The Cauchy Eubie Diff eg

$$
\begin{align*}
& \text { The Cauchy Eulbe} \text {. } \tag{1}\\
& \text { Adirfeg } q \text { thinfom } a_{0} x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d y}{d a^{n-1}}+\cdots a_{n-1} x \frac{d y}{d x}+a_{n} y=F(x) \\
& \text { or } \quad\left(a_{0} x^{n} D^{n}+a_{1} x^{n-1} D^{n-1}+\cdots a_{n-1} \times D+a_{n}\right) y=F(x)
\end{align*}
$$

This eq can be reduced to a linear diff eq with canst costs as

Put: $x=e^{t} \quad \Rightarrow t=\operatorname{lin} x$

$$
\begin{aligned}
& \text { Put } x=e \\
& \frac{d x}{d y}=e^{t} \frac{d t}{d y} \\
& \frac{d y}{d x}=\frac{1}{e^{t}} \frac{d y}{d t} \\
& \frac{d y}{d u}=\frac{1}{x} \frac{d y}{d x} \\
& x \frac{d y}{d u}=\frac{d y}{d t} \\
& x D y=\Delta y \Rightarrow x D=\Delta \\
& \text { Again } \frac{d y}{d x}=\frac{1}{x} \frac{d y}{d t} \\
& 12 y
\end{aligned}
$$

$$
D=\frac{d}{d u}
$$

$$
\Delta=\frac{d x}{d t}
$$

sift

$$
\begin{gathered}
x=e^{t} \\
\ln x=\ln e^{t} \\
\ln x=t \ln e \\
\ln x=t \\
\frac{1}{x}=\frac{d t}{d x}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{x} \frac{d t}{d t} \\
& \frac{d^{2} y}{d x^{2}}=\frac{1}{x} \frac{d^{2} y}{d t^{2}} \cdot \frac{d t}{d x}-\frac{1}{x^{2}} \frac{d y}{d t}
\end{aligned}
$$

$$
=\frac{1}{x} \frac{d^{2} y}{d t^{2}} \frac{1}{x}-\frac{1}{x^{2}} \frac{d y}{d t}
$$

$$
\frac{d^{2} y}{d u^{2}}=\frac{1}{x^{2}}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)
$$

$$
x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}}-\frac{d x}{d t}
$$

$$
x^{2} D^{2} y=\Delta^{2} y-\Delta y
$$

$$
\begin{gathered}
x^{2} D^{2} y=\Delta \\
\left.\left(x^{2} D^{2}\right) y=\Delta\right) y \\
2 \Delta^{2}-\Delta
\end{gathered}
$$

$$
\begin{aligned}
& \left(x^{2} D^{2}\right) y \\
& x^{2} \Delta^{2}-\Delta \\
& x^{2} D^{2}=\Delta(\Delta-1)
\end{aligned}
$$

$$
\frac{\left[x^{2} D^{2}=\Delta(\Delta-1)\right.}{x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2)}
$$

$$
\begin{aligned}
& x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2) \\
& x^{n} D^{n}=\Delta(\Delta-1)(\Delta-2) \cdots(\Delta-(n-1))
\end{aligned}
$$

ExNolo4,

$$
\begin{aligned}
& 0\left(x^{2} t+7 x D+5\right) y=x^{5}-x^{2}, \\
& (\Delta(\Delta-1)+7 \Delta+5) y=e^{5 t} \int \operatorname{lnt} x=e^{t} \\
& \left(\Delta^{2}-\Delta+7 \Delta+5\right) y=e^{5 t}\{t=\ln x \\
& \left(\Delta^{2}+6 \Delta+5\right) y=e^{5 t} \quad x^{2} D=\Delta(\Delta-1) \\
& \left(x^{2}\right)
\end{aligned}
$$

Fochacraderisticey

$$
\begin{align*}
& \Delta^{2}+6 \Delta+5=0 \\
& \Delta^{2}+\Delta+5 \Delta+5=05 \\
& \Delta(\Delta+1)+5(\Delta+1)=0 \\
& (\Delta+1)(\Delta+5)=0 \\
& \Delta=-1,-5 \\
& y_{c}=c_{1} e^{t}+c_{2}^{-5 t} \\
& =\frac{c}{e^{t}}+\frac{c_{2}}{e^{5 t}} \tag{3}\\
& y_{c}=\frac{c_{1}}{x}+\frac{c_{2}}{x^{5}}
\end{align*}
$$

For Particular Intyreal. $s t$

$$
\begin{aligned}
y_{p} & =\frac{1}{\Delta^{2}+6 \Delta+5} e^{s t} \\
& =\frac{e^{s t}}{s^{2}+6(s)+5} \\
& =\frac{e^{s t}}{60} \\
y_{p} & =\frac{x^{5}}{60}
\end{aligned}
$$

So gueral sof is

$$
\begin{aligned}
& y=y_{c}+y_{p} \\
&=\frac{c_{1}}{x}+\frac{c_{2}}{x^{5}}+\frac{x^{5}}{60} \\
&
\end{aligned}
$$

