EXERCISE 10.4

Solve.

> Question \# 1:
> $x^{2} \frac{d^{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5}$

Solution:

Given equation is

$x^{2} \frac{d^{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5}---(i)$
Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{2} D^{2}+7 x D+5 y=x^{5}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.
Then,
$\boldsymbol{x} \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes

$$
\begin{aligned}
& \left(\Delta^{2}-\Delta+7 \Delta+5\right) y=e^{5 t} \\
& \Rightarrow\left(\Delta^{2}+6 \Delta+5\right) y=e^{5 t}-(i i i)
\end{aligned}
$$

The characteristics equation of $(i i i)$ is
$\Delta^{2}+6 \Delta+5=0$
$\Rightarrow \Delta^{2}+\Delta+5 \Delta+5=0$
$\Rightarrow \Delta(\Delta+1)+5(\Delta+1)=0$
$\Rightarrow(\Delta+1)(\Delta+5)=0$
$\Rightarrow \Delta+1=0$ or $\Delta+5=0$
$\Rightarrow \Delta=-1$ or $\Delta=-5$
Therefore, the complementary function will be $y_{c}=c_{1} e^{-t}+c_{2} e^{-5 t}$

Now,

$y_{p}=\frac{e^{5 t}}{\Delta^{2}+6 \Delta+5}$
$\Rightarrow y_{p}=\frac{e^{5 t}}{(\Delta+1)(\Delta+5)}$
$\Rightarrow y_{p}=\frac{e^{5 t}}{(5+1)(5+5)}$
$\Rightarrow y_{p}=\frac{e^{5 t}}{60}$
The general solution is
$y=y_{c}+y_{p}$

$$
\Rightarrow y=c_{1} e^{-t}+c_{2} e^{-5 t}+\frac{e^{5 t}}{60}
$$

$$
\Rightarrow y=c_{1} x^{-1}+c_{2} x^{-5}+\frac{x^{5}}{60} \because x=e^{-t}
$$

is required solution of (i).

* Question \# 2:

$$
x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\ln x)
$$

Solution:

Given equation is
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=x^{2} \sin (\ln x)---(i)$
Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{2} D^{2}-3 x D+5 y=x^{2} \sin (\ln x)---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.

Then,

$\boldsymbol{x} \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes

$$
\begin{align*}
& \left(\Delta^{2}-\Delta-3 \Delta+5\right) y=e^{2 t} \sin t \\
& \Rightarrow\left(\Delta^{2}-4 \Delta+5\right) y=e^{2 t} \sin t- \tag{iii}
\end{align*}
$$

The characteristics equation of (iii) is

$$
\begin{aligned}
& \Delta^{2}-4 \Delta+5=0 \\
& \Rightarrow \Delta=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)} \\
& \Rightarrow \Delta=\frac{4 \pm \sqrt{16-20}}{2} \\
& \Rightarrow \Delta=\frac{4 \pm \sqrt{-4}}{2} \\
& \Rightarrow \Delta=\frac{4 \pm 2 i}{2} \\
& \Rightarrow \Delta=2 \pm i
\end{aligned}
$$

Therefore, the complementary function will be
$y_{c}=\left(c_{1} \cos t+c_{2} \sin t\right) e^{2 t}$
Now,

$$
\begin{aligned}
& y_{p}=\frac{e^{2 t} \sin t}{\Delta^{2}-4 \Delta+5} \\
& \Rightarrow y_{p}=\frac{e^{2 t} \sin t}{(\Delta+2)^{2}-4(\Delta+2)+5}
\end{aligned}
$$

(by exponential shift)

$$
\Rightarrow y_{p}=\frac{e^{2 t} \sin t}{\Delta^{2}+4+4 \Delta-4 \Delta-8+5}
$$

$$
\Rightarrow y_{p}=\frac{e^{2 t} \sin t}{\Delta^{2}+1}
$$

$$
\Rightarrow y_{p}=\frac{e^{2 t} \operatorname{Im} e^{i t}}{(\Delta+i)(\Delta-i)}
$$

$$
\Rightarrow y_{p}=\frac{t e^{2 t} \operatorname{Im}(\cos t+i \sin t)}{2 i}
$$

$$
\Rightarrow y_{p}=-\frac{t e^{2 t} \operatorname{Im}(\cos t+i \sin t) i}{2}
$$

$$
\Rightarrow y_{p}=-\frac{t e^{2 t} \operatorname{Im}(i \cos t-\sin t)}{2}
$$

$\Rightarrow y_{p}=-\frac{t e^{2 t} \cos t}{2}$
The general solution is
$y=y_{c}+y_{p}$
$\Rightarrow y=\left(c_{1} \cos t+c_{2} \sin t\right) e^{2 t}-\frac{t e^{2 t} \cos t}{2}$
$\Rightarrow y=\left(c_{1} \cos (\ln x)+c_{2} \sin (\ln x)\right) x^{2}-\frac{x^{2} \ln x}{2} \cos (\ln x)$
is required solution of (i).

