## greicira \# 10.9

Find the general solution of each of the following:

Question \# 1: $\left(D^{2}+3 D-4\right) y=15 e^{x}$

## Solution:

## Given equation is

$\left(D^{2}+3 D-4\right) y=15 e^{x}---(i)$
The characteristics equation of (i) will be
$D^{2}+3 D-4=0$
$\Rightarrow D^{2}+4 D-D-4=0$
$\Rightarrow D(D+4)-1(D+4)=0$
$\Rightarrow(D+4)(D-1)=0$
$\Rightarrow(D+4)=0$ or $(D-1)=0$
$\Rightarrow D=-4$ or $D=1$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-4 x}+c_{2} e^{x}$

## Now,

$y_{p}=\frac{15 e^{x}}{D^{2}+3 D-4}$
$\Rightarrow y_{p}=\frac{15 e^{x}}{(D+4)(D-1)}$
$\Rightarrow y_{p}=\frac{15 x e^{x}}{(1+4)}$
$\Rightarrow y_{p}=3 x e^{x}$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{-4 x}+c_{2} e^{x}+3 x e^{x}$
is the required solution.

## Question \# 2: $\left(D^{2}-3 D+2\right) y=e^{x}+e^{2 x}$

## Solution:

Given equation is
$\left(D^{2}-3 D+2\right) y=e^{x}+e^{2 x}--(i)$
The characteristics equation of (i) will be
$D^{2}-3 D+2=0$
$\Rightarrow D^{2}-2 D-D+2=0$
$\Rightarrow D(D-2)-1(D-2)=0$
$\Rightarrow(D-2)(D-1)=0$
$\Rightarrow(D-2)=0$ or $(D-1)=0$
$\Rightarrow D=2$ or $D=1$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{2 x}+c_{2} e^{x}$
Now,
$y_{p}=\frac{e^{x}+e^{2 x}}{D^{2}-3 D+2}$
$\Rightarrow y_{p}=\frac{e^{x}+e^{2 x}}{(D-2)(D-1)}$
$\Rightarrow y_{p}=\frac{e^{x}}{(D-2)(D-1)}+\frac{e^{2 x}}{(D-2)(D-1)}$
$\Rightarrow y_{p}=\frac{x e^{x}}{(1-2)}++\frac{x e^{2 x}}{(2-1)}$
$\Rightarrow y_{p}=-x e^{x}+x e^{2 x}$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{2 x}+c_{2} e^{x}-x e^{x}+x e^{2 x}$
is the required solution.
Question \# 3: $\left(D^{2}-2 D-3\right) y=2 e^{x}-10 \sin x$

## Solution:

Given equation is
$\left(D^{2}-2 D-3\right) y=2 e^{x}-10 \sin x---(i)$
The characteristics equation of (i) will be
$D^{2}-2 D-3=0$
$\Rightarrow D^{2}-3 D+D-3=0$
$\Rightarrow D(D-3)+1(D-3)=0$
$\Rightarrow(D-3)(D+1)=0$
$\Rightarrow(D-3)=0$ or $(D+1)=0$
$\Rightarrow D=3$ or $D=-1$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{3 x}+c_{2} e^{-x}$

## Now,

$y_{p}=\frac{2 e^{x}-10 \sin x}{D^{2}-2 D-3}$
$\Rightarrow y_{p}=\frac{2 e^{x}-10 \sin x}{(D-3)(D+1)}$
$\Rightarrow y_{p}=\frac{2 e^{x}}{(D-3)(D+1)} \frac{10 \sin x}{(D-3)(D+1)}$
$\Rightarrow y_{p}=\frac{2 e^{x}}{(1-3)(1+1)}-\frac{10 \operatorname{Im} e^{i x}}{(D-3)(D+1)}$
$\Rightarrow y_{p}=\frac{2 e^{x}}{(-2)(2)}-\frac{10 \operatorname{Im} e^{i x}}{(i-3)(i+1)}$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}-\frac{10 \operatorname{Im} e^{i x}}{i^{2}-2 i-3}$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}+\frac{5 \operatorname{Im} e^{i x}}{i+2}$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}+\frac{5 \operatorname{Im} e^{i x}}{i+2} \times \frac{i-2}{i-2}$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}-\frac{5 \operatorname{Im}(\cos x+i \sin x)(i-2)}{5}$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}-\operatorname{Im}(i \cos x-2 \cos x-\sin x-2 i \sin x)$
$\Rightarrow y_{p}=-\frac{e^{x}}{2}-\cos x+2 \sin x$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{3 x}+c_{2} e^{-x}-\frac{e^{x}}{2}-\cos x+2 \sin x$
is the required solution.
Question \# 4: $\left(D^{4}-2 D^{3}+D\right) y=x^{4}+3 x+1$

## Solution:

## Givenequation is

$:\left(D^{4}-2 D^{3}+D\right) y=x^{4}+3 x+1$
The characteristics equation of (i) will be
$D^{4}-2 D^{3}+D=0$
$\Rightarrow D\left(D^{3}-2 D^{2}+1\right)=0$
$\Rightarrow D=0$ or $\left(D^{3}-2 D^{2}+1\right)=0$
As $D=1$ is the root of $D^{3}-2 D^{2}+1=0 . s o$, by using synthetic division, we have

|  | 1 | -2 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | -1 | -1 |
|  | 1 | -1 | -1 | 0 |
|  |  |  |  |  |