$\left(x^{2} D^{2}-3 x D+5\right) y=x^{2} \sin (\ln x)$

$$
\begin{aligned}
& x D=A x^{2} D^{2}=x(D=1) \\
& (\Delta(\Delta-1)-3 \Delta+5) y=e^{x t} \sin t \\
& \therefore\left(\Delta^{2}-\Delta-3 \Delta+5\right) y=e^{2 t} \sin t \\
& \left(\Delta^{2}-4 \Delta+5\right) y=e^{2 t} \sin t
\end{aligned}
$$

Foncharactentstic Eq-1

$$
\begin{aligned}
& \Delta^{2}-\frac{4 \Delta+5}{2}=\frac{4 \pm \sqrt{16-20}}{2}=\frac{4 \pm}{2}=\frac{4 \pm 22}{2} \\
& \Delta=2 \\
& y_{c}=e^{2 t}\left(c_{1} \cos t+c_{2} \sin t\right) \\
& y_{c}=x^{2}\left(e_{1} \cos \ln x+\frac{c}{2} \sin \ln x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Tor Partian bai } 2 \text { nty } y \text { ral }}{y_{p}=\frac{1}{\Delta^{2}-4 \Delta+5} \operatorname{ein} t} \\
& y_{p=1}=\frac{1}{\Delta^{2}-4 \Delta+5} e^{2 t} \sin t \\
& =\frac{2 t, t}{(\Delta+2)^{2}-4(\Delta+2)+5} \sin t \\
& =\frac{e^{2 t} \frac{1}{\Delta^{2}+4 x+4-4 x-8+5} \sin t}{2} \\
& =e^{2 t+5} \frac{\operatorname{s}}{(E+1)} \cdot \sin t \\
& =\frac{2 t}{2 \Delta} \sin t \quad "\left(\begin{array}{l}
(\operatorname{arilnch} \operatorname{cose} \\
-x^{2}+1-6
\end{array}\right. \\
& =\frac{t e^{2 t}}{2}(-\cos t) \\
& \text {-1sintract } \\
& y_{p}=-\frac{1}{2} t 2^{2 t} \cos t \\
& y_{p}=-\ln x x^{2} \cos (\ln x)
\end{aligned}
$$

1 Hinec lieneral Sol

$$
\begin{aligned}
& y=Y^{2}+Y_{p} \\
& y=x^{2}(\cos \ln x+c \operatorname{cin} \ln x) \\
& x-\frac{1}{2} \ln x x^{2} \cos (\ln x)
\end{aligned}
$$

Characteristic of $q(1)$ is $\Delta^{2}-2 m \Delta+m^{2}+n^{2}=0$.

$$
\left.\begin{array}{l}
\Delta=\frac{2 m \pm \sqrt{4 m^{2}-4 m^{2}-4 n^{2}}}{2}=\frac{2 m q \sqrt{-4 n^{2}}}{2} \\
\Delta=\frac{2 m \pm 2 i n}{2}=\chi\left(\frac{m+i n)}{4}=(m \pm i n\right. \\
Y_{c}=e^{m t}\left(c_{1} \cos n t+\frac{c}{2} \sin n t\right) \\
Y_{c}=x^{m}\left(c_{1} \cos \ln x^{n}+\frac{c}{2} \sin \ln x^{n}\right) \\
N_{\text {ow }} Y_{P}=\frac{1}{\Delta^{2}-2 m \Delta+m^{2}+n^{2}}\left(n^{2} e^{m t} \cdot t\right) \\
2_{m t}^{m}=e^{m}
\end{array}\right) \because\left(\begin{array}{c}
t=\ln x \\
n t=n \ln x \\
n t=\ln x^{n}
\end{array}\right.
$$

$$
\begin{aligned}
& \Delta^{2}-2 m \Delta+m+n \\
= & n^{2} e^{m t} \frac{1}{(\Delta+m)^{2}-2 m(\Delta+m)+m^{2}+n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta+m)^{2}-2 m(\Delta+m)+m+1 \\
& =n^{2} e^{m t} \frac{1}{\Delta^{2}+2 \Delta^{m} m+y^{2}-2^{2} \Delta\left(t-2 p^{2}+m^{2}+n^{2}\right.} \\
& 2 m t
\end{aligned}
$$

$$
=n^{2} e^{m t_{1}} \frac{1(t)}{\left(\Delta^{2}+n^{2}\right)}
$$

$$
\begin{aligned}
& y^{2}\left(\frac{\hat{n}^{2}}{n^{2}}+1\right) \\
= & e^{m^{2}-}\left(1-\frac{\Delta^{2}}{n^{2}}\right)=e^{m t}(t)-\frac{e^{2}}{n^{2}}(0) \\
& m n_{0}^{m} \ln x(\ln x)=e^{\ln x^{m}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{m}\left(1-\frac{\Delta}{n^{2}}\right)=e^{n^{2}} \\
& =e^{m}(t)=e^{m} \ln x(\ln x)=e^{m}(\ln x)
\end{aligned}
$$