- Question \# 3:
$x^{2} \frac{d^{2} y}{d x^{2}}-(2 m-1) x \frac{d y}{d x}+\left(m^{2}+n^{2}\right) y=n^{2} x^{m} \ln x$.

Solution:

Given equation is
$x^{2} \frac{d^{2} y}{d x^{2}}-(2 m-1) x \frac{d y}{d x}+\left(m^{2}+n^{2}\right) y=n^{2} x^{m} \ln x---(i)$
Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{2} D^{2}-(2 m-1) x D+\left(m^{2}+n^{2}\right) y=n^{2} x^{m} \ln x---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.
Then,
$x D=\Delta$
$\boldsymbol{x}^{2} \boldsymbol{D}^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes
$\left[\Delta^{2}-\Delta-(2 m-1) \Delta+\left(m^{2}+n^{2}\right)\right] y=n^{2} e^{m t} t$
$\Rightarrow\left(\Delta^{2}-2 m \Delta+\left(m^{2}+n^{2}\right)\right) y=n^{2} t e^{m t}$
The characteristics equation of (iii) is
$\Delta^{2}-2 m \Delta+\left(m^{2}+n^{2}\right)=0$
$\Rightarrow \Delta=\frac{-(-2 m) \pm \sqrt{(-2 m)^{2}-4(1)\left(m^{2}+n^{2}\right)}}{\mathbf{2 (1)}}$
$\Rightarrow \Delta=\frac{2 m \pm \sqrt{4 m^{2}-4 m^{2}-4 n^{2}}}{2}$
$\Rightarrow \Delta=\frac{2 m \pm i 2 n}{2}$
$\Rightarrow \Delta=\boldsymbol{m} \pm \boldsymbol{i n}$
Therefore, the complementary function will be
$y_{c}=\left(c_{1} \cos n t+c_{2} \sin n t\right) e^{m t}$
Now,

$$
\begin{aligned}
& y_{p}=\frac{n^{2} t e^{m t}}{\Delta^{2}-2 m \Delta+\left(m^{2}+n^{2}\right)} \\
& \Rightarrow y_{p}=\frac{n^{2} t e^{m t}}{(\Delta+m)^{2}-2 m(\Delta+m)+m^{2}+n^{2}}
\end{aligned}
$$

(by exponential shift)
$\Rightarrow y_{p}=\frac{n^{2} t e^{m t}}{\Delta^{2}+2 m \Delta+m^{2}-2 m \Delta-2 m^{2}+m^{2}+n^{2}}$
$\Rightarrow y_{p}=\frac{n^{2} t e^{m t}}{\Delta^{2}+n^{2}}$
$\Rightarrow y_{p}=\frac{n^{2} t e^{m t}}{n^{2}\left(1+\frac{\Delta^{2}}{n^{2}}\right)}$
$\Rightarrow y_{p}=e^{m t}\left(1+\frac{\Delta^{2}}{n^{2}}\right)^{-1} t$
$\Rightarrow y_{p}=e^{m t}\left(1-\frac{\Delta^{2}}{n^{2}}-\cdots\right) t$
$\Rightarrow y_{p}=e^{m t}(1-n e g l e c t i n g$ terms $) t$
$\Rightarrow y_{p}=t e^{m t}$
The general solution is
$y=y_{c}+y_{p}$
$\Rightarrow y=\left(c_{1} \cos n t+c_{2} \sin n t\right) e^{m t}+t e^{m t}$
$\Rightarrow y=\left(c_{1} \cos n(\ln x)+c_{2} \sin n(\ln x)\right) x^{m}+x^{m} \ln x$ $\because \boldsymbol{x}=\boldsymbol{e}^{t}$
$\Rightarrow y=\left(c_{1} \cos \left(\ln x^{n}\right)+c_{2} \sin \left(\ln x^{n}\right)\right) x^{m}+x^{m} \ln x$
$\Rightarrow y=x^{m}\left[c_{1} \cos \left(\ln x^{n}\right)+c_{2} \sin \left(\ln x^{n}\right)+\ln x\right]$
is required solution of (i).

Question \# 4:

$$
4 x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+3 y=\sin \ln (-x)
$$

Solution:

Given equation is

$4 x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+3 y=\sin \ln (-x)---(i)$
Replace " $\frac{d y}{d x}$ " by Din (i), we have
$4 x^{2} D^{2}-4 x D+3 y=\sin \ln (-x)---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $-x=e^{t}$ so that $t=\ln (-x)$.
Then,
$x D=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes
$\left[4\left(\Delta^{2}-\Delta\right)-4 \Delta+3\right] y=\sin t$
$\Rightarrow\left(4 \Delta^{2}-4 \Delta-4 \Delta+3\right) y=\sin t$
$\Rightarrow\left(4 \Delta^{2}-8 \Delta+3\right) y=\sin t---(i i i)$
The characteristics equation of $(\mathbf{i i i})$ is
$4 \Delta^{2}-8 \Delta+3=0$
$\Rightarrow 4 \Delta^{2}-2 \Delta-6 \Delta+3=0$
$\Rightarrow 2 \Delta(2 \Delta-1)-2 \Delta(2 \Delta-1)=0$
$\Rightarrow(2 \Delta-1)(2 \Delta-1)=0$
$\Rightarrow 2 \Delta-1=0$ or $2 \Delta-1=0$
$\Rightarrow \Delta=\frac{1}{2}$ or $\Delta=\frac{1}{2}$
Therefore, the complementary function will be
$y_{c}=c_{1} e^{\frac{t}{2}}+c_{2} t e^{\frac{t}{2}}$
$\Rightarrow y_{c}=\left(c_{1}+c_{2} t\right) e^{\frac{t}{2}}$

