Laplace Transformation:

Laplace transform is essentially a mathematical tool which can be used to solve several problems in science and engineering. This transform was first introduced by Laplace in the year 1970

MOTIVATIONS:

The Laplace transform is an efficient technique for solving linear differential equations with constant co-efficient. In this chapter, we shall discuss its basic properties and will apply them to solve initial value problem.

Laplace Transform is an operator which transforms a function f of the variable t into a function F of the variable s

EXERCISE 11.1

Formulae of Laplace Transformation:-

The Laplace gave the following formulae for his transformation

(i)	$\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$
(ii)	$\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(iii)	$\mathcal{L}\{\sin b t\}=\frac{b}{s^{2}+b^{2}}$
(iv)	$\mathcal{L}\{\sinh b t\}=\frac{b}{s^{2}-b^{2}}$
(v)	$\mathcal{L}\{\cos b t\}=\frac{s}{s^{2}+b^{2}}$
(vi)	$\mathcal{L}\{\cosh b t\}=\frac{s}{s^{2}-b^{2}}$

Linearity property:-

If c_{1} and c_{2} are any two constants and $F_{1}(s)$ and $F_{2}(s)$ are the Laplace Transform, respectively, of the $f_{1}(t)$ and $f_{2}(t)$, then

$$
\begin{aligned}
& \mathcal{L}\left[c_{1} f_{1}(t)+c_{2} f_{2}(t)\right]=c_{1} \mathcal{L}\left\{f_{1}(t)\right\}+c_{2} \mathcal{L}\left\{f_{2}(t)\right\} \\
& \Rightarrow \mathcal{L}\left[c_{1} f_{1}(t)+c_{2} f_{2}(t)\right]=c_{1} F_{1}(s)+c_{2} F_{2}(s)
\end{aligned}
$$

Shifting property:-

If a function is multiplied by $e^{\text {at }}$ _then transform of the resultant is obtained by replacing s by $s-a$ in the transform of the original function. That is, if

(vii)	$\mathcal{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}}$
(viii)	$\mathcal{L}\left\{e^{a t} \cdot \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}$
(ix)	$\mathcal{L}\left\{e^{a t} \cdot \cos b t\right\}=\frac{s-a}{(s-a)^{2}+b^{2}}$
(x)	$\mathcal{L}\left\{e^{a t} \cdot \sinh b t\right\}=\frac{b}{(s-a)^{2}-b^{2}}$
(xi)	$\mathcal{L}\left\{e^{a t} \cdot \cosh b t\right\}=\frac{s-a}{(s-a)^{2}-b^{2}}$

NUMERICAL PROBLEM (FROM EXERCISE+EXAMPLES)

Compute the Laplace transformation of each of the following

Question 1: $t^{2}+6 t-17$

Solution:-

$$
\text { Let } f(t)=t^{2}+6 t-17
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{2}+6 t-17\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{2}\right\}+\mathcal{L}\{6 t\}-\mathcal{L}\{17\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{2}\right\}+6 \mathcal{L}\{t\}-17 \mathcal{L}\{1\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{2!}{s^{3}}+6 \cdot \frac{1!}{s^{2}}-17 \cdot \frac{0!}{s} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{2}{s^{3}}+\frac{6}{s^{2}}-\frac{17}{s}
\end{aligned}
$$

Question 2: $e^{3 t+5}$

Solution:-

Let $f(t)=e^{3 t+5}$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{3 t+5}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{3 t} \cdot e^{5}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=e^{5} \mathcal{L}\left\{e^{3 t}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=e^{5} \cdot \frac{1}{s-3} \quad \text { since } \mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}
\end{aligned}
$$

Question 3: $\sin (7 t+4)$

Solution:-

Let $f(t)=\sin (7 t+4)$

$$
\Rightarrow f(t)=\sin 7 t \cos 4+\cos 7 t \sin 4
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\sin 7 t \cos 4\}+\mathcal{L}\{\cos 7 t \sin 4\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\cos 4 \mathcal{L}\{\sin 7 t\}+\sin 4 \mathcal{L}\{\cos 7 t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\cos 4 \cdot \frac{7}{s^{2}+49}+\sin 4 \cdot \frac{s}{s^{2}+49}
\end{aligned}
$$

Question 4: $\cos (a t+b)$

Solution:-

Let $f(t)=\cos (a t+b)$

$$
\Longrightarrow f(t)=-\cos a t \cos b+\sin a t \sin b
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\cos a t \cos b\}+\mathcal{L}\{\sin a t \sin b\} \\
& \mathcal{L}\{f(t)\}=\cos b \mathcal{L}\{\cos a t\}+\sin b \mathcal{L}\{\sin a t\} \\
& \mathcal{L}\{f(t)\}=\cos b \cdot \frac{s}{s^{2}+a^{2}}+\sin b \cdot \frac{a}{s^{2}+a^{2}}
\end{aligned}
$$

Question 5: $\cosh (5 t-3)$

Solution:-

```
Let f(t)= cosh(5t-3)
```

$\Rightarrow f(t)=\cosh 5 t \cosh 3-\sinh 5 t \sinh 3$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\cosh 5 t \cosh 3\}-\mathcal{L}\{\sinh 5 t \sinh 3\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\cosh 3 \mathcal{L}\{\cosh 5 t\}-\sinh 3 \mathcal{L}\{\sinh 5 t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\cosh 3 \cdot \frac{s}{s^{2}-25}+\sinh 3 \cdot \frac{5}{s^{2}-25}
\end{aligned}
$$

Therefore,

$$
\mathcal{L}\{\cosh (5 t-3)\}=\frac{s \cosh 3}{s^{2}-25}+\frac{5 \sinh 3}{s^{2}-25}
$$

Question 6: $\left(t^{3}-1\right) e^{-2 t}$

Solution:-

$$
\begin{aligned}
& \text { Let } f(t)=\left(t^{3}-1\right) e^{-2 t} \\
& \quad \Rightarrow f(t)=t^{3} \cdot e^{-2 t}-e^{-2 t}
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{3} \cdot e^{-2 t}\right\}-\mathcal{L}\left\{e^{-2 t}\right\} \\
& \quad \text { Since } \mathcal{L}\left\{t^{n} \cdot e^{a t}\right\}=\frac{n!}{(s-a)^{n+1}} \quad \& \mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{3!}{(s-(-2))^{3+1}}-\frac{1}{s-(-2)} \\
& \Rightarrow \mathcal{L}\left\{\left(\boldsymbol{t}^{3}-\mathbf{1}\right) \boldsymbol{e}^{-2 t}\right\}=\frac{3!}{(\boldsymbol{s}+2)^{4}}-\frac{1}{\boldsymbol{s}+\mathbf{2}}
\end{aligned}
$$

> Question: Compute the Laplace Transform of $e^{3 t}\left(t^{3}+\sin 2 t\right)(E X A M P L E 9$ FROM BOOK OF METHOD)

Solution:-

$$
\begin{aligned}
& \text { Let } f(t)=\boldsymbol{e}^{3 \boldsymbol{t}}\left(\boldsymbol{t}^{3}+\sin 2 \boldsymbol{t}\right) \\
& \quad \Rightarrow f(t)=t^{3} \cdot e^{3 t}+\boldsymbol{e}^{3 t} \cdot \sin 2 \boldsymbol{t}
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{3} \cdot e^{3 t}\right\}-\mathcal{L}\left\{\boldsymbol{e}^{3 \boldsymbol{t}} \cdot \boldsymbol{\operatorname { s i n }} \mathbf{2 t}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{3!}{(s-3)^{3+1}}-\frac{2}{(s-3)^{2}+4}
\end{aligned}
$$

Question: Compute the Laplace Transform

sinh at and cosh at. (EXAMPLE 7 FROM BOOK OF METHOD)

Solution:- Since $\sinh a t=\frac{e^{a t}-e^{-a t}}{2}$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{\sinh a t\}=\mathcal{L}\left\{\frac{e^{a t}-e^{-a t}}{2}\right\} \\
& \Rightarrow \mathcal{L}\{\sinh a t\}=\frac{1}{2}\left[\mathcal{L}\left\{e^{a t}\right\}-\mathcal{L}\left\{e^{-a t}\right\}\right] \\
& \Rightarrow \mathcal{L}\{\sinh a t\}=\frac{1}{2}\left[\frac{1}{s-a}-\frac{1}{s+a}\right] \\
& \Rightarrow \mathcal{L}\{\sinh a t\}=\frac{1}{2}\left[\frac{s+a-s+a}{(s-a)(s+a)}\right] \\
& \Rightarrow \mathcal{L}\{\sinh a t\}=\frac{1}{2}\left[\frac{2 a}{s^{2}-a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{\sinh a t\}=\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