$$
y_{p}=x^{m} \ln x
$$

Soh.Sol. $y=y_{c}+y_{p}$

$$
\begin{aligned}
& =y_{c}+y_{p} \\
& =x^{m}\left(c_{1} \cos \ln x^{n}+c_{2} \sin \ln x^{n}\right)+x^{m} \ln x .
\end{aligned}
$$

$$
\begin{align*}
& 16 \cdot 4-2 \\
& \text { (1) (1) } \\
& x^{2} \frac{d^{2} y}{d x^{2}}-(2 m-1) x \frac{d y}{d x}+\left(m^{2}+n^{2}\right) y=n^{2} x^{m} \ln x \\
& {\left[x^{2} D^{2}-(2 m-1) x D+\left(m^{2}+n^{2}\right)\right] y=n^{2} x^{m} \ln x} \\
& \therefore\left[\Delta^{2}-\Delta-(2 m-1) \Delta+\left(m^{2}+n^{2}\right)\right] y=n^{2} e^{m t} t t \\
& \left(\Delta^{2}-\Delta-2 m \Delta+\Delta+m^{2} n^{2}\right) y=n^{2} e^{2 m t} \cdot t \text {. } \tag{i}\\
& \left(\Delta^{2}-2 m \Delta+m^{2}+n^{2}\right) y=n^{2} t^{m t} t \\
& \text { (3) } \\
& \text { Put } x=e^{t} \\
& t=\ln x \\
& x D=\Delta \\
& x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta \\
& \text { (LDEq with const couff) }
\end{align*}
$$

Ex10.473
(G4)

$$
\left(4 x^{2} D^{2}-4 x D+3\right) y=\sin \ln (-x)
$$

Canchy-Euler Eq.
Put $-x=e^{t} \quad \Rightarrow t=\ln (-x)$

$$
\begin{aligned}
& x D=\Delta \\
& x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta
\end{aligned}
$$

Put in (1)

$$
\begin{align*}
& \left(4\left(\Delta^{2}-\Delta\right)-4 \Delta+3\right) y=\sin t \\
& \left(4 \Delta^{2}-8 \Delta+3\right) y=\sin t \tag{2}
\end{align*}
$$

Characteristic $\varepsilon q 8$ (2) is:

$$
\begin{aligned}
& 4 \Delta^{2}-8 \Delta+3=0 \\
& \Delta=\frac{8 \pm \sqrt{64-4 \cdot 4 \cdot 3}}{8}-\frac{8 \pm \sqrt{64-48}}{8} \\
&=\frac{8 \pm 4}{8}=\frac{3}{2}, \frac{1}{2} \\
& Y_{C}=C_{1} e^{\frac{3}{2} t}+c_{2} e^{t / 2} \\
& Y_{P}=\frac{\sin t}{4 \Delta^{2}-8 \Delta+3} \\
&=\frac{\sin t}{4\left(-1^{2}\right)-8 \Delta+3}=\frac{\sin t}{-(1+8 \Delta)} \\
&=\frac{-(1-8 \Delta)}{(1+8 \Delta)(1-8 \Delta)}=\frac{-(1-8 \Delta) \sin t}{1-64 \Delta^{2}} \\
&=\frac{-(1-8 \Delta) \sin t}{1-64\left(-1^{2}\right)}=\frac{-\sin t+8 \cos t \text { Ans }}{65}
\end{aligned}
$$

IndMethod

$$
y_{p}=\frac{\sin t}{4 \Delta^{2}-8 \Delta+3}-\frac{4 \frac{e}{4 \Delta^{2}-8 \Delta+3}}{4 t}
$$

$$
\begin{aligned}
& =\frac{2 \operatorname{me}}{4(i)^{2 t}-8(i)+3}=\lim \frac{(1-8 i)}{-(1+8 i)(1-8 i)} e^{i t} \\
& =\ln \frac{-1}{65}(1-8 i) e^{i t}=\frac{-1}{65} \operatorname{lm}(1-8 i)[\cos +i \sin t] \\
& \begin{array}{l}
y_{p}=-\frac{1}{65} \cdot[\sin t-8 \cos t]=\frac{8 \cos t-\sin t}{65} \text { Ans } \\
y=c_{1} e^{3 / 2}+\frac{c}{2} e^{t / 2}+\frac{81}{65} \cos t-\frac{1}{65} \sin t
\end{array}
\end{aligned}
$$