Now,
$y_{p}=\frac{\sin t}{4 \Delta^{2}-8 \Delta+3}$
$\Rightarrow y_{p}=\frac{\operatorname{Im} e^{i t}}{4 \Delta^{2}-8 \Delta+3}$
$\Rightarrow y_{p}=\frac{\operatorname{Im} e^{i t}}{4(i)^{2}-8(i)+3}$
$\Rightarrow y_{p}=\frac{\operatorname{Im} e^{i t}}{-4-8 i+3}$
$\Rightarrow y_{p}=\frac{\operatorname{Im}(\cos t+i \sin t)}{-1-8 i} \times \frac{-1+8 i}{-1+8 i}$
$\Rightarrow y_{p}=\frac{\operatorname{Im}(-\cos t-i \sin t+8 i \cos t-8 \sin t)}{65}$
$\Rightarrow y_{p}=\frac{8 \cos t-\sin t}{65}$
The general solution is

$$
\begin{aligned}
& y=y_{c}+y_{p} \\
& \Rightarrow y=\left(c_{1}+c_{2} t\right) e^{\frac{t}{2}}+\frac{8 \cos t-\sin t}{65} \\
& \Rightarrow y=\left(c_{1}+c_{2} \ln (-x)\right)(-x)^{\frac{1}{2}}+\frac{8}{65} \cos \ln (-x)
\end{aligned}
$$

$$
-\frac{1}{65} \sin \ln (-x)
$$

$$
\because-x=e^{t}
$$

is required solution of (i).
\& Question \# 5: $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=$

$$
10 x+\frac{10}{x}
$$

Solution:

Given equation is
$x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10 x+\frac{10}{x}---(i)$

Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{3} D^{3}+2 x^{2} D^{2}+2 y=10 x+\frac{10}{x}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.
Then,
$\boldsymbol{x} \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
$x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2)=\Delta^{3}-3 \Delta^{2}+2 \Delta$
Thus equation (ii) becomes
$\left[\Delta^{3}-3 \Delta^{2}+2 \Delta+2\left(\Delta^{2}-\Delta\right)+2\right] y=10 e^{t}+\frac{10}{e^{t}}$
$\Rightarrow\left[\Delta^{3}-\Delta^{2}+2\right] y=10 e^{t}+10 e^{-t}---(i i i)$
The characteristics equation of $(i i i)$ is

$$
\Delta^{3}-\Delta^{2}+2=0
$$

As $\Delta=-1$ is the root of $\Delta^{3}-\Delta^{2}+2=$ 0 . Therefore, we use synthetic division in order to find the other roots of the characteristics equation.

	1	-1	0	2
-1	0	-1	2	-2
	1	-2	2	0

The residue equation will be

$$
\begin{aligned}
& \Delta^{2}-2 \Delta+2=0 \\
& \Rightarrow \Delta=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \\
& \Rightarrow \Delta=\frac{2 \pm \sqrt{-4}}{2} \\
& \Rightarrow \Delta=\frac{2 \pm 2 i}{2}
\end{aligned}
$$

$$
\Rightarrow \Delta=1 \pm i
$$

Therefore, the complementary function will be
$y_{c}=c_{1} e^{-t}+\left(c_{2} \cos t+c_{3} \sin t\right) e^{t}$
Now,
$y_{p}=\frac{10 e^{t}+10 e^{-t}}{\Delta^{3}-\Delta^{2}+2}$
$\Rightarrow y_{p}=\frac{10 e^{t}+10 e^{-t}}{(\Delta+1)\left(\Delta^{2}-2 \Delta+2\right)}$
$\Rightarrow y_{p}=\frac{10 e^{t}}{(\Delta+1)\left(\Delta^{2}-2 \Delta+2\right)}+\frac{10 e^{-t}}{(\Delta+1)\left(\Delta^{2}-2 \Delta+2\right)}$
$\Rightarrow y_{p}=\frac{10 e^{t}}{(1+1)(1-2+2)}+\frac{10 t e^{-t}}{(1+2+2)}$
$\Rightarrow y_{p}=5 e^{t}+2 t e^{-t}$
The general solution is
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{-t}+\left(c_{2} \cos t+c_{3} \sin t\right) e^{t}+5 e^{t}+2 t e^{-t}$

$$
\begin{aligned}
\Rightarrow y=c_{1}(x)^{-1} & +\left(c_{2} \cos (\ln x)+c_{3} \sin (\ln x)\right) x \\
& +5 x+2 \ln x \cdot(x)^{-1}
\end{aligned}
$$

$\Rightarrow y=\left(c_{1}+2 \ln x\right) x^{-1}+(x)^{-1}$

$$
+\left[c_{2} \cos (\ln x)+c_{3} \sin (\ln x)+5\right] x
$$

is required solution of (i).