Since $\cosh a t=\frac{e^{a t}+e^{-a t}}{2}$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{\cosh a t\}=\mathcal{L}\left\{\frac{e^{a t}+e^{-a t}}{2}\right\} \\
& \Rightarrow \mathcal{L}\{\cosh a t\}=\frac{1}{2}\left[\mathcal{L}\left\{e^{a t}\right\}+\mathcal{L}\left\{e^{-a t}\right\}\right] \\
& \Rightarrow \mathcal{L}\{\cosh a t\}=\frac{1}{2}\left[\frac{1}{s-a}+\frac{1}{s+a}\right] \\
& \Rightarrow \mathcal{L}\{\cosh a t\}=\frac{1}{2}\left[\frac{s+a+s-a}{(s-a)(s+a)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\{\cosh a t\}=\frac{1}{2}\left[\frac{2 s}{s^{2}-a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{\cosh a t\}=\frac{s}{s^{2}-a^{2}}
\end{aligned}
$$

Question 7: $e^{-t} \sin 2 t$

Solution:-

$$
\text { Let } f(t)=e^{-t} \sin 2 t
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{-t} \sin 2 t\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{2}{(s-(-1))^{2}+2^{2}} \\
& \Rightarrow \mathcal{L}\left\{e^{-t} \sin 2 t\right\}=\frac{2}{(s+1)^{2}+4}
\end{aligned} \quad \text { Since } \mathcal{L}\left\{e^{a t} \cdot \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}
$$

Question 8: $e^{3 t} \cosh 4 t$.

Solution:-

$$
\text { Let } f(t)=e^{3 t} \cosh 4 t
$$

Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{3 t} \cosh 4 t\right\}
$$

$$
\text { Since } \mathcal{L}\left\{e^{a t} \cdot \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}
$$

$\Rightarrow \mathcal{L}\{f(t)\}=\frac{s-3}{(s-3)^{2}+4^{2}}$
$\Rightarrow \mathcal{L}\{f(t)\}=\frac{s-3}{(s-3)^{2}+16}$

Question 9: $\cos t \cos 2 t$.

Solution:-

Since by the formula $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$, we have

$$
\begin{aligned}
& \cos t \cos 2 t=\frac{1}{2}[\cos (t+2 t)+\cos (t-2 t)] \\
& \Rightarrow \cos t \cos 2 t=\frac{1}{2}[\cos 3 t+\cos (-t)] \\
& \Rightarrow \cos t \cos 2 t=\frac{1}{2}[\cos 3 t+\cos t] \text { since } \cos (-\theta)=\cos \theta
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{\cos t \cos 2 t\}=\frac{1}{2}[\mathcal{L}(\cos 3 t)+\mathcal{L}(\cos t)] \\
& \Rightarrow \mathcal{L}\{\cos t \cos 2 t\}=\frac{1}{2}\left[\frac{s}{s^{2}+9}+\frac{s}{s^{2}+1}\right] \\
& \Rightarrow \mathcal{L}\{\cos t \cos 2 t\}=\frac{1}{2} \cdot \frac{s}{s^{2}+9}+\frac{1}{2} \cdot \frac{s}{s^{2}+1}
\end{aligned}
$$

Question 10: $\sin ^{3} t$.

Solution:-

Since by the formula $3 t=3 \sin t-4 \sin ^{3} t$, we have

$$
\begin{aligned}
& 4 \sin ^{3} t=3 \sin t-\sin 3 t \\
& \Rightarrow \sin ^{3} t=\frac{3}{4} \sin t-\frac{1}{4} \sin 3 t
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\sin ^{3} t\right\}=\mathcal{L}\left[\frac{3}{4} \sin t-\frac{1}{4} \sin 3 t\right] \\
& \mathcal{L}\left\{\sin ^{3} t\right\}=\frac{3}{4} \cdot \mathcal{L}\{\sin t\}-\frac{1}{4} \cdot \mathcal{L}\{\sin 3 t\} \quad \text { By Linearity property } \\
& \Rightarrow \mathcal{L}\left\{\sin ^{3} t\right\}=\frac{3}{4} \cdot \frac{1}{s^{2}+1}-\frac{1}{4} \frac{3}{s^{2}+9} \\
& \Rightarrow \mathcal{L}\left\{\sin ^{3} t\right\}=\frac{3}{4\left(s^{2}+1\right)}-\frac{3}{4\left(s^{2}+9\right)}
\end{aligned}
$$

Question 11: $t e^{-3 t} \sin a t$.

Solution:-

$$
\text { Let } f(t)=e^{-3 t} \sin a t
$$

Since we know that $\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}}[\mathcal{L}\{f(t)\}]$. Then, we have
Here $f(t)=e^{-3 t} \sin$ at. Therefore,
$\mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=(-1)^{1} \frac{d}{d s}\left[\mathcal{L}\left\{e^{-3 t} \sin a t\right\}\right]$
$\Rightarrow \mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=-\frac{d}{d s}\left\{\frac{a}{(s-(-3))^{2}+a^{2}}\right\}$
$\Rightarrow \mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=-\frac{d}{d s}\left\{\frac{a}{(s+3)^{2}+a^{2}}\right\}$
$\Rightarrow \mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=(-a) \frac{d}{d s}\left\{\left((s+3)^{2}+a^{2}\right)^{-1}\right\}$
$\Rightarrow \mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=(-a)(-1)\left[\frac{2(s+3)}{\left((s+3)^{2}+a^{2}\right)^{2}}\right]$
$\Rightarrow \mathcal{L}\left\{t e^{-3 t} \sin a t\right\}=\frac{2 a(s+3)}{\left((s+3)^{2}+a^{2}\right)^{2}}$

Question 12: $\sinh ^{2} a t$.

Solution:-

Since by the formulacosh $2 a t=2 \sinh ^{2} a t+1$, we have

$$
\sinh ^{2} a t=\frac{\cosh 2 a t-1}{2}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\sinh ^{2} a t\right\}=\mathcal{L}\left[\frac{\cosh 2 a t-1}{2}\right] \\
& \mathcal{L}\left\{\sinh ^{2} a t\right\}=\frac{1}{2} \cdot \mathcal{L}\{\cosh 2 a t\}-\frac{1}{2} \cdot \mathcal{L}\{1\} \quad \text { By Linearity property } \\
& \Rightarrow \mathcal{L}\left\{\sinh ^{2} a t\right\}=\frac{1}{2} \cdot \frac{s}{s^{2}-4 a^{2}}-\frac{1}{2} \cdot \frac{1}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left\{\sinh ^{2} a t\right\}=\frac{s^{2}-s^{2}+4 a^{2}}{2 s\left(s^{2}-4 a^{2}\right)} \\
& \Rightarrow \mathcal{L}\left\{\sinh ^{2} a t\right\}=\frac{4 a^{2}}{2 s\left(s^{2}-4 a^{2}\right)} \\
& \Rightarrow \mathcal{L}\left\{\sinh ^{2} a t\right\}=\frac{2 a^{2}}{s\left(s^{2}-4 a^{2}\right)}
\end{aligned}
$$

Question: Compute the Laplace Transform

 $\cos ^{2}$ at. (EXAMPLE 8 FROM BOOK OF METHOD)Let $f(t)=\cos ^{2} a t$

$$
\text { Since } \cos 2 a t=2 \cos ^{2} a t-1
$$

$\Rightarrow f(t)=\frac{1+\cos 2 a t}{2}$
$\Rightarrow f(t)=\frac{1}{2}[1+\cos 2 a t]$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}[\mathcal{L}\{1\}+\mathcal{L}\{\cos 2 a t\}] \\
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{1}{s}+\frac{s}{s^{2}+4 a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{s^{2}+4 a^{2}+s^{2}}{s\left(s^{2}+4 a^{2}\right)}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2 s^{2}+4 a^{2}}{s\left(s^{2}+4 a^{2}\right)}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{s^{2}+2 a^{2}}{s\left(s^{2}+4 a^{2}\right)}
\end{aligned}
$$

Question 13: cosh at sin at.