4P:
(a)

$$
\begin{align*}
& x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10 x+\frac{10}{x} \\
& \left(x^{3} D^{3}+2 x^{2} D^{2}+2\right) y=10 x+\frac{10}{x} \tag{i}\\
& (\Delta(\Delta-1)(\Delta-2)+2 \Delta(\Delta-1)+2) y=10 e^{t}+\frac{10}{1} \\
& \left(\Delta^{3}-3 \Delta^{2}+2 \Delta+2\left(\Delta^{2}-\Delta\right)+2\right) y=10 e^{t}+10 e^{t} \\
& \left(\Delta^{3}-3 \Delta^{2}+2 \Delta+2 \Delta^{2}-2 \Delta+2\right) y=10 e^{t}+10 e^{-t} \\
& \left(\Delta^{3}-\Delta^{2}+2\right) y
\end{align*}
$$

Characteristicieg

$$
\begin{aligned}
& \text { enaractersticeg } \\
& \Delta^{3}-\Delta^{2}+2 \\
& \text { So } \Delta=0 \\
& \text { pressed }=1
\end{aligned}
$$

Dpressedeg is

$$
\begin{aligned}
& \text { Dpresseq } \\
& \Delta^{2}-2 \Delta+2=0 \\
& \Delta=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i \\
& \therefore \Delta=-1,1 \pm i \\
& \text { Heve } y c=c_{1} e^{t}+e^{t}\left(c \cos t+c_{3} \sin t\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{c}=c_{1} e^{-t}+e^{c}\left(c_{2} \cos t+c_{3}\right) \\
& y_{c}=\frac{c_{1}}{x}+x\left(\frac{c}{2} \cos (\ln x)+\frac{c}{3} \sin (\ln x)\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& y_{p}=\frac{1}{\left(\Delta^{3}-\Delta^{2}+2\right)}\left(10 e^{t}+10 e^{t}\right) \\
& =\frac{1}{\Delta^{3}-\Delta^{2}+2} 10 e^{t}+\frac{1}{\Delta^{3}-\Delta^{2}+2} 10 e^{-t} \\
& =\frac{10 e^{t}}{1-1+2}+\frac{t}{3 \Delta^{2}-2 \Delta+0}\left(10 e^{-t}\right) \\
& =\frac{102^{t}}{2}+\frac{t 10 e^{2}}{3(-1)^{2}-2(-1)} \\
& =5 e^{t}+\frac{10}{5} t e^{-t} \\
& y_{p}=5 x+2 \quad \ln x\left(\frac{1}{x}\right) \\
& y=y_{e}+y_{p} \\
& =\frac{c_{1}}{x}+x\left(c_{2} \cos \ln x+c_{3}^{\sin \ln x)}+5 x+2 \frac{\ln x}{x}\right.
\end{aligned}
$$

(6)

$$
x^{4} \frac{d^{3} y}{d x^{3}}+2 x^{3} \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=1
$$

-byx $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\frac{1}{x} \quad$ Nacanchy Euler Dfy Eq.

$$
\begin{gathered}
\quad\left(x^{3} D^{3}+2 x^{2} D^{2}-x D+1\right) y=\frac{1}{x} \\
(\Delta(\Delta-1)(\Delta-2)+2 \Delta \Delta-1)-\Delta+1) y=\frac{1}{e^{t}} \\
\left(\Delta^{3}-3 \Delta^{2}+2 \Delta+2 \Delta^{2}-2 \Delta-\Delta+1\right) y=e^{t} \\
\left(\Delta^{3}-\Delta^{2}-\Delta+1\right) y=e^{t}
\end{gathered}
$$

$$
\operatorname{Put} x=e^{t} \Rightarrow t \neq \ln x
$$

$$
x D=\Delta
$$

$$
\begin{gathered}
x D=\Delta \\
x_{3}^{2} D^{2}=\Delta(\Delta-1) \\
x^{3}
\end{gathered}
$$

$$
\begin{aligned}
& x^{2} D^{3}=\Delta \\
& x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2)
\end{aligned}
$$

(LDEq with const conffto
$\frac{\text { Charnctuistie } \&}{\Delta^{3}}$

$$
\begin{aligned}
& \quad \Delta^{3}-\Delta^{2}-\Delta,=0 \\
& \therefore \Delta=1 \\
& \text { and Depressed Eq is }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{2}-1=0 \\
& \Rightarrow \Delta^{2}=1 \Rightarrow \Delta= \pm 1 \\
& \therefore \Delta=1,1,-1 \\
& y_{c}=\left(c_{1}+c_{2} t\right) e^{t}+c_{3} \frac{c}{c} \\
& y_{c}=\left(c_{1}+c_{2} \ln x\right) x+\frac{c}{x} \\
& Y_{p}=\frac{1}{\Delta^{3}-\Delta^{2}-\Delta+1}\left(e^{-t}\right) \\
& =\frac{t}{3 \Delta^{2}-2 \Delta-1} e^{t} \\
& =\frac{t e^{-t}}{3(-1)^{2}-2(t-1)-1}=\frac{t e^{-t}}{3+2-1} \\
& y_{p}=\frac{t e^{-t}}{4} \\
& =\frac{\ln x}{4} \cdot \frac{1}{x} \\
& \text { So } y=y_{c}+y_{p} \\
& =\left(c_{1}+\frac{c}{2} \ln x\right)_{3} x+\frac{c_{3}}{x}+\frac{\ln x}{4 x} \quad \text { Ans. } \\
& \because t=\ln x \\
& e^{t}=x \\
& e^{t}=\frac{1}{x}
\end{aligned}
$$