> Question \# 6:
> $x^{4} \frac{d^{3} y}{d x^{3}}+2 x^{3} \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=1$

Solution:

Given equation is

$x^{4} \frac{d^{3} y}{d x^{3}}+2 x^{3} \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=1$
Dividing both sides by x, we have
$x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\frac{1}{x}---(i)$

Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{3} D^{3}+2 x^{2} D^{2}-x D+y=\frac{1}{x}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.

Then,

$\boldsymbol{x} \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
$x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2)=\Delta^{3}-3 \Delta^{2}+2 \Delta$
Thus equation (ii) becomes
$\left[\Delta^{3}-3 \Delta^{2}+2 \Delta+2\left(\Delta^{2}-\Delta\right)-\Delta+1\right] y=\frac{1}{e^{t}}$
$\Rightarrow\left[\Delta^{3}-\Delta^{2}-\Delta+1\right] y=e^{-t}---(i i i)$
The characteristics equation of $(i i i)$ is
$\Delta^{3}-\Delta^{2}-\Delta+1=0$
$\Rightarrow \Delta^{2}(\Delta-1)-1(\Delta-1)=0$
$\Rightarrow\left(\Delta^{2}-1\right)(\Delta-1)=0$
$\Rightarrow(\Delta+1)(\Delta-1)(\Delta-1)=0$
$\Rightarrow \Delta=1,1,-1$
Therefore, the complementary function will be
$y_{c}=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}$
Now,
$y_{p}=\frac{e^{-t}}{\Delta^{3}-\Delta^{2}-\Delta+\mathbf{1}}$
$\Rightarrow y_{p}=\frac{e^{-t}}{(\Delta+\mathbf{1})(\Delta-\mathbf{1})(\Delta-1)}$
$\Rightarrow y_{p}=\frac{t e^{-t}}{(-1-1)(-1-1)}$
$\Rightarrow y_{p}=\frac{t e^{-t}}{4}$

The general solution is

$$
\begin{aligned}
& y=y_{c}+y_{p} \\
& \Rightarrow y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}+\frac{t e^{-t}}{4} \\
& \Rightarrow y=c_{1} x+c_{2} x \ln x+c_{3} x^{-1}+\frac{\ln x \cdot x^{-1}}{4} \because-x=e^{t} \\
& \Rightarrow y=x\left(c_{1}+c_{2} \ln x\right)+c_{3} x^{-1}+\frac{\ln x}{4 x}
\end{aligned}
$$

is required solution of (i).

* Question \# 7:

$$
x^{3} \frac{d^{3} y}{d x^{3}}+4 x^{2} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}-15 y=x^{4}
$$

Solution:

Given equation is
$x^{3} \frac{d^{3} y}{d x^{3}}+4 x^{2} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}-15 y=x^{4}---(i)$
Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{3} D^{3}+4 x^{2} D^{2}-5 x D-15 y=x^{4}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.
Then,
$x D=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
$x^{3} D^{3}=\Delta(\Delta-1)(\Delta-2)=\Delta^{3}-3 \Delta^{2}+2 \Delta$
Thus equation (ii) becomes

$$
\begin{align*}
& {\left[\Delta^{3}-3 \Delta^{2}+2 \Delta+4\left(\Delta^{2}-\Delta\right)-5 \Delta-15\right] y=e^{4 t}} \\
& \Rightarrow\left[\Delta^{3}+\Delta^{2}-7 \Delta-15\right] y=e^{4 t}---(i i i) \tag{iiii}
\end{align*}
$$

The characteristics equation of $(i i i)$ is
$\Delta^{3}+\Delta^{2}-7 \Delta-15=0$

As $\Delta=3$ is the root of $\Delta^{3}+\Delta^{2}-7 \Delta-15=$
0 . Therefore, we use synthetic division in order to find the other roots of the characteristics equation.