The residue equation will be
$D^{2}-D-1=0$
$\Rightarrow D=\frac{-(-1) \mp \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}$
$\Rightarrow D=\frac{1 \mp \sqrt{5}}{2}$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{\frac{1+\sqrt{5}}{2} x}++c_{3} e^{\frac{1-\sqrt{5}}{2} x}$
Now,
$y_{p}=\frac{x^{4}+3 x+1}{D^{4}-2 D^{3}+D}$
$\Rightarrow y_{p}=\frac{x^{4}+3 x+1}{D\left[1+\left(D^{3}-2 D^{2}\right)\right]}$
$\Rightarrow y_{p}=\frac{1}{D}\left[1+\left(D^{3}-2 D^{2}\right)\right]^{-1}\left(x^{4}+3 x+1\right)$
$\Rightarrow y_{p}=\frac{1}{D}\left[1-\left(D^{3}-2 D^{2}\right)+\left(D^{3}-2 D^{2}\right)^{2}\right.$

$$
-\cdots]\left(x^{4}+3 x+1\right)
$$

$\Rightarrow y_{p}=\frac{1}{D}\left[1-D^{3}+2 D^{2}+4 D^{4}\right.$ + neglecting higher order $]\left(x^{4}\right.$ $+3 x+1$ )
$\Rightarrow y_{p}=\frac{1}{D}\left[1-D^{3}+2 D^{2}+4 D^{4}\right]\left(x^{4}+3 x+1\right)$
$\Rightarrow y_{p}=\frac{1}{D}\left[x^{4}+3 x+1-24 x+24 x^{2}+96\right]$
$\Rightarrow y_{p}=\frac{1}{D}\left[x^{4}++24 x^{2}-21 x+97\right]$
$\Rightarrow y_{p}=\frac{x^{5}}{5}++24 \frac{x^{3}}{3}-21 \frac{x^{2}}{2}+97 x$
$\Rightarrow y_{p}=\frac{x^{5}}{5}++8 x^{3}-\frac{21}{2} x^{2}+97 x$
Hence,
$y=y_{c}+y_{p}$

$$
\begin{gathered}
\Rightarrow y=c_{1} e^{x}+c_{2} e^{\frac{1+\sqrt{5}}{2} x}++c_{3} e^{\frac{1-\sqrt{5}}{2} x}+\frac{x^{5}}{5}++8 x^{3} \\
-\frac{21}{2} x^{2}+97 x
\end{gathered}
$$

is the required solution.
Question \# 5: $\left(D^{3}-D^{2}+D-1\right) y=4 \sin x$

## Solution:

Given equation is
$\left(D^{3}-D^{2}+D-1\right) D y=4 \sin x$
The characteristics equation of (i) will be
$D^{3}-D^{2}+D-1=0$
$\Rightarrow D^{2}(D-1)+1(D-1)=0$
$\Rightarrow(D-1)\left(D^{2}+1\right)=0$
$\Rightarrow D-1=0$ or $D^{2}+1=0$
$\Rightarrow D=1$ or $D= \pm i$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x$
Now,
$y_{p}=\frac{4 \sin x}{D^{3}-D^{2}+D-1}$
$\Rightarrow y_{p}=\frac{4 \operatorname{Im} e^{i x}}{(D-1)\left(D^{2}+1\right)}$
$\Rightarrow y_{p}=\frac{4 \operatorname{Im} e^{i x}}{(D-1)(D+i)(D-i)}$
$\Rightarrow y_{p}=\frac{4 x \operatorname{Im} e^{i x}}{(i-1)(i+i)}$
$\Rightarrow y_{p}=\frac{2 x \operatorname{Im} e^{i x}}{i^{2}-i}$
$\Rightarrow y_{p}=\frac{2 x \operatorname{Im} e^{i x}}{-1-i}$
$\Rightarrow y_{p}=\frac{2 x \operatorname{Im} e^{i x}}{-1-i} \times \frac{-1+i}{-1+i}$
$\Rightarrow y_{p}=\frac{2 x \operatorname{Im}(\cos x+i \sin x)(-1+i)}{(-1)^{2}-i^{2}}$
$\Rightarrow y_{p}=\frac{2 x \operatorname{Im}(-\cos x+i \cos x-i \sin x-\sin x)}{2}$
$\Rightarrow y_{p}=x(\cos x-\sin x)$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x+x(\cos x-\sin x)$
$\Rightarrow y=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x+x \cos x-x \sin x$
is the required solution.
Question \# 6: $\left(D^{3}-2 D^{2}-3 D+10\right) y=40 \cos x$

## Solution:

Given equation is
$\left(D^{3}-2 D^{2}-3 D+10\right) y=40 \cos x---(i)$
The characteristics equation of $(i)$ will be
$D^{3}-2 D^{2}-3 D+10=0$
As $D=-2$ is the root of $D^{3}-2 D^{2}-3 D+10=$ 0 . so, by using synthetic division, we have