(7) $\left(x^{3} D^{3}+4 x^{2} D^{2}-5 x D-15\right) y=x^{4}$ Cavely-Eulix Eq
$\operatorname{Lit} x=e^{t} \Rightarrow t=\ln x$

$$
\begin{aligned}
& x D=\Delta \\
& x^{2} D^{2}=\Delta^{2}-\Delta \\
& x^{3} D^{3}=\Delta^{3}-3 \Delta^{2}+2 \Delta
\end{aligned}
$$

Pit in (1) $\left(\Delta^{3}-3 \Delta^{2}+2 \Delta+4 \Delta^{2}-4 \Delta-5 \Delta-15\right) y=e^{4 t}$

$$
\begin{aligned}
& \text { m (1) } \left.\Delta^{3}-3 \Delta^{2}+2 \Delta+4 \Delta^{2}-4 \Delta-5 \Delta-15\right) y=e \\
& \left(\Delta^{3}+\Delta^{2}-7 \Delta-15^{2}\right) y=e
\end{aligned}
$$

Characteristice ε_{9} is $\Delta^{3}+\Delta^{2}-7 \Delta-15=a$

$$
\left\{\begin{array}{c}
\left.(x+1)^{2} D^{2}+(x+1) D+1\right) y=4(\cos \ln (x+1))^{2} \\
\operatorname{Let} x+1=e^{H} \\
\Rightarrow t=\ln (x+1) \\
(x+1) D=\Delta \\
(x+1)^{2} D^{2}=\Delta^{2}-\Delta \\
p u j v a l u s \\
\left(\Delta^{2}-\Delta+\Delta+1\right) y=4(\cos t]^{2} \\
\Delta^{2}+1 \quad \therefore=4 \cos ^{2} t \\
\Delta^{2}+1=2(1+\cos 2 t)
\end{array}\right.
$$

Characteristie Eq is $\Delta^{2}+1=0$

$$
\Delta^{2}+4 \Delta+5=0
$$

$$
\Delta= \pm i
$$

$$
\begin{aligned}
& \Delta+4 \Delta+3=0 \\
& \Delta=\frac{-4 \pm \sqrt{16-4.15}}{2}=-\frac{45 \sqrt{-4}}{2}
\end{aligned}
$$

$$
=-\frac{4+22}{2}=-2+5
$$

$$
y_{c}=c_{1} e^{3 t^{2}} e^{2 t}\left(c_{2} \cos t+c_{3}^{\sin t}\right)
$$

$$
y_{p}=\frac{1}{\Delta^{3}+\Delta^{2}-7 \Delta-15}
$$

$$
=\frac{e^{4 t}}{64+16-28-15}=\frac{4 t}{3 t}
$$

$$
\begin{aligned}
& 64+16-28-15 \\
& y=y_{c}+y_{p}=c_{1} e^{3 t}+e^{-2 t}\left(c_{2} \cos t+c \sin t\right)+\frac{e^{3}}{37} \\
& y=
\end{aligned}
$$

$$
y=c_{1} \cos t+c_{2} \sin t+2-\frac{2 \cos 2 t}{3}
$$

Replacing t by $\ln x$.

$$
\begin{aligned}
& \left.y=c_{1} x^{3}+x^{-2}\left(c_{2} \cos (\ln x)+c_{3} \sin (\ln x)\right]+\frac{x^{4}}{37}\right) \\
& \text { Replacing tby } \ln (x
\end{aligned}
$$

$$
10.49
$$

(0)

$$
y_{c}=c_{1} x^{2}+c_{2} \frac{1}{x^{3}}
$$

$$
\begin{aligned}
L_{P} & =\frac{1}{\Delta^{2}+\Delta-6} 10 e^{2 t} \\
& =t
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-6 y=10 x^{2} \text { where } y(1)=1 \\
& 4(1)=-6 \\
& \left(x^{2} D^{2}+2 \pi D-6\right) y=10 x^{2} \\
& (\Delta(\Delta-1)+2 \Delta-6) y=10 e^{2 t} \\
& \left(\Delta^{2}-\Delta+2 \Delta-6\right) y=10 e^{2 t} \\
& \left(\Delta^{2}+\Delta-6\right) y=10 e^{2 t} \\
& \Delta^{2}+\Delta-6=0 \\
& \Delta^{2}+3 \Delta-2 \Delta-6=0 \\
& \Delta(\Delta+3)-2(\Delta+3)=0 \\
& (\Delta+3)(\Delta-2)=0 \Rightarrow \Delta=-3,+2 \\
& y_{c}=c_{1} e^{2 t}+c_{2} e^{-3 t} \\
& \text {-(1) Ginchy rundyy, } \\
& \operatorname{Put} x=t \Rightarrow t=\ln x \\
& x D=\Delta \\
& 2^{2} D^{2}=\Delta(\Delta-1)
\end{aligned}
$$