Now, the residual equation is
$\Delta^{2}+4 \Delta+5=0$
$\Rightarrow \Delta=\frac{-4 \pm \sqrt{16-20}}{2(1)}$
$\Rightarrow \Delta=\frac{-4 \pm 2 i}{2}$
$\Rightarrow \Delta=-2 \pm i$
Therefore, the complementary function will be
$y_{c}=c_{1} e^{3 t}+\left(c_{2} \cos t+c_{3} \sin t\right) e^{-2 t}$
Now,
$y_{p}=\frac{e^{4 t}}{\Delta^{3}+\Delta^{2}-7 \Delta-15}$
$\Rightarrow y_{p}=\frac{e^{4 t}}{(\Delta-3)\left(\Delta^{2}+4 \Delta+5\right)}$
$\Rightarrow y_{p}=\frac{e^{4 t}}{(4-3)(16+16+5)}$
$\Rightarrow y_{p}=\frac{e^{4 t}}{(4-3)(16+16+5)}$
$\Rightarrow y_{p}=\frac{e^{4 t}}{37}$
The general solution is
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{3 t}+\left(c_{2} \cos t+c_{3} \sin t\right) e^{-2 t}+\frac{e^{4 t}}{37}$
$\Rightarrow y=c_{1} x^{3}++\left(c_{2} \cos (\ln x)+c_{3} \sin (\ln x)\right) x^{-2}+\frac{x^{4}}{37}$

$$
\because-x=e^{t}
$$

is required solution of (i).

* Question \# 8:

$(x+1)^{2} \frac{d^{2} y}{d x^{2}}+(x+1) \frac{d y}{d x}+y=4[\cos \ln (x+1)]^{2}$

Solution:

Given equation is

$$
\begin{aligned}
(x+1)^{2} \frac{d^{2} y}{d x^{2}}+ & (x+1) \frac{d y}{d x}+y \\
& =4[\cos \ln (x+1)]^{2}---(i)
\end{aligned}
$$

Replace " $\frac{d y}{d x}$ " by D in (i), we have

$$
\begin{aligned}
(x+1)^{2} D^{2}+(x & +1) D+y \\
& =4[\cos \ln (x+1)]^{2}---(i i)
\end{aligned}
$$

This is Cauchy-Euler equation.
To solve this, we put $x+1=e^{t}$ so that $t=$ $\ln (x+1)$.

Then,
$(x+1) D=\Delta$
$(x+1)^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes
$\left[\Delta^{2}-\Delta+\Delta+1\right] y=4[\cos t]^{2}$
$\Rightarrow\left[\Delta^{2}+1\right] y=4 \cos ^{2} t--(i i i)$
The characteristics equation of $(i i i)$ is

Therefore, the complementary function will be $y_{c}=c_{1} \cos t+c_{2} \sin t$

Now,
$y_{p}=\frac{4 \cos ^{2} t}{\Delta^{2}+1}$
$\Rightarrow y_{p}=\frac{4\left(\frac{1+\cos 2 t}{2}\right)}{\Delta^{2}+1}$
$\Rightarrow y_{p}=\frac{2+2 \cos 2 t}{\Delta^{2}+1}$
$\Rightarrow y_{p}=\frac{2}{\Delta^{2}+1}+\frac{2 \cos 2 t}{\Delta^{2}+1}$
$\Rightarrow y_{p}=2\left(1+\Delta^{2}\right)^{-1}+\frac{2 \operatorname{Re} e^{2 i t}}{(\Delta+i)(\Delta-i)}$
$\Rightarrow y_{p}=2(1)+\frac{2 \operatorname{Re}(\cos t+i \sin t)}{(2 i+i)(2 i-i)}$
$\Rightarrow y_{p}=2-\frac{2}{3} \cos t$
The general solution is
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} \cos t+c_{2} \sin t+2-\frac{2}{3} \cos t$
$\Rightarrow y=c_{1} \cos \ln (x+1)+c_{2} \sin \ln (x+1)+2$

$$
-\frac{2}{3} \cos \ln (x+1) \because-x=e^{t}
$$

is required solution of (i).

- Question \# 9:
$(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-6(2 x+1) \frac{d y}{d x}+16 y=8(2 x+1)^{2}$

Solution:

Given equation is

$$
\begin{aligned}
(2 x+1)^{2} \frac{d^{2} y}{d x^{2}} & -6(2 x+1) \frac{d y}{d x}+16 y \\
= & 8(2 x+1)^{2}---(i)
\end{aligned}
$$

Replace " $\frac{d y}{d x}$ " by D in (i), we have
$(2 x+1)^{2} D^{2}-6(2 x+1) D+16 y=8(2 x+1)^{2}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $2 x+1=e^{t}$ so that $t=$ $\ln (2 x+1)$.

Then,
$(2 x+1) D=2\left(x+\frac{1}{2}\right) D=2 \Delta$
$(2 x+1)^{2} D^{2}=4\left(x+\frac{1}{2}\right)^{2} D^{2}=4 \Delta(\Delta-1)$

$$
=4 \Delta^{2}-4 \Delta
$$

Thus equation (ii) becomes
$\left[4 \Delta^{2}-4 \Delta-12 \Delta+16\right] y=8 e^{2 t}$
$\Rightarrow\left[4 \Delta^{2}-16 \Delta+16\right] y=8 e^{2 t}$
$\Rightarrow\left[\Delta^{2}-4 \Delta+4\right] y=2 e^{2 t}-$
The characteristics equation of (iii) is
$\Delta^{2}-4 \Delta+4=0$
$\Rightarrow(\Delta-2)^{2}=0$
$\Rightarrow \Delta=2$ or $\Delta=2$