Solution:-

Let $f(t)=\cosh a t \sin a t$

$$
\begin{aligned}
& \Rightarrow f(t)=\frac{e^{a t}+e^{-a t}}{2} \operatorname{since} \cosh a t=\frac{e^{a t}+e^{-a t}}{2} \\
& \Rightarrow f(t)=\frac{1}{2}\left[e^{a t} \cdot \sin a t+e^{-a t} \cdot \sin a t\right]
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\mathcal{L}\left\{e^{a t} . \sin a t\right\}+\mathcal{L}\left\{e^{-a t} . \sin a t\right\}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{a}{(s-a)^{2}+a^{2}}+\frac{a}{(s+a)^{2}+a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{2}\left[\frac{1}{(s-a)^{2}+a^{2}}+\frac{1}{(s+a)^{2}+a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{2}\left[\frac{(s+a)^{2}+a^{2}+(s-a)^{2}+a^{2}}{\left((s-a)^{2}+a^{2}\right)\left((s+a)^{2}+a^{2}\right)}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{2}\left[\frac{(s+a)^{2}+(s-a)^{2}+2 a^{2}}{(s-a)^{2}(s+a)^{2}+a^{2}\left\{(s-a)^{2}+(s+a)^{2}\right\}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{2}\left[\frac{2\left(s^{2}+a^{2}\right)+2 a^{2}}{\left(s^{2}+a^{2}-2 a s\right)\left(s^{2}+a^{2}+2 a s\right)+a^{2}\left\{2\left(s^{2}+a^{2}\right)\right\}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=a\left[\frac{s^{2}+a^{2}++a^{2}}{\left(s^{2}+a^{2}\right)^{2}-4 a^{2} s^{2}+2 a^{2}\left(s^{2}+a^{2}\right)+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=a\left[\frac{s^{2}+2 a^{2}}{s^{4}+a^{4}+2 a^{2} s^{2}-4 a^{2} s^{2}+2 a^{2} s^{2}+2 a^{4}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=a\left[\frac{s^{2}+a^{2}++a^{2}}{s^{4}+a^{4}+2 a^{4}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a\left(s^{2}+2 a^{2}\right)}{s^{4}+4 a^{4}} \\
& \\
& \Rightarrow
\end{aligned}
$$

Question 14: sinh at cos at.

Solution:-

Let $f(t)=\sinh$ at $\cos a t$

$$
\text { Since } \sinh a t=\frac{e^{a t}-e^{-a t}}{2}
$$

$$
\begin{aligned}
& \Rightarrow f(t)=\frac{e^{a t}-e^{-a t}}{2} \cos a t \\
& \Rightarrow f(t)=\frac{1}{2}\left[e^{a t} \cdot \cos a t-e^{-a t} \cdot \cos a t\right]
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\mathcal{L}\left\{e^{a t} . \cos a t\right\}-\mathcal{L}\left\{e^{-a t} . \cos a t\right\}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{s-a}{(s-a)^{2}+a^{2}}-\frac{s+a}{(s+a)^{2}+a^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{s-a\left\{(s+a)^{2}+a^{2}\right\}-(s+a)\left\{(s-a)^{2}+a^{2}\right\}}{\left((s-a)^{2}+a^{2}\right)\left((s+a)^{2}+a^{2}\right)}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\} \\
& =\frac{1}{2}\left[\frac{(s-a)(s+a)^{2}+a^{2}(s-a)-(s+a)(s-a)^{2}-a^{2}(s+a)}{(s-a)^{2}(s+a)^{2}+a^{2}\left\{(s-a)^{2}+(s+a)^{2}\right\}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{(s-a)(s+a)(s+a-s+a)+a^{2}(s-a-s-a)}{\left(s^{2}+a^{2}-2 a s\right)\left(s^{2}+a^{2}+2 a s\right)+a^{2}\left\{2\left(s^{2}+a^{2}\right)\right\}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{\left(s^{2}-a^{2}\right) 2 a+a^{2}(-2 a)}{\left(s^{2}+a^{2}\right)^{2}-4 a^{2} s^{2}+2 a^{2}\left(s^{2}+a^{2}\right)+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2 a\left(s^{2}-a^{2}-a^{2}\right)}{s^{4}+a^{4}+2 a^{2} s^{2}-4 a^{2} s^{2}+2 a^{2} s^{2}+2 a^{4}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2 a\left(s^{2}-2 a^{2}\right)}{s^{4}+a^{4}+2 a^{4}+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a\left(s^{2}-2 a^{2}\right)}{s^{4}+4 a^{4}} \\
& \\
& \Rightarrow
\end{aligned}
$$

Question 15: cosh at cos bt.

Solution:-

Let $f(t)=\cosh a t \cos b t$
Since $\cosh a t=\frac{e^{a t}+e^{-a t}}{2}$

$$
\begin{aligned}
& \Rightarrow f(t)=\frac{e^{a t}+e^{-a t}}{2} \cos b t \\
& \Rightarrow f(t)=\frac{1}{2}\left[e^{a t} \cdot \cos b t+e^{-a t} \cdot \cos b t\right]
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\mathcal{L}\left\{e^{a t} . \cos b t\right\}+\mathcal{L}\left\{e^{-a t} . \cos b t\right\}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{s-a}{(s-a)^{2}+b^{2}}+\frac{s+a}{(s+a)^{2}+b^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{(s-a)\left\{(s+a)^{2}+b^{2}\right\}+(s+a)\left\{(s-a)^{2}+b^{2}\right\}}{\left((s-a)^{2}+b^{2}\right)\left((s+a)^{2}+b^{2}\right)}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\} \\
& =\frac{1}{2}\left[\frac{(s-a)(s+a)^{2}+b^{2}(s-a)+(s+a)(s-a)^{2}+(s-a)^{2}+b^{2}(s+a)}{(s-a)^{2}(s+a)^{2}+b^{2}\left\{(s-a)^{2}+(s+a)^{2}\right\}+b^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{(s-a)(s+a)(s+a+s-a)+b^{2}(s-a+s+a)}{\left(s^{2}+a^{2}-2 a s\right)\left(s^{2}+a^{2}+2 a s\right)+b^{2}\left\{2\left(s^{2}+a^{2}\right)\right\}+b^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{\left(s^{2}-a^{2}\right) 2 s+b^{2}(2 s)}{\left(s^{2}+a^{2}\right)^{2}-4 a^{2} s^{2}+2 b^{2}\left(s^{2}+a^{2}\right)+a^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2 s\left(s^{2}-a^{2}+b^{2}\right)}{s^{4}+a^{4}+2 a^{2} s^{2}-4 a^{2} s^{2}+2 b^{2} s^{2}+2 a^{2} b^{2}+b^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=1\left[\frac{s\left(s^{2}-a^{2}+b^{2}\right)}{s^{4}+a^{4}+b^{4}+2 a^{2} s^{2}+2 a^{2} b^{2}+2 b^{2} s^{2}-4 a^{2} s^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{s\left(s^{2}-a^{2}+b^{2}\right)}{\left(s^{2}+a^{2}+b^{2}\right)^{2}-4 a^{2} s^{2}}
\end{aligned}
$$

LAPLACE BY DEFINITION:-

Let f be a real-valued piecewise continuous function defined on $[0, \infty[$. The LAPLACE
TRANSFORMATION of f, denoted as $\mathcal{L}\{f\}$, is the function \boldsymbol{F} is defined by

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Provided the improper integral converges.

NOTE:-

The operation transforms the given function f of the variable t into a new function F of the variable s and is written symbolically $F(s)=\mathcal{L}\{f(t)\}$ or simply $F=\mathcal{L}\{f\}$.