$$
=\frac{t}{2 \Delta+1} \log ^{2 t}
$$

$$
\begin{aligned}
= & \frac{t}{2 \Delta+1} \\
y_{p}= & \left.\frac{10+e^{2 t}}{2(2)+1}=2+2 t-2(\ln x) x^{2}\right) \\
& =2(\ln x) x^{2}
\end{aligned}
$$

$$
y=y_{c}+y_{p}=\frac{c}{c} x^{2}+c_{2} \frac{1}{x^{2}}-2(\ln x) x^{2}
$$

$$
y^{\prime}=2 c_{1} x-3 c_{2} x^{-4}+2\left(\frac{1}{x} x^{2}+\ln x(2 x)\right)
$$

$$
\begin{aligned}
& y^{\prime}=2 c_{1} x-2 c_{1} x-\frac{3 c_{2}}{x^{4}}+2 x+2 \ln x(2 x) \\
& y^{\prime}=2 c^{2}+2 x+4 x \ln x
\end{aligned}
$$

$$
\begin{equation*}
y^{\prime}=2 c_{1} x-\frac{3 c_{2}}{x^{4}}+2 x+4 x \ln x \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& y(1)=1 \Rightarrow 1=c_{1}+c_{2}+0 \\
& y(1)=6 \Rightarrow 6^{2} 10-6=2 c_{1}-3 c_{2}+2+0 \tag{0}\\
& -8=2 c_{1}-3 c_{2}
\end{align*}
$$

promes)

$$
\begin{aligned}
& 2=2 c_{1}+2 c_{2} \\
& -8=3 c_{1}-3 c_{2} \\
& 10=5 c_{2} \Rightarrow c_{2}=\frac{10}{5}=2
\end{aligned}
$$

Putc - (10),$=C_{1}+2 \Rightarrow C_{1}=0$

$$
\text { (1) } \cdot y=-1 x^{2}+\frac{2}{x^{3}}+2 \ln x\left(x^{2}\right)
$$

Ans.
(i1) $x^{2} y^{\prime}-2 x y^{\prime}+2 y=x \ln x ; y(1)=1, y^{\prime}(1)=0$

$$
\left(x^{3} D^{2}-2 x D+2\right) y=x \ln x
$$

Let $x=e^{t} \quad t=\ln x$.

$$
x D=\Delta
$$

$$
\begin{aligned}
& x D=\Delta \\
& x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Frombelow. } \\
& y(1)-1 \Rightarrow 1=e_{1} \cdot 1+e_{2} \cdot 1-\frac{1}{2} \cdot 1(\ln 1+2 \ln 1) \\
& 1=c_{1}+e \quad \because \ln 1=0
\end{aligned}
$$

Subitituting wa.get.

$$
\begin{align*}
& \left(\Delta^{2}-\Delta-2 \Delta+2\right) y=t \in \\
& \left(\Delta^{2}-3 \Delta+2\right) y=t e^{t}
\end{align*}
$$

Characteristic $E q$ of (1) is

$$
\begin{aligned}
& \Delta^{2}-3 \Delta+2=0 \\
& \Delta^{2}-\Delta-2 \Delta+2=0 \\
& \Delta(\Delta-1)-2(\Delta-1)=0 \\
& (\Delta-2)(\Delta-1)=0
\end{aligned}
$$

$$
\therefore \Delta=1,2_{t}
$$

$$
y_{p}=\frac{t_{e} c_{1}}{\Delta^{2}-3 \Delta+2}=e^{t} \frac{t}{(\Delta+1)^{2}-3(\Delta+1)+2}
$$

$$
=\frac{e^{t}}{\Delta^{2}+2 \Delta+1-3 \Delta-3+2}=e^{t} \frac{t}{\Delta^{2}-\Delta}=e^{t} \frac{t}{\Delta(\Delta-1)}
$$

$$
=-e^{t} \frac{\Delta^{2}+2 \Delta+1-3 \Delta-3+1}{\Delta(1-\Delta)}=-\frac{e^{t}}{\Delta}(1-\Delta)^{-1} t
$$

$$
=-e^{t} \frac{1}{\Delta}(1-(-1) \Delta) t=\frac{\Delta}{2} \frac{t}{\Delta}(1+\Delta) t=-\frac{t}{\Delta} \frac{1}{\Delta}(t+\Delta t)
$$

$$
=-e^{t} \int(t+1) d t=-e^{t}\left(\frac{t^{2}}{2}+t\right)=-\frac{t}{2}\left(t^{2}+2 t\right)
$$

Gineral Sol s $y=e e^{t}+c^{2 t}-\frac{t}{2}\left(t^{2}+2 t\right)$
Replacet by $\left.\ln x \quad y=c^{\ln x}+c^{2} e^{2 \ln x}-\frac{e^{2}}{2}(\ln x)^{2}+2 \ln x\right)$