Therefore, the complementary function will be
$y_{c}=c_{1} e^{2 t}+c_{2} t e^{2 t}$
$\Rightarrow y_{c}=\left(c_{1}+c_{2} t\right) e^{2 t}$
Now,
$y_{p}=\frac{2 e^{2 t}}{\Delta^{2}-4 \Delta+4}$
$\Rightarrow y_{p}=\frac{2 e^{2 t}}{(\Delta-2)^{2}}$
$\Rightarrow y_{p}=2 t^{2} e^{2 t}$
The general solution is
$y=y_{c}+y_{p}$

$$
\begin{aligned}
& \Rightarrow y=\left(c_{1}+c_{2} t\right) e^{2 t}+2 t^{2} e^{2 t} \\
& \Rightarrow y=\left[c_{1}+c_{2}(\ln (2 x+1))\right](2 x+1)^{2} \\
& \quad+2(\ln (2 x+1))^{2}(2 x+1)^{2}
\end{aligned}
$$

is required solution of (i).

* Question \# 10:
$x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-6 y=10 x^{2} \quad y(1)=1 \quad y^{\prime}(1)=-6$

Solution:

Given equation is
$x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-6 y=10 x^{2}---(i)$
Replace " $\frac{d y}{d x}$ " by D in (i), we have
$x^{2} D^{2}+2 x D-6 y=10 x^{2}---(i i)$
This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.
Then,
$x \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes
$\left(\Delta^{2}-\Delta+2 \Delta-6\right) y=10 e^{2 t}$
$\Rightarrow\left(\Delta^{2}+\Delta-6\right) y=10 e^{2 t}$
The characteristics equation of (iii) is
$\Delta^{2}+\Delta-6=0$
$\Rightarrow \Delta^{2}+3 \Delta-2 \Delta-6=0$
$\Rightarrow \Delta(\Delta+3)-2(\Delta+3)=0$
$\Rightarrow(\Delta+3)(\Delta-2)=0$
$\Rightarrow \Delta=2$ or $\Delta=-3$
Therefore, the complementary function will be
$y_{c}=c_{1} e^{2 t}+c_{2} e^{-3 t}$
Now,
$y_{p}=\frac{10 e^{2 t}}{\Delta^{2}+\Delta-6}$
$\Rightarrow y_{p}=\frac{10 e^{2 t}}{(\Delta+3)(\Delta-2)}$
$\Rightarrow y_{p}=\frac{10 t e^{2 t}}{(2+3)}$
$\Rightarrow y_{p}=2 t e^{2 t}$
The general solution is
$y=c_{1} e^{2 t}+c_{2} e^{-3 t}+2 t e^{2 t}$
$\Rightarrow y=c_{1} x^{2}+c_{2} x^{-3}+2(\ln x) x^{2}---(i v)$
To find the constants $c_{1} \& c_{2}$, we will use the initial values.

Applying $y(1)=1$ in equation (iv), we have
$1=c_{1}+c_{2}+2(\ln 1) 1$
$\Rightarrow 1=c_{1}+c_{2}+0 \quad \because \ln 1=0$
$\Rightarrow c_{1}+c_{2}=1---(a)$
Differentiating (iv) w.r.t x, we have
$y^{\prime}=2 c_{1} x-3 c_{2} x^{-4}+4(\ln x) x+2\left(\frac{1}{x}\right) x^{2}---(v)$
Applying $y^{\prime}(1)=-6$ in equation (v), we have
$-6=2 c_{1}-3 c_{2}+0+2$
$\Rightarrow-8=2 c_{1}-3 c_{2}$
$\Rightarrow 2 c_{1}-3 c_{2}=-8---(b)$
From (a), we have
$c_{1}=1-c_{2}---(c)$
Using $c_{1}=1-c_{2}$ in equation (b), we have
$2\left(1-c_{2}\right)-3 c_{2}=-8$
$\Rightarrow 2-2 c_{2}-3 c_{2}=-8$
$\Rightarrow-5 c_{2}=-10$
$\Rightarrow c_{2}=2$
Now $(c) \Longrightarrow$
$c_{1}=-1$
Hence,
$y=-x^{2}+2 x^{-3}+2(\ln x) x^{2}$
is required solution.