VALUE OF BRACKET FUNCTION IN A INTEGRAL:-

If there is any bracket function in the form [t] is in definite integral, then the value of that bracket is 1 less than the upper limit. That is,

$$
\int_{a}^{a+1}[t] d t=\int_{a}^{a+1} a \cdot d t
$$

Question: Compute the Laplace Transform of $f(t)=1$ (EXAMPLE 1)

SOLUTION:-

Let $f(t)=1$
Taking \mathcal{L} on both sides, we have
$\mathcal{L}\{f(t)\}=\mathcal{L}\{1\}$
$\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} .1 d t$ (by definition)
$\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} d t$
$\Rightarrow \mathcal{L}\{f(t)\}=\left|\frac{e^{-s t}}{-s}\right|_{0}^{\infty}$
$\Rightarrow \mathcal{L}\{f(t)\}=\frac{-1}{s}(0-1)$
$\Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s}$
Question: Compute the Laplace Transform of $\boldsymbol{t}^{\boldsymbol{n}}$. (EXAMPLE 2)

Solution:-

Let $f(t)=t^{n}$
Taking \mathcal{L} on both sides, we have
$\mathcal{L}\{f(t)\}=\mathcal{L}\left\{t^{n}\right\}$
$\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} . t^{n} d t$ (by definition)
$\Rightarrow \mathcal{L}\{f(t)\}=\left|t^{n} \cdot \frac{e^{-s t}}{-s}\right|_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} \cdot n t^{n-1} d t$
$\Rightarrow \mathcal{L}\{f(t)\}=(0-0)+\frac{n}{s} \int_{0}^{\infty} e^{-s t} . t^{n-1} d t$
$\Rightarrow \mathcal{L}\{f(t)\}=\frac{n}{s} \int_{0}^{\infty} e^{-s t} \cdot t^{n-1} d t$
$\Rightarrow \mathcal{L}\left\{t^{n}\right\}=\frac{n}{s} \mathcal{L}\left\{t^{n-1}\right\}---(i)$
From (i), we have
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{n-1}{s} \mathcal{L}\left\{t^{n-2}\right\}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{n-1}{s} \cdot \frac{n-2}{s} \mathcal{L}\left\{t^{n-3}\right\}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{n-1}{s} \cdot \frac{n-2}{s} \cdot \frac{n-3}{s} \cdot \mathcal{L}\left\{t^{n-4}\right\}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{n-1}{s} \cdot \frac{n-2}{s} \cdot \frac{n-3}{s} \ldots \ldots \ldots \mathcal{L}\left\{t^{1}\right\}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{n-1}{s} \cdot \frac{n-2}{s} \cdot \frac{n-3}{s} \ldots \ldots \ldots \frac{1}{s} \mathcal{L}\left\{t^{0}\right\}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{(n-1) \cdot(n-2) \cdot(n-3) \ldots \ldots .3 \text {.2.1 }}{\text { s.s.s..........s }} \cdot \frac{1}{s}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{(n-1)!}{s^{n-1}} \cdot \frac{1}{s}$
$\Rightarrow \mathcal{L}\left\{t^{n-1}\right\}=\frac{(n-1)!}{s^{n}}---(i i)$
Using (ii) in (i), we have
$\mathcal{L}\left\{t^{n}\right\}=\frac{n}{s} \frac{(n-1)!}{s^{n}}$
$\Longrightarrow \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$

Question: Compute the Laplace Transform of $e^{a t}$. (EXAMPLE 3)

Solution:-

Let $f(t)=e^{a t}$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{e^{a t}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} . e^{a t} d t \text { (by definition) } \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t+a t} d t \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{(a-s) t} d t \\
& \Rightarrow \mathcal{L}\{f(t)\}=\left|\frac{e^{(a-s) t}}{a-s}\right|_{0}^{\infty} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{a-s}\left|e^{-(s-a) t}\right|_{0}^{\infty} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{a-s}(0-1) \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{-1}{a-s} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s-a}
\end{aligned}
$$

Question: Compute the Laplace Transform of (i) cos at (ii) sin at. (EXAMPLE 4)

Solution:-

(i) $\cos a t$

Let $f(t)=\cos a t$
Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{\cos a t\}
$$

$\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} . \cos a t d t$ (by definition) $---(a)$
Suppose $I=\int_{0}^{\infty} e^{-s t} . \cos a t d t$
$\Rightarrow I=\left|\cos a t \cdot \frac{e^{-s t}}{-s}\right|_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} \cdot-a \sin a t d t$
$\Rightarrow I=\left[0-\left(\frac{-1}{s}\right)\right]-\frac{a}{s}\left[\left|\sin a t \cdot \frac{e^{-s t}}{-s}\right|_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} \cdot a \cos a t d t\right]$
$\Rightarrow I=\frac{1}{s}-\frac{a}{s}\left[(0-0)+\frac{a}{s} \int_{0}^{\infty} e^{-s t} \cdot \cos a t d t\right]$
$\Rightarrow I=\frac{1}{S}-\frac{a}{s}\left[\frac{a}{S} I\right]$
$\Rightarrow I=\frac{1}{s}-\frac{a^{2}}{s^{2}} I$
$\Rightarrow I+\frac{a^{2}}{s^{2}} I=\frac{1}{s}$
$\Rightarrow\left(\frac{s^{2}+a^{2}}{s^{2}}\right) I=\frac{1}{s}$
$\Rightarrow I=\frac{1}{s} \cdot\left(\frac{s^{2}}{s^{2}+a^{2}}\right)$
$\Rightarrow I=\frac{s}{s^{2}+a^{2}}$
$\Rightarrow \int_{0}^{\infty} e^{-s t} \cdot \cos a t d t=\frac{s}{s^{2}+a^{2}}$
Thus equation (a) becomes

$$
\Rightarrow \mathcal{L}\{f(t)\}=\frac{s}{s^{2}+a^{2}}
$$

(ii) $\sin a t$

Let $f(t)=\sin a t$
Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{\sin a t\}
$$

$$
\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} \cdot \sin \text { at } d t \text { (by definition) }---(a)
$$

Suppose $I=\int_{0}^{\infty} e^{-s t} . \sin a t d t$
$\Rightarrow I=\left|\sin a t \cdot \frac{e^{-s t}}{-s}\right|_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} \cdot a \cos a t d t$
$\Rightarrow I=[0-0]+\frac{a}{s}\left[\left|\cos a t \cdot \frac{e^{-s t}}{-s}\right|_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{-s t}}{-s} \cdot-a \sin a t d t\right]$
$\Rightarrow I=\frac{a}{s}\left[\left(0-\frac{-1}{s}\right)-\frac{a}{s} \int_{0}^{\infty} e^{-s t} \cdot \cos a t d t\right]$
$\Rightarrow I=\frac{a}{s}\left[\frac{1}{s}-\frac{a}{s} I\right]$
$\Rightarrow I=\frac{a}{s^{2}}-\frac{a^{2}}{s^{2}} I$
$\Rightarrow I+\frac{a^{2}}{s^{2}} I=\frac{a}{s^{2}}$
$\Rightarrow\left(\frac{s^{2}+a^{2}}{s^{2}}\right) I=\frac{a}{s^{2}}$
$\Rightarrow I=\frac{a}{s^{2}+a^{2}}$
$\Rightarrow \int_{0}^{\infty} e^{-s t} \cdot \sin a t d t=\frac{a}{s^{2}+a^{2}}$
Thus equation (a) becomes