- metria.
mous

$$
y=c_{1} x+c_{2} x^{2}-\frac{1}{2} x\left[(\ln x)^{2}+2 \ln x\right] \quad\left(2 \ln x \cdot 1+2 \cdot \frac{1}{4}\right]
$$

(12) $\left(x^{3} D^{3}+2 x^{2} D^{2}+x D\right) y$
$=15 \cos (2 \ln x)$

$$
\begin{aligned}
& y(1)=2 \\
& y^{\prime}(1)=-3 \\
& y^{\prime \prime}(1)=0
\end{aligned}
$$

$\operatorname{Let} x=e^{t} \quad t=\ln x$.

$$
\begin{aligned}
& x D=\Delta \\
& x^{2} D^{2}=\Delta^{2}-\Delta \\
& x^{3} D^{3}=\Delta^{3}-3 \Delta^{2}+2 \Delta
\end{aligned}
$$

ω
Subitititywaget:

Characteristic Eq of (1)

Ceneral sol $y=e^{e} e^{t}+c_{2} \cos t+c_{3} \sin t+\cos 2 t+2 \sin 2 t$
Replace t by $\ln x^{\prime} \quad y=c_{1} x^{2}+c_{2} \cos (\ln x)+c_{3} \sin (\ln x)+\cos 2(\ln x)-2 \sin (2 \ln x)$

$$
\begin{equation*}
Y^{\prime}(1)=-3 \Rightarrow-3=c_{1}+\frac{c}{3} \Rightarrow c_{1}+c_{3}=1 \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& Y^{\prime}(1)=-3 \Rightarrow-3=\frac{c}{c}+\frac{c}{3}-4 \Rightarrow c_{1}+\frac{c}{2} \Rightarrow e_{2}=-\frac{c}{3} \\
& Y^{\prime \prime}(1)=0 \Rightarrow 0=-\frac{c}{3}-4+4 \Rightarrow c+(-c)=1
\end{aligned}
$$

Lence

$$
y=x+\cos 2(\ln x)-2 \sin (2 \ln x) \operatorname{co}=2 \Rightarrow e_{1}=\frac{e_{2}}{c_{3}=0}
$$

$$
\begin{align*}
& y^{\prime}=c_{1}=\frac{\sin (\ln x)}{x}+c_{3} \frac{\cos \ln x}{x} \frac{<2}{} \frac{\sin (2 \ln x)}{x}-4 \cos (2 \ln x) \\
& 1^{\prime \prime}=-c_{2} \frac{\cos (\ln x)}{x^{2}}+c_{2} \frac{\sin \ln x}{x^{2}}-e \frac{\sin (\ln x)}{x^{2}}-\frac{c}{2} \frac{\cos \ln x}{x^{2}}-4 \frac{\cos (2 \ln x)}{x^{2}} \\
& +\frac{2 \sin (2 \ln x)}{x^{2}}+\frac{8 \sin (2 \ln x)}{x^{2}}+\frac{4 \cos (2 \ln x)}{x^{2}} \tag{2}\\
& y(1)=2 \Rightarrow 2=c_{1}+c_{2}+1 \Rightarrow c_{1}+c_{2}=1 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \Delta^{3}-\Delta^{2}+\Delta-1=0 \\
& (\Delta-1)\left(\Delta^{2}+1\right)=0 \\
& \Delta=1, \pm i \\
& \begin{array}{cccc}
108 & -1 & 1 \\
1 \left\lvert\, \begin{array}{llll}
1 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 10
\end{array}\right.
\end{array} \\
& \Delta^{2}+1=0 \\
& y_{c}=e_{1} e^{t}+e_{2} \cos t+\frac{e}{3} \sin t \\
& y_{p}=\frac{15 \cos 2 t}{\Delta^{3}-\Delta^{2}+\Delta-1}=n \Delta^{2} 4, \frac{1}{2} \cos 2 t=15 \Delta^{2}+\Delta-1 \quad \Delta\left(2^{2}\right)-(-2)^{2}+\Delta^{2}-1=-4 \Delta+4+\Delta-1 \\
& \left.=\frac{15}{-3 \Delta+3 ;}=\frac{\cos 2 t}{15} \frac{5(-\Delta+1)}{(-\Delta x} 2 t\right)=\frac{5(1+\Delta) \cos 2 t)}{1-\Delta^{2}}
\end{aligned}
$$