Question \# 11:

$x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \ln x \quad y(1)=1 \quad y^{\prime}(1)=0$

Solution:

Given equation is

$x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \ln x---(i)$
Replace " $y^{\prime \prime}$ by Din (i), we have
$x^{2} D^{2}-2 x D+2 y=x \ln x---(i i)$
This is Cauchy-Euler equation.
To solve this, we pat $x=e^{t}$ so that $t=\ln x$.
Then,
$\boldsymbol{x} \boldsymbol{D}=\Delta$
$x^{2} D^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta$
Thus equation (ii) becomes
$\left(\Delta^{2} \rightarrow \Delta-2 \Delta+2\right) \boldsymbol{y}=\boldsymbol{t} \boldsymbol{e}^{\boldsymbol{t}}$
$\Rightarrow\left(\Delta^{2}-3 \Delta+2\right) y=t e^{t}---(i i i)$
The characteristics equation of $(i i i)$ is
$\Delta^{2}-3 \Delta+2=0$
$\Rightarrow \Delta^{2}-\Delta-2 \Delta+2=0$
$\Rightarrow \Delta(\Delta-1)-2(\Delta-1)=0$
$\Rightarrow(\Delta-1)(\Delta-2)=0$
$\Rightarrow \Delta=1$ or $\Delta=2$
Therefore, the complementary function will be
$y_{c}=c_{1} e^{t}+c_{2} e^{2 t}$
Now,
$y_{p}=\frac{t e^{t}}{\Delta^{2}-3 \Delta+2}$
$\Rightarrow y_{p}=\frac{t e^{t}}{(\Delta+1)^{2}-3(\Delta+1)+2}$
(by exponential shift)

$$
\begin{aligned}
& \Rightarrow y_{p}=\frac{t e^{t}}{\Delta^{2}+2 \Delta+1-3 \Delta-3+2} \\
& \Rightarrow y_{p}=\frac{t e^{t}}{\Delta^{2}-\Delta} \\
& \Rightarrow y_{p}=\frac{t e^{t}}{-\Delta(1-\Delta)} \\
& \Rightarrow y_{p}=-\frac{e^{t}}{\Delta}(1-\Delta)^{-1} t \\
& \Rightarrow y_{p}=-\frac{e^{t}}{\Delta}(1+\Delta) t \\
& \Rightarrow y_{p}=-\frac{e^{t}}{\Delta}(t+1) \\
& \Rightarrow y_{p}=-e^{t}\left(\frac{t^{2}}{2}+t\right) \\
& \Rightarrow y_{p}=-\frac{e^{t}}{2}\left(t^{2}+2 t\right)
\end{aligned}
$$

The general solution is
$y=c_{1} e^{t}+c_{2} e^{2 t}-\frac{e^{t}}{2}\left(t^{2}+2 t\right)$
$\Rightarrow y=c_{1} x+c_{2} x^{2}-\frac{x}{2}\left((\ln x)^{2}+2(\ln x)\right)--$ (iv)
To find the constants $c_{1} \& c_{2}$, we will use the initial values.

Applying $y(1)=1$ in equation (iv), we have

$$
\begin{aligned}
& 1=c_{1}+c_{2}+0 \\
& \Rightarrow c_{1}+c_{2}=1-1-(a)
\end{aligned}
$$

Differentiating (iv) w.r.t x, we have

$$
\begin{aligned}
y^{\prime}=c_{1}+2 c_{2} x & -\frac{1}{2}\left((\ln x)^{2}+2(\ln x)\right) \\
& -\frac{x}{2}\left(\frac{2 \ln x}{x}+\frac{2}{x}\right)---(v)
\end{aligned}
$$

Applying $y^{\prime}(1)=0$ in equation (v), we have $0=c_{1}+2 c_{2}-\frac{1}{2}\left(0+\frac{2}{1}\right)$
$\Rightarrow 0=c_{1}+2 c_{2}-1$
$\Rightarrow c_{1}+2 c_{2}=1---(b)$
From (a), we have
$c_{1}=1-c_{2}---(c)$
Using $c_{1}=1-c_{2}$ in equation (b), we have
$1-c_{2}+2 c_{2}=1$
$\Rightarrow \boldsymbol{c}_{2}=\mathbf{0}$
Now $(c) \Longrightarrow$
$c_{1}=1$
Hence,
$\Rightarrow y=x-\frac{x}{2}\left((\ln x)^{2}+2(\ln x)\right)$
$\Rightarrow y=x-\frac{x}{2}(\ln x)^{2}-x \ln x$

is required solution.

- Question \# 12:

$$
\begin{gathered}
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=15 \cos (2 \ln x) \\
y(1)=2 y^{\prime}(1)=-3 \& y^{\prime \prime}(1)=0
\end{gathered}
$$

Solution:

Given equation is

$$
\begin{aligned}
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime} & +x y^{\prime}-y \\
& =15 \cos (2 \ln x)---(i)
\end{aligned}
$$

Replace " $y^{\prime \prime}$ by D in (i), we have
$x^{3} D^{3}+2 x^{2} D^{2}+x D-y$

$$
=15 \cos (2 \ln x)---(i i)
$$

This is Cauchy-Euler equation.
To solve this, we put $x=e^{t}$ so that $t=\ln x$.