$$
\Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{s^{2}+a^{2}}
$$

Question 16: Compute the Laplace Transform of $[t]$

Solution:-

Let $f(t)=[t]$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{[t]\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} .[t] d t \text { (by definition) } \\
& \mathcal{L}\{f(t)\}=\int_{0}^{1} e^{-s t} \cdot[t] d t+\int_{1}^{2} e^{-s t} .[t] d t+\int_{2}^{3} e^{-s t} .[t] d t+\int_{3}^{4} e^{-s t} .[t] d t \ldots \\
& \mathcal{L}\{f(t)\}=\int_{0}^{1} e^{-s t} \cdot(0) d t+\int_{1}^{2} e^{-s t} .(1) d t+\int_{2}^{3} e^{-s t} \cdot(2) d t+\int_{3}^{4} e^{-s t} \cdot(3) d t \\
& \Rightarrow \mathcal{L}\{f(t)\}=0+\int_{1}^{2} e^{-s t} d t+2 \int_{2}^{3} e^{-s t} d t+3 \int_{3}^{4} e^{-s t} d t \ldots \ldots \ldots \\
& \Rightarrow \mathcal{L}\{f(t)\}=\left|\frac{e^{-s t}}{-s}\right|_{1}^{2}+2 \cdot\left|\frac{e^{-s t}}{-s}\right|_{2}^{3}+3 \cdot\left|\frac{e^{-s t}}{-s}\right|_{3}^{4}+\cdots \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{-1}{s}\left|e^{-s t}\right|_{1}^{2}+\frac{-1}{s} \cdot\left|e^{-s t}\right|_{2}^{3}+3 \cdot\left|e^{-s t}\right|_{3}^{4}+\cdots \\
& \Rightarrow \mathcal{L}\{f(t)\}=-\frac{1}{s}\left(e^{-2 s}-e^{-s}\right)-\frac{1}{s} \cdot 2\left(e^{-3 s}-e^{-2 s}\right)-\frac{1}{s} \cdot 3\left(e^{-4 s}-e^{-3 s}\right)+. . \\
& \Rightarrow \mathcal{L}\{f(t)\}=-\frac{1}{s}\left(e^{-2 s}-e^{-s}+2 e^{-3 s}-2 e^{-2 s}+3 e^{-4 s}-3 e^{-3 s}+\cdots\right) \\
& \Rightarrow \mathcal{L}\{f(t)\}=-\frac{1}{s}\left(-e^{-s}-e^{-2 s}-e^{-3 s}-e^{-4 s}+\cdots\right) \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s}\left(e^{-s}+e^{-2 s}+e^{-3 s}+e^{-4 s}+\cdots\right) \\
& \mathcal{L}\{f(t)\}=\frac{1}{s} \cdot \frac{e^{-s}}{1-e^{-s}} \\
& \mathcal{L}\{f(t)\}=\frac{e^{-s}}{s\left(1-e^{-s}\right)}
\end{aligned}
$$

Question 17: $t^{\alpha} \quad \alpha>-1$

Solution:-

Let $f(t)=\boldsymbol{t}^{\alpha}$
Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\left\{\boldsymbol{t}^{\alpha}\right\}
$$

$$
\begin{gathered}
\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} \cdot t^{\alpha} d t \\
\text { Put st }=u \text { so that } t=\frac{1}{s} u \\
d t=\frac{1}{s} \cdot d u \\
\text { When } t \rightarrow 0 \text { then } u \rightarrow 0 \\
\text { When } t \rightarrow \infty \text { then } u \rightarrow \infty \\
\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-u} \cdot\left(\frac{u}{s}\right)^{\alpha} \frac{1}{s} d u \\
\Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-u} \cdot \frac{u^{\alpha}}{s^{\alpha}} \frac{1}{s} d u \\
\Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s^{\alpha+1}} \int_{0}^{\infty} e^{-u} \cdot u^{\alpha} d t
\end{gathered}
$$

From calculus,

$$
\int_{0}^{\infty} e^{-u} \cdot u^{\alpha} d t=\Gamma \alpha+1
$$

Therefore,

$$
\mathcal{L}\{f(t)\}=\frac{\Gamma \alpha+1}{s^{\alpha+1}}
$$

Question 27: ln t

Solution:-

Let $f(t)=\ln t$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\ln t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} \cdot \ln t d t \\
& \text { Put st }=u \text { so that } t=\frac{1}{s} u \\
& \qquad d t=\frac{1}{s} \cdot d u
\end{aligned}
$$

$$
\begin{aligned}
& \text { When } t \rightarrow 0 \text { then } u \rightarrow 0 \\
& \quad \text { When } t \rightarrow \infty \text { then } u \rightarrow \infty \\
& \Rightarrow \mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-u} \cdot \ln \left(\frac{u}{s}\right) \frac{1}{s} d u \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot\{\ln (u)-\ln (s)\} d u \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty}\left\{e^{-u} \cdot \ln (u)-e^{-u} \cdot \ln (s)\right\} d u \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (u) d u-\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (s) d u \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (u) d u-\frac{1}{s} \cdot \ln (s) \int_{0}^{\infty} e^{-u} d u \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (u) d u-\left.\left.\frac{1}{s} \cdot \ln (s)\right|_{-} ^{-u}\right|_{0} ^{\infty} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (u) d u+\frac{1}{s} \cdot \ln (s)(0-1) \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \int_{0}^{\infty} e^{-u} \cdot \ln (u) d u-\frac{1}{s} \cdot \ln (s)---(A)
\end{aligned}
$$

From calculus,

$$
\int_{0}^{\infty} e^{-u} \cdot u^{\alpha} d t=\Gamma \alpha+1
$$

Differentiating with respect to α, we have

$$
\int_{0}^{\infty} e^{-u} \cdot u^{\alpha} \ln (u) d t=\Gamma 1^{\prime}
$$

When $\alpha=0$. Therefore,

$$
\int_{0}^{\infty} e^{-u} \cdot \ln (u) d t=\Gamma 1^{\prime}
$$

Thus equation (A) becomes

$$
\Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s} \Gamma 1^{\prime}-\frac{1}{s} \cdot \ln (s)
$$

FORMULA:-

Let $f(t)$ be any function, then the Laplace transformation of $f(t)$ multiplied by t^{n} can be found by using the formula is given below:

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} \mathcal{L}\{f(t)\}
$$

Question 18: $t^{2} \sin a t$

Solution:-

Let $f(t)=\sin a t$
By the formula, we have

$$
\begin{aligned}
& \mathcal{L}\left\{t^{2} \sin a t\right\}=(-1)^{2} \frac{d^{2}}{d s^{2}} \mathcal{L}\{\sin a t\} \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d^{2}}{d s^{2}}\left\{\frac{a}{s^{2}+a^{2}}\right\} \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d}{d s}\left[\frac{d}{d s}\left\{\frac{a}{s^{2}+a^{2}}\right\}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=a \cdot \frac{d}{d s}\left[\frac{-2 s}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=-2 a \cdot \frac{d}{d s}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=-2 a \cdot\left[\frac{\left(s^{2}+a^{2}\right)^{2} \cdot 1-2\left(s^{2}+a^{2}\right) 2 s \cdot s}{\left.{\left(s^{2}+a^{2}\right)^{4}}\right]}\right. \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=-2 a \cdot\left[\frac{\left(s^{2}+a^{2}\right)^{2} \cdot 1-4 s^{2}\left(s^{2}+a^{2}\right)}{\left.{\left(s^{2}+a^{2}\right)^{4}}\right]}\right. \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=-2 a \cdot\left[\frac{\left(s^{2}+a^{2}\right)\left(s^{2}+a^{2}-4 s^{2}\right)}{\left(s^{2}+a^{2}\right)^{4}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=-2 a \cdot\left[\frac{\left(a^{2}-3 s^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{2 a\left(3 s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}
\end{aligned}
$$

Question 19: $t^{2} \cos a t$

Solution:-

Let $f(t)=\cos a t$
By the formula, we have

$$
\begin{aligned}
& \mathcal{L}\left\{t^{2} \cos a t\right\}=(-1)^{2} \frac{d^{2}}{d s^{2}} \mathcal{L}\{\cos a t\} \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d^{2}}{d s^{2}}\left\{\frac{s}{s^{2}+a^{2}}\right\} \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d}{d s}\left[\frac{d}{d s}\left\{\frac{s}{s^{2}+a^{2}}\right\}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d}{d s}\left[\frac{\left(s^{2}+a^{2}\right) \cdot 1-s .2 s}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d}{d s}\left[\frac{s^{2}+a^{2}-2 s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\frac{d}{d s}\left[\frac{a^{2}-s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\left[\frac{\left(s^{2}+a^{2}\right)^{2} \cdot(-2 s)-\left(a^{2}-s^{2}\right) 2\left(s^{2}+a^{2}\right) .2 s}{\left(s^{2}+a^{2}\right)^{4}}\right] \\
& \Rightarrow \mathcal{L}\left\{t^{2} \sin a t\right\}=\left[\frac{2 s\left(s^{2}+a^{2}\right)\left(-s^{2}-a^{2}-2 a^{2}+2 s^{2}\right)}{\left(s^{2}+a^{2}\right)^{4}}\right] \\
& \Rightarrow \mathcal{L}\left\{\boldsymbol{t}^{2} \sin \boldsymbol{a} \boldsymbol{t}\right\}=\frac{\mathbf{2 s}\left(s^{2}-\mathbf{3} \boldsymbol{a}^{2}\right)}{\left(\boldsymbol{s}^{2}+\boldsymbol{a}^{2}\right)^{3}}
\end{aligned}
$$