Eqs Riduabelto Cauch $y^{\prime \prime}$ s form

$$
a_{0}(a+b x)^{n} \frac{d^{n} y}{d x^{n}}+a(a+b x)^{n-1} \frac{d^{n-1}}{d x^{n-1}}+\cdots a_{n-1}(a+b x) \frac{d y}{d x}+a_{n} y=8(a+b x)
$$

such a diff $\frac{\rho}{}$ is riducible to cauchijs form. In order tosoluc if We first reduce "to Cauchy's diff eq
Put $a+b x=z$
(9) $\quad(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-6(2 x+1) \frac{d y}{d x}+16 y=8(2 x$

$$
\begin{array}{ll}
\sin & b=\frac{d z}{d x} \\
\text { wnt }
\end{array} \quad \begin{aligned}
& b=\frac{d z}{d y} \cdot \frac{d y}{d x} \\
& \\
& \frac{b \frac{d y}{d z}}{}=\frac{d y}{d x}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
2 x+1=z \\
\frac{d y}{d x}=\frac{1}{2} \frac{d y}{d z} \\
\frac{d^{2} y}{d x^{2}}=\frac{2}{2} \frac{d^{2} y}{d z}
\end{array}\right.
$$

$$
\text { Difb } \frac{d^{2} y}{d x^{2}}=b \frac{d^{2} y}{d z^{2}} \cdot \frac{d z}{d x}
$$

$$
\begin{equation*}
=b \frac{d^{2} y \cdot b}{d z^{2}} \cdot \frac{d z=a+b x}{d x}=b \tag{1}
\end{equation*}
$$

$\operatorname{si} \frac{d^{n} y}{d x^{n}}=b^{n} \frac{d^{n} y}{d z^{n}}$
So aboue eq becomes

$$
a_{0} z^{n} b^{n} \frac{d^{n} y}{d z^{n}}+a z^{n-1} b^{n-1} \frac{d^{n-1} y}{d z^{n-1}}+\cdots a_{n-1} z b \frac{d y}{d z}+a_{n} y=q(z)
$$

$$
\begin{aligned}
& z^{2}\left(2^{2} \cdot \frac{d^{2} y}{d z^{2}}\right)-6 z\left(\frac{d}{d y}\right)+16 y=8 z^{2} \\
& 4 z^{2} \frac{d^{2} y}{d z^{2}}-12 z \frac{d y}{d z}+16 y=8 z^{2} \\
& z^{2} \frac{d^{2} y}{d z^{2}}-3 z \frac{d y}{d z}+4 y=2 z^{2}
\end{aligned}
$$

$$
\left(z^{2} D^{2}-3 Z D+4\right) Y=2 z \quad\left[\begin{array}{l}
\left.\left.z=e^{t} \Rightarrow t-1\right),-3 \Delta+4\right) y^{2 t}=2 t=2 t \\
z D=\Delta
\end{array}\right.
$$

$$
\left(\Delta^{2}-\Delta-3 \Delta+4\right) y=2 e^{2 t} \mid z D=\Delta .
$$

$$
:\left(\Delta^{2}-4 \Delta+4\right) y=2 e^{2 t}\left(2 D^{2}=\Delta(\Delta-1)\right.
$$

$$
\frac{d^{2} y}{d z^{2}}=b^{2} \frac{d^{2} y}{d z^{2}}
$$

$$
\Delta^{2}-4 \Delta+4=0
$$

$$
(\Delta-2)^{2}=0 \Rightarrow \Delta=2,2
$$

$$
\sin \operatorname{an} \frac{d^{3} y}{d x^{3}}=b^{3} \frac{d^{3} y}{d z^{3}}
$$

$$
\therefore y_{c}=\left(c+c_{2} t\right) e^{2 t} \Rightarrow y_{c}=\left(c_{1}+c \ln z\right) z^{2}
$$

Brom(1)

$$
\begin{aligned}
y_{p} & =\frac{1}{\Delta^{2}-4 \Delta+4}\left(2 e^{2(-)}\right. \\
& =\frac{t}{12 \Delta-4} 2 e^{2 t}
\end{aligned}
$$

$$
y_{c}=\left[c_{1}+c_{2} \ln (2 x+1)\right](2 x+
$$

$$
\frac{1}{8-\delta}=\frac{1}{0} \text { Failh }
$$

$$
=\frac{t^{2}}{2}: 2 e^{2 t}
$$

$$
=t^{2} e^{2 t}
$$

which is Cauchy-Euler 89

$$
\begin{aligned}
& =E e \\
& =z^{2}(\ln z)^{2} \\
& y_{p}=(2 x+1)^{2}[\ln (2 x+1)]^{2}
\end{aligned}
$$

Noti If we put $a=0, b=1$ in oq reduciblito. Cauchy it becoues" Cauchy's Digfs?.
Not $b^{\prime} b^{\prime}$ is congt of $x \min (a+b x)$
Available at

$$
\begin{aligned}
& \text { So } y=y_{c}+Y_{p} \\
& \begin{aligned}
y= & \left(e_{1}+c_{2} \ln (2 x+1)\right)(2 x+1)^{2} \\
& +(2 x+1)^{2}(\ln (2 x+1))^{2} \\
= & (2 x+1)^{2}\left[c_{1}+c_{2} \ln (2 x+1)+\ln (2 x+1\right.
\end{aligned}
\end{aligned}
$$

\qquad