Then,

$$
\begin{aligned}
& x \boldsymbol{D}=\Delta \\
& \boldsymbol{x}^{2} \boldsymbol{D}^{2}=\Delta(\Delta-1)=\Delta^{2}-\Delta \\
& x^{3} \boldsymbol{D}^{3}=\Delta(\Delta-1)(\Delta-2)=\Delta^{3}-3 \Delta^{2}+2 \Delta
\end{aligned}
$$

Thus equation (ii) becomes

$$
\begin{aligned}
& \left(\Delta^{3}-3 \Delta^{2}+2 \Delta+2 \Delta^{2}-2 \Delta+\Delta-1\right) y \\
& \quad=15 \cos 2 t \\
& \Rightarrow\left(\Delta^{3}-\Delta^{2}+\Delta-1\right) y=15 \cos 2 t---(i i i)
\end{aligned}
$$

The characteristics equation of (iii) is

$$
\begin{aligned}
& \Delta^{3}-\Delta^{2}+\Delta-\mathbf{1}=\mathbf{0} \\
& \Rightarrow \Delta^{2}(\Delta-\mathbf{1})+\mathbf{1}(\Delta-\mathbf{1})=\mathbf{0} \\
& \Rightarrow(\Delta-\mathbf{1})\left(\Delta^{2}+\mathbf{1}\right)=\mathbf{0} \\
& \Rightarrow \Delta=\mathbf{1} \text { or } \Delta= \pm \boldsymbol{i}
\end{aligned}
$$

Therefore, the complementary function will be
$y_{c}=c_{1} e^{t}+c_{2} \cos x+c_{3} \sin x$
Now,
$y_{p}=\frac{15 \cos 2 t}{\Delta^{3}-\Delta^{2}+\Delta-1}$
$\Rightarrow y_{p}=\frac{15 \operatorname{Re} e^{2 i t}}{\Delta^{3}-\Delta^{2}+\Delta-1}$
$\Rightarrow y_{p}=\frac{15 \operatorname{Re} e^{2 i t}}{(2 i)^{3}-(2 i)^{2}+2 i-1}$
$\Rightarrow y_{p}=\frac{15 \operatorname{Re} e^{2 i t}}{-8 i+4+2 i-1}$
$\Rightarrow y_{p}=\frac{15 \operatorname{Re} e^{2 i t}}{3-6 i}$
$\Rightarrow y_{p}=\frac{5 \operatorname{Re}(\cos 2 t+i \sin 2 t)}{1-2 i} \times \frac{1+2 i}{1+2 i}$
$\Rightarrow y_{p}$
$=\frac{5 \operatorname{Re}(\cos 2 t+2 i \cos 2 t+i \sin 2 t-2 \sin 2 t)}{5}$
$\Rightarrow y_{p}=\cos 2 t-2 \sin 2 t$
The general solution is
$y=c_{1} e^{t}+c_{2} \cos t+c_{3} \sin t+\cos 2 t$ $-2 \sin 2 t$

$$
\begin{aligned}
\Rightarrow y=c_{1} x+ & c_{2} \cos (\ln x)+c_{3} \sin (\ln x) \\
& +\cos 2(\ln x)-2 \sin 2(\ln x) \\
& ---(i v)
\end{aligned}
$$

To find the constants $c_{1}, c_{2} \& c_{3}$, we will use the initial values.

Applying $y(1)=2$ in equation (iv), we have

$$
\begin{aligned}
& 2=c_{1}+c_{2}+1 \\
& \Rightarrow c_{1}+c_{2}=1---(a)
\end{aligned}
$$

Differentiating (iv) w.r.t x, we have

Applying $y^{\prime}(1)=-3$ in equation (v), we have

$$
-3=c_{1}+c_{3}-4
$$

$\Rightarrow c_{1}+c_{3}=1--(b)$
Differentiating (v) w.r.t \boldsymbol{x}, we have

$$
\begin{aligned}
y^{\prime \prime}=-c_{2}[- & \left.\frac{\sin (\ln x)}{x^{2}}+\frac{\cos (\ln x)}{x^{2}}\right] \\
& +c_{3}\left[-\frac{\cos (\ln x)}{x^{2}}-\frac{\sin (\ln x)}{x^{2}}\right] \\
& -\left[-\frac{2 \sin 2(\ln x)}{x^{2}}\right. \\
& \left.+\frac{4 \cos 2(\ln x)}{x^{2}}\right] \\
& -\left[-\frac{4 \cos 2(\ln x)}{x^{2}}\right. \\
& \left.-\frac{8 \sin 2(\ln x)}{x^{2}}\right]--(v i)
\end{aligned}
$$

Applying $y^{\prime \prime}(1)=0$ in equation (vi), we have
$\Rightarrow \mathbf{0}=-c_{2}-c_{3}$
$\Rightarrow c_{2}+c_{3}=0--(c)$
From (c), we have
$c_{2}=-c_{3}---(d)$

Using $c_{2}=-c_{3}$ in equation (a), we have
$c_{1}-c_{3}=1---(e)$
Now (b) $+(e) \Rightarrow$
$2 c_{1}=2$
$\Rightarrow c_{1}=1$
$(e) \Rightarrow 1-c_{3}=1$
$\Rightarrow c_{3}=0$
$\Rightarrow c_{2}=0$
Hence,
$\Rightarrow y=x+\cos 2(\ln x)-2 \sin 2(\ln x)$
is required solution.