Question 20: $\operatorname{tsin}^{2} a t$

Solution:-

Let $f(t)=t \sin ^{2} a t$

$$
\begin{aligned}
& f(t)=t \cdot \frac{1-\cos 2 a t}{2} \quad \text { by trigonometry } \cos 2 \alpha=1-2 \sin ^{2} \theta \\
& \Rightarrow f(t)=\frac{1}{2}[t-t \cos 2 a t]
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\frac{1}{2}[\mathcal{L}\{t\}-\mathcal{L}\{t \cos 2 a t\}] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{1}{s^{2}}-(-1) \frac{d}{d s}\left(\frac{s}{s^{2}+4 a^{2}}\right)\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{1}{s^{2}}+\frac{\left(s^{2}+4 a^{2}\right) \cdot 1-s .2 s}{\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{1}{s^{2}}+\frac{s^{2}+4 a^{2}-2 s^{2}}{\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{1}{s^{2}}+\frac{4 a^{2}-s^{2}}{\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{\left(s^{2}+4 a^{2}\right)^{2}+s^{2}\left(4 a^{2}-s^{2}\right)}{s^{2}\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{s^{4}+16 a^{4}+8 a^{2} s^{2}+4 a^{2} s^{2}-s^{4}}{s^{2}\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{16 a^{4}+12 a^{2} s^{2}}{s^{2}\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{4 a^{2}\left(4 a^{2}+3 s^{2}\right)}{s^{2}\left(s^{2}+4 a^{2}\right)^{2}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{2 a^{2}\left(4 a^{2}+3 s^{2}\right)}{s^{2}\left(s^{2}+4 a^{2}\right)^{2}}
\end{aligned}
$$

Question 21: $t^{2} \cos ^{2} 2 t$

Solution:-

Let $f(t)=t^{2} \cos ^{2} 2 t$

$$
\begin{aligned}
& f(t)=t^{2} \cdot \frac{1+\cos 4 t}{2} \quad \text { by trigonometry } \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
& \Rightarrow f(t)=\frac{1}{2}\left[t^{2}+t^{2} \cos 4 t\right]
\end{aligned}
$$

Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\frac{1}{2}\left[\mathcal{L}\left\{t^{2}\right\}+\mathcal{L}\left\{t^{2} \cos 4 t\right\}\right]
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2}{s^{3}}+(-1)^{2} \frac{d^{2}}{d s^{2}}\left(\frac{s}{s^{2}+16}\right)\right] \text { By the formula } \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2}{s^{3}}+\frac{d}{d s}\left(\frac{\left(s^{2}+16\right) .1-s .2 s}{\left(s^{2}+16\right)^{2}}\right)\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2}{s^{3}}+\frac{d}{d s}\left(\frac{16-s^{2}}{\left(s^{2}+16\right)^{2}}\right)\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2}{s^{3}}+\left(\frac{\left(s^{2}+16\right)^{2}(-2 s)-\left(16-s^{2}\right) 2\left(s^{2}+16\right) .2 s}{\left(s^{2}+16\right)^{4}}\right)\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{2}\left[\frac{2}{s^{3}}+\frac{2 s\left(s^{2}+16\right)\left(-s^{2}-16-32+2 s^{2}\right.}{\left(s^{2}+16\right)^{4}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{2}{2}\left[\frac{1}{s^{3}}+\frac{s\left(s^{2}-48\right)}{\left(s^{2}+16\right)^{3}}\right] \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s^{3}}+\frac{s\left(s^{2}+16-64\right)}{\left(s^{2}+16\right)^{3}} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s^{3}}+\frac{s\left(s^{2}+16\right)}{\left(s^{2}+16\right)^{3}}-\frac{64}{\left(s^{2}+16\right)^{3}} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s^{3}}+\frac{s^{2}}{\left(s^{2}+16\right)^{2}}-\frac{64}{\left(s^{2}+16\right)^{3}} \\
& \Rightarrow \mathcal{L}\{\boldsymbol{f}(t)\}=\frac{\left(s^{2}+\mathbf{1 6}\right)^{3}+s^{4}\left(s^{2}+16\right)-\mathbf{6 4} s^{3}}{s^{3}\left(s^{2}+16\right)^{3}}
\end{aligned}
$$

FORMULA

If $\mathcal{L}\{f(t)\}=F(s)$ then

$$
\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u \text { provided } \lim _{t \rightarrow 0^{+}} \frac{f(t)}{t} \text { exists }
$$

Question \# 22:- $\frac{\sin a t}{t}$

SOLUTION:-

Let $f(t)=\sin a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\mathcal{L}\{f(t)\}=\mathcal{L}\{\sin a t\}
$$

$$
\Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{s^{2}+a^{2}}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\int_{s}^{\infty} \frac{a}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \int_{s}^{\infty} \frac{1}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \int_{s}^{\infty} \frac{1}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \frac{1}{a}\left|\tan ^{-1}\left(\frac{u}{a}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\left[\tan ^{-1}(\infty)-\tan ^{-1}\left(\frac{s}{a}\right)\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\frac{\pi}{2}-\tan ^{-1}\left(\frac{s}{a}\right) \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\tan ^{-1}\left(\frac{a}{s}\right)
\end{aligned}
$$

Question \# 23:- $\frac{1-\cos a t}{t}$

SOLUTION:-

Let $f(t)=1-\cos a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{1-\cos a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\{1\}-\mathcal{L}\{\cos a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s}-\frac{s}{s^{2}+a^{2}}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\int_{s}^{\infty}\left(\frac{1}{u}-\frac{u}{u^{2}+a^{2}}\right) d u \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\int_{s}^{\infty} \frac{1}{u} d u-\int_{s}^{\infty} \frac{u}{u^{2}+a^{2}} d u
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln u^{2}\right|_{s}^{\infty}-\frac{1}{2}\left|\ln \left(u^{2}+a^{2}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln \frac{u^{2}}{u^{2}+a^{2}}\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln \frac{1}{1+\frac{a^{2}}{u^{2}}}\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left[\ln 1-\ln \frac{1}{1+\frac{a^{2}}{s^{2}}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left[0-\ln \frac{s^{2}}{s^{2}+a^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=-\frac{1}{2} \ln \frac{s^{2}}{s^{2}+a^{2}} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \ln \frac{s^{2}+a^{2}}{s^{2}}
\end{aligned}
$$

Question \# 26:- $\frac{\sinh a t}{t}$

SOLUTION:-

Let $f(t)=\sinh a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\sinh a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{s^{2}-a^{2}}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=\int_{s}^{\infty} \frac{a}{u^{2}-a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=a \cdot \int_{s}^{\infty} \frac{1}{u^{2}-a^{2}} d u
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=a \cdot \frac{1}{2 a}\left|\ln \left(\frac{u-a}{u+a}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=\frac{1}{2}\left|\ln \left(\frac{1-\frac{a}{u}}{1+\frac{a}{u}}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=\frac{1}{2}\left[\ln 1-\ln \left(\frac{1-\frac{a}{s}}{1+\frac{a}{s}}\right)\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=\frac{1}{2}\left[0-\ln \left(\frac{s-a}{s+a}\right)\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=-\frac{1}{2} \ln \left(\frac{s-a}{s+a}\right) \\
& \Rightarrow \mathcal{L}\left\{\frac{\sinh a t}{t}\right\}=\frac{1}{2} \ln \left(\frac{s+a}{s-a}\right)
\end{aligned}
$$

Question : Compute the laplace transform of $\frac{\sin t}{t}$ (Example 12)

SOLUTION:-

Let $f(t)=\sin t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\sin t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s^{2}+1}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{\sin t}{t}\right\}=\int_{s}^{\infty} \frac{1}{u^{2}+1} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin t}{t}\right\}=\frac{1}{1} \cdot\left|\tan ^{-1}\left(\frac{u}{1}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin t}{t}\right\}=\left[\tan ^{-1}(\infty)-\tan ^{-1}(s)\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\frac{\pi}{2}-\tan ^{-1}(s)
\end{aligned}
$$

FORMULA

If g is piecewise continuous and is of exponential order a, then

$$
\mathcal{L}\left\{\int_{0}^{t} g(u) d u\right\}=\frac{1}{s} \mathcal{L}\{g(t)\}
$$

