.
Total Marks: 100
Time Allowed: 3 Hours
Q. 1(i) Define the greatest integer function.

Evaluate $\lim _{x \rightarrow 0} x\left[\frac{1}{x}\right],[\ldots]$ denotes the greatest integer function.
(ii) Define the continuity of a function at a point.

Find constants a and b such that the function f defined by

$$
f(x)= \begin{cases}x^{3} & \text { if } x<-1 \\ a x+b & \text { if }-1 \leq x<1 \\ x^{2}+2 & \text { if } x \geq 1\end{cases}
$$

is continuous for all x.
Q. 2(i) Prove that every differentiable function is continuous. What can you say about the converse. Justify?
(ii) Show that

$$
\frac{d^{n}}{d x^{n}}\left(\frac{\ln x}{x}\right)=\frac{(-1)^{n} n!}{x^{n+1}}\left[\ln x-1-\frac{1}{2}-\frac{1}{3}-\ldots-\frac{1}{n}\right]
$$

Q. 3(i) What is a differentiable function.

If $f(x)=(\sin x)^{\cos x}+(\cos x)^{\sin x}$, find $f^{\prime}(x)$ where $\sin x>0, \cos x>0$
(ii) Define error, relative error and percentage error.

The percentage error in measuring the edge of a cube is 2%. Find the percentage error in computing the volume of the cube.
Q. 4(i) Define pivot element, pivot column, and echelon form of a matrix. Find the rank of the matrix

$$
\left(\begin{array}{lll}
1 & 3 & 7 \\
2 & 3 & 8 \\
0 & 1 & 2 \\
4 & 0 & 4
\end{array}\right)
$$

(ii) What is the difference between a diagonal and a scalar matrix?

Prove that the inverse of a diagonal matrix is a diagonal matrix.
Q. 5(i) what is the consistency criteria for a system of linear equations. Is the following system consistent, if so find the solution?

$$
\begin{aligned}
& x+y=0 \\
& 2 x-y+3 z=3 \\
& x-2 y-z=3
\end{aligned}
$$

(ii) Define inverse of a matrix. Find the inverse of the following matrix using Gauss Jordan Elimination method

$$
\left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & -2 & -3 \\
4 & -2 & -3
\end{array}\right)
$$

Q. 6(i) Define a symmetric and a skew symmetric matrix. Prove that if a matrix is skew symmetric then all of its diagonal entries are zero.
(ii) When we can multiply two matrices?

Compute $(2-A)(3-A)(3-A)(-1-A)$, where $\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ 9 & 1 & 3 & 0 \\ 1 & 2 & 5 & -1\end{array}\right)$