Question \# 24:- $\int_{0}^{t} \frac{\sin a u}{u} d u$

SOLUTION:-

Let $g(u)=\frac{\sin a u}{u}$
Therefore, by the formula $\mathcal{L}\left\{\int_{0}^{t} g(u) d u\right\}=\frac{1}{s} \mathcal{L}\{g(t)\}$, we have

$$
\mathcal{L}\left\{\int_{0}^{t} \frac{\sin a u}{u} d u\right\}=\frac{1}{s} \mathcal{L}\left\{\frac{\sin a t}{t}\right\}---(A)
$$

Let $f(t)=\sin a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{\sin a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{a}{s^{2}+a^{2}}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\int_{s}^{\infty} \frac{a}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \int_{s}^{\infty} \frac{1}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \int_{s}^{\infty} \frac{1}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=a \cdot \frac{1}{a}\left|\tan ^{-1}\left(\frac{u}{a}\right)\right|_{s}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\left[\tan ^{-1}(\infty)-\tan ^{-1}\left(\frac{s}{a}\right)\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\frac{\pi}{2}-\tan ^{-1}\left(\frac{s}{a}\right) \\
& \Rightarrow \mathcal{L}\left\{\frac{\sin a t}{t}\right\}=\tan ^{-1}\left(\frac{a}{s}\right)
\end{aligned}
$$

Therefore equation (A) becomes

$$
\mathcal{L}\left\{\int_{0}^{t} \frac{\sin a u}{u} d u\right\}=\frac{1}{s} \tan ^{-1}\left(\frac{a}{s}\right)
$$

Question \# 25:- $\int_{0}^{t} \frac{1-\cos a u}{u} d u$
Let $g(u)=\frac{1-\cos a u}{u}$
Therefore, by the formula $\mathcal{L}\left\{\int_{0}^{t} g(u) d u\right\}=\frac{1}{s} \mathcal{L}\{g(t)\}$, we have

$$
\mathcal{L}\left\{\int_{0}^{t} \frac{1-\cos a u}{u} d u\right\}=\frac{1}{s} \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}---(A)
$$

Let $f(t)=1-\cos a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{1-\cos a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\{1\}-\mathcal{L}\{\cos a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s}-\frac{s}{s^{2}+a^{2}}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\int_{s}^{\infty}\left(\frac{1}{u}-\frac{u}{u^{2}+a^{2}}\right) d u \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\int_{s}^{\infty} \frac{1}{u} d u-\int_{s}^{\infty} \frac{u}{u^{2}+a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln u^{2}\right|_{s}^{\infty}-\frac{1}{2}\left|\ln \left(u^{2}+a^{2}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln \frac{u^{2}}{u^{2}+a^{2}}\right|_{s}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln \frac{1}{1+\frac{a^{2}}{u^{2}}}\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left[\ln 1-\ln \frac{1}{1+\frac{a^{2}}{s^{2}}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \cdot\left[0-\ln \frac{s^{2}}{s^{2}+a^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=-\frac{1}{2} \ln \frac{s^{2}}{s^{2}+a^{2}} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cos a t}{t}\right\}=\frac{1}{2} \ln \frac{s^{2}+a^{2}}{s^{2}}
\end{aligned}
$$

Therefore equation (A) becomes

$$
\mathcal{L}\left\{\int_{0}^{t} \frac{1-\cos a u}{u} d u\right\}=\frac{1}{2 s} \ln \frac{s^{2}+a^{2}}{s^{2}}
$$

Question: - Compute the Laplace Transform of $\int_{0}^{t} \frac{1-\cosh a u}{u} d u$. (Example 13)

Solution:

Let $g(u)=\frac{1-\cosh a u}{u}$
Therefore, by the formula $\mathcal{L}\left\{\int_{0}^{t} g(u) d u\right\}=\frac{1}{s} \mathcal{L}\{g(t)\}$, we have

$$
\begin{equation*}
\mathcal{L}\left\{\int_{0}^{t} \frac{1-\cosh a u}{u} d u\right\}=\frac{1}{s} \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}--- \tag{A}
\end{equation*}
$$

Let $f(t)=1-\cosh a t---(i)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\{1-\cosh a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\mathcal{L}\{1\}-\mathcal{L}\{\cosh a t\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=\frac{1}{s}-\frac{s}{s^{2}-a^{2}}
\end{aligned}
$$

By the formula $\mathcal{L}\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(u) d u$, we have

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\int_{s}^{\infty}\left(\frac{1}{u}-\frac{u}{u^{2}-a^{2}}\right) d u \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\int_{s}^{\infty} \frac{1}{u} d u-\int_{s}^{\infty} \frac{u}{u^{2}-a^{2}} d u \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln u^{2}\right|_{s}^{\infty}-\frac{1}{2}\left|\ln \left(u^{2}-a^{2}\right)\right|_{s}^{\infty} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \cdot\left|\ln \frac{u^{2}}{u^{2}-a^{2}}\right|_{s}^{\infty} \\
& \left.\Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \cdot \right\rvert\, \ln \frac{1}{1-\left.\frac{a^{2}}{u^{2}}\right|_{s} ^{\infty}} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \cdot\left[\ln 1-\ln \frac{1}{1-\frac{a^{2}}{s^{2}}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \cdot\left[0-\ln \frac{s^{2}}{s^{2}-a^{2}}\right] \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=-\frac{1}{2} \ln \frac{s^{2}}{s^{2}-a^{2}} \\
& \Rightarrow \mathcal{L}\left\{\frac{1-\cosh a t}{t}\right\}=\frac{1}{2} \ln \frac{s^{2}-a^{2}}{s^{2}} \\
& \Rightarrow
\end{aligned}
$$

Therefore equation (A) becomes

$$
\mathcal{L}\left\{\int_{0}^{t} \frac{1-\cosh a u}{u} d u\right\}=\frac{1}{2 s} \ln \frac{s^{2}-a^{2}}{s^{2}}
$$

UNIT STEP FUNCTION

Definition:-

Let $a \geq 0$. The function u_{a} defined on $] 0, \infty[$ by

$$
u_{a}(t)= \begin{cases}0 & \text { if } t<a \\ 1 & \text { if } t>a\end{cases}
$$

is called the unit step function.
Theorem:-_ Let u_{a} be the unit step function. Then,

$$
\mathcal{L}\left\{u_{a}(t)\right\}=\frac{e^{-a s}}{s}
$$

Theorem: - Let f be a function of exponential order a and $\mathcal{L}\{f(t)\}=F(s)$. For the function

$$
u_{a}(t) f(t-a)= \begin{cases}0 & \text { if } t<a \\ f(t-a) & \text { if } t>a\end{cases}
$$

We have,

$$
\mathcal{L}\left\{u_{a}(t) f(t-a)\right\}=e^{-a s} \mathcal{L}\{f(t)\}
$$

Question \# 28:- Compute the Laplace transform of

$$
f(t)= \begin{cases}0 & \text { if } t<3 \\ (t-3)^{3} & \text { if } t>3\end{cases}
$$

Solution:-

Given function is

$$
f(t)= \begin{cases}0 & \text { if } t<3 \\ (t-3)^{3} & \text { if } t>3\end{cases}
$$

Then we have,

$$
f(t)=u_{3}(t) f(t-3)
$$

Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=\mathcal{L}\left\{u_{3}(t) f(t-3)\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=e^{-3 s} \mathcal{L}\left\{t^{3}\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=e^{-3 s} \cdot \frac{3!}{s^{4}} \\
& \Rightarrow \mathcal{L}\{\boldsymbol{f}(\boldsymbol{t})\}=\frac{\mathbf{6} \boldsymbol{e}^{-3 s}}{\boldsymbol{s}^{4}}
\end{aligned}
$$

Question:- Compute the Laplace transform of (Example 14)

$$
f(t)= \begin{cases}0 & \text { if } t<\frac{\pi}{2} \\ \cos t & \text { if } t>\frac{\pi}{2}\end{cases}
$$

Solution:-

Given function is

$$
f(t)= \begin{cases}0 & \text { if } t<\frac{\pi}{2} \\ \cos t & \text { if } t>\frac{\pi}{2}\end{cases}
$$

Firstly, we have to express $\cos t$ in terms of $t-\frac{\pi}{2}$, so as to apply the formula.
As, $\cos t=-\sin \left(t-\frac{\pi}{2}\right)$, let

$$
g(t)=\left\{\begin{array}{cc}
0 & \text { if } t<\frac{\pi}{2} \\
\sin \left(t-\frac{\pi}{2}\right) & \text { if } t>\frac{\pi}{2}
\end{array}\right.
$$

Then $f(t)=-u \frac{\pi}{2}(t) g(t)$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{f(t)\}=-\mathcal{L}\left\{u \frac{\pi}{2}(t) \cdot \sin \left(t-\frac{\pi}{2}\right)\right\} \\
& \Rightarrow \mathcal{L}\{f(t)\}=-e^{-\frac{\pi}{2} s} \mathcal{L}\{\sin t\} \\
& \Rightarrow \mathcal{L}\{\boldsymbol{f}(\boldsymbol{t})\}=-\boldsymbol{e}^{-\frac{\pi}{2} s} \frac{\mathbf{1}}{\boldsymbol{s}^{2}+1}
\end{aligned}
$$

Question \# 29: If $\mathcal{L}\{f(t)\}=F(s)$ for $s>a$, show that

$$
\mathcal{L}\{f(c t)\}=\frac{1}{c} F\left(\frac{s}{c}\right), c>0 \text { and } s>c a
$$

SOLUTION: -

Given that $\mathcal{L}\{f(t)\}=F(s)$
Then by definition

$$
\begin{aligned}
& \mathcal{L}\{f(c t)\}=\int_{0}^{\infty} e^{-s t} \cdot f(c t) d t \\
& \qquad \begin{aligned}
& \text { Put } c t=T \text { so that } t=\frac{1}{c} T \\
& d t=\frac{1}{c} \cdot d T \\
& \text { When } t \rightarrow 0 \text { then } T \rightarrow 0
\end{aligned}
\end{aligned}
$$

When $t \rightarrow \infty$ then $T \rightarrow \infty$

$$
\begin{aligned}
& \mathcal{L}\{f(c t)\}=\int_{0}^{\infty} e^{-s \frac{T}{c}} \cdot f(T) \frac{1}{c} \cdot d T \\
& \mathcal{L}\{f(c t)\}=\frac{1}{c} \cdot \int_{0}^{\infty} e^{-s \frac{T}{c}} \cdot f(T) d T \\
& \mathcal{L}\{f(c t)\}=\frac{1}{c} \cdot \mathcal{L}\left\{f\left(\frac{T}{c}\right)\right\} \\
& \mathcal{L}\{f(c t)\}=\frac{1}{c} \cdot F\left(\frac{S}{c}\right)
\end{aligned}
$$

This completes the proof.

FORMULA:

MOTIVATION:-

If there is a function such that it is a derivative of any other function.to finds the Laplace transformation of such kind of function we use the following formula which is stated below.

STATEMENT:-

Let $f(t)$ is any function, then the Laplace transformation of $f^{\prime}(t)$ can be found by the following formula.

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

The application of this formula is stated in the following question.

```
Question \# 32:- Compute \(\mathcal{L}\{\sin \sqrt{t}\}\). Deduce \(\mathcal{L}\left\{\frac{\cos \sqrt{t}}{\sqrt{t}}\right\}\).
```


SOLUTION:-

$$
\text { Let } f(t)=\sin \sqrt{t}
$$

The power series expansion of $\sin x$ is given by

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}------
$$

Replacing x by $t^{\frac{1}{2}}$, we have
$\sin \sqrt{t}=t^{\frac{1}{2}}-\frac{t^{\frac{3}{2}}}{3!}+\frac{t^{\frac{5}{2}}}{5!}-\frac{t^{\frac{7}{2}}}{7!}-----$
Taking \mathcal{L} on both sides, we have

$$
\begin{aligned}
& \mathcal{L}\{\sin \sqrt{t}\}=\mathcal{L}\left[t^{\frac{1}{2}}-\frac{t^{\frac{3}{2}}}{3!}+\frac{t^{\frac{5}{2}}}{5!}-\frac{t^{\frac{7}{2}}}{7!}-----\right] \\
& \Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\mathcal{L}\left\{t^{\frac{1}{2}}\right\}-\frac{1}{3!} \mathcal{L}\left\{t^{\frac{3}{2}}\right\}+\frac{1}{5!} \mathcal{L}\left\{t^{\frac{5}{2}}\right\}-\frac{1}{7!} \mathcal{L}\left\{t^{\frac{7}{2}}\right\}---- \\
& \Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\Gamma \frac{1}{2}+1}{s^{\frac{1}{2}+1}}-\frac{1}{3!} \frac{\Gamma \frac{3}{2}+1}{s^{\frac{3}{2}+1}}+\frac{1}{5!} \frac{\Gamma \frac{5}{2}+1}{s^{\frac{5}{2}+1}}-\frac{1}{7!} \frac{\Gamma \frac{7}{2}+1}{s^{\frac{7}{2}+1}}---
\end{aligned}
$$

Here the sign " Γ " denote the Gamma function.
$\Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\frac{1}{2} \Gamma \frac{1}{2}}{s^{\frac{3}{2}}}-\frac{1}{3!} \frac{\frac{3}{2} \cdot \frac{1}{2} \Gamma \frac{1}{2}}{s^{\frac{5}{2}}}+\frac{1}{5!} \frac{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma \frac{1}{2}}{s^{\frac{7}{2}}}-\frac{1}{7!} \frac{\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma \frac{1}{2}}{s^{\frac{9}{2}}}---$
Since $\Gamma \frac{1}{2}=\sqrt{\pi}$. Therefore,
$\Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\frac{1}{2} \sqrt{\pi}}{s^{\frac{3}{2}}}-\frac{1}{3!} \frac{\frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}{s^{\frac{5}{2}}}+\frac{1}{5!} \frac{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}{s^{\frac{7}{2}}}-\frac{1}{7!} \frac{\frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}{s^{\frac{9}{2}}}---$
$\Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\frac{1}{2} \sqrt{\pi}}{s^{\frac{3}{2}}}\left[1-\frac{1}{6} \frac{\frac{3}{2}}{s}+\frac{1}{120} \frac{\frac{15}{4}}{s^{2}}-\frac{1}{5040} \frac{\frac{105}{8}}{s^{3}}---\right]$
$\Longrightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}}\left[1-\frac{1}{2.2} \frac{1}{s}+\frac{1}{8.4} \frac{1}{s^{2}}-\frac{1}{48.8} \frac{1}{s^{3}}----\right]$
$\Longrightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}}\left[1-\frac{1}{4 s}+\frac{1}{32 s^{2}}-\frac{1}{384 s^{3}}----\right]$
$\Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}}\left[1-\frac{1}{4 s}+\frac{1}{2!} \frac{1}{16 s^{2}}-\frac{1}{3!} \frac{1}{64 s^{3}}----\right]$
$\Rightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}}\left[1+\left(-\frac{1}{4 s}\right)+\frac{1}{2!}\left(-\frac{1}{4 s}\right)^{2}+\frac{1}{3!}\left(-\frac{1}{4 s}\right)^{3}----\right]$

$$
\Longrightarrow \mathcal{L}\{\sin \sqrt{t}\}=\frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}} \cdot e^{-\frac{1}{4 s}}
$$

Now, we have to deduce $\left\{\frac{\cos \sqrt{t}}{\sqrt{t}}\right\}$.
Since $f(t)=\sin \sqrt{t}$. this implies that $f(0)=0$ and

$$
f^{\prime}(t)=\frac{\sin \sqrt{t}}{2 \sqrt{t}}
$$

Using the formula $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$, we have

$$
\mathcal{L}\left\{\frac{\cos \sqrt{t}}{2 \sqrt{t}}\right\}=s \frac{\sqrt{\pi}}{2 s^{\frac{3}{2}}} \cdot e^{-\frac{1}{4 s}}-0
$$

$$
\Rightarrow \frac{1}{2} \mathcal{L}\left\{\frac{\cos \sqrt{t}}{\sqrt{t}}\right\}=\frac{\sqrt{\pi}}{2 s^{\frac{1}{2}}} \cdot e^{-\frac{1}{4 s}}
$$

$$
\Rightarrow \mathcal{L}\left\{\frac{\cos \sqrt{t}}{\sqrt{t}}\right\}=\sqrt{\frac{\pi}{s}} \cdot e^{-\frac{1}{4 s}}
$$