The residue equation will be
$D^{2}-4 D+5=0$
$\Rightarrow D=\frac{-(-4) \mp \sqrt{(-4)^{2}-4(1)(5)}}{2(1)}$
$\Rightarrow D=\frac{4 \mp \sqrt{-4}}{2}$
$\Rightarrow D=\frac{4 \mp 2 i}{2}$
$\Rightarrow D=2 \mp i$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-2 x}+\left(c_{2} \cos x+c_{3} \sin x\right) e^{2 x}$
Now,

$$
y_{p}=\frac{40 \cos x}{D^{3}-2 D^{2}-3 D+10}
$$

$$
\Rightarrow y_{p}=\frac{40 R e e^{i x}}{(D+2)\left(D^{2}-4 D+5\right)}
$$

$$
\Rightarrow y_{p}=\frac{40 R e e^{i x}}{(i+2)\left(i^{2}-4 i+5\right)}
$$

$$
\Rightarrow y_{p}=\frac{40 R e e^{i x}}{(i+2)(4-4 i)}
$$

$$
\Rightarrow y_{p}=\frac{40 R e e^{i x}}{4 i+4+8-8 i}
$$

$\Rightarrow y_{p}=\frac{40 \operatorname{Re} e^{i x}}{12-4 i}$
$\Rightarrow y_{p}=\frac{40 \text { Re } e^{i x}}{4(3-i)} \times \frac{3+i}{3+i}$
$\Rightarrow y_{p}=\frac{10 \operatorname{Re}(\cos x+i \sin x)(3+i)}{9+1}$
$\Rightarrow y_{p}=\operatorname{Re}(3 \cos x+i \cos x+3 i \sin x-\sin x)$
$\Rightarrow y_{p}=3 \cos x-\sin x$

## Hence,

$$
y=y_{c}+y_{p}
$$

$$
\Rightarrow y=c_{1} e^{-2 x}+\left(c_{2} \cos x+c_{3} \sin x\right) e^{2 x}+3 \cos x
$$

$$
-\sin x
$$

is the required solution.

$$
\text { Question \# 7: }\left(D^{2}+4\right) y=4 \sin ^{2} x
$$

## Solution:

Given equation is
$\left(D^{2}+4\right) y=4 \sin ^{2} x---(i)$
The characteristics equation of (i) will be
$D^{2}+4=0$
$\Rightarrow D^{2}=-4$
$\Rightarrow D= \pm 2 i$
Therefore, the complementary solution is
$y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$

## Now,

$y_{p}=\frac{4 \sin ^{2} x}{D^{2}+4}$
$\Rightarrow y_{p}=\frac{4\left(\frac{1-\cos 2 x}{2}\right)}{D^{2}+4}$
$\Rightarrow y_{p}=\frac{2-2 \cos 2 x}{D^{2}+4}$
$\Rightarrow y_{p}=\frac{2}{D^{2}+4}-\frac{2 \cos 2 x}{D^{2}+4}$
$\Rightarrow y_{p}=\frac{2}{4\left(1+\frac{D^{2}}{4}\right)}-\frac{2 R e e^{2 i x}}{(D+2 i)(D-2 i)}$
$\left.\Rightarrow y_{p}=\frac{1}{2}\left(1+\frac{D^{2}}{4}\right)^{-1}-\frac{2 x R e e^{2 i x}}{(2 i+2 i)}\right)$
$\Rightarrow y_{p}=\frac{1}{2}(1)-\frac{2 x \operatorname{Re}(\cos 2 x+i \sin 2 x)}{4 i} \times \frac{4 i}{4 i}$
$\Rightarrow y_{p}=\frac{1}{2}-\frac{2 x R e(4 i \cos 2 x-4 \sin 2 x)}{-16}$

$$
\begin{aligned}
& \Rightarrow y_{p}=\frac{1}{2}+\frac{2 x(-4 \sin 2 x)}{16} \\
& \Rightarrow y_{p}=\frac{1}{2}-\frac{x \sin 2 x}{2} \\
& \Rightarrow y_{p}=\frac{1}{2}(1-x \sin 2 x)
\end{aligned}
$$

## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{2}(1-x \sin 2 x)$
is the required solution.

## Question \# 8: $\left(D^{3}+D\right) y=2 x^{2}+4 \sin x$

## Solution:

Given equation is
$\left(D^{3}+D\right) y=2 x^{2}+4 \sin x---(i)$
The characteristics equation of $(i)$ will be
$D^{3}+D=0$
$\Rightarrow D\left(D^{2}+1\right)=0$
$\Rightarrow D=0, D$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{0 x}+c_{2} \cos x+c_{3} \sin x$
$\Rightarrow y_{c}=c_{1}+c_{2} \cos x+c_{3} \sin x$

## Now,

$$
y_{p}=\frac{2 x^{2}+4 \sin x}{D^{3}+D}
$$

$$
\Rightarrow y_{p}=\frac{2 x^{2}}{D^{3}+D}+\frac{4 \sin x}{D^{3}+D}
$$

$$
\Rightarrow y_{p}=\frac{2 x^{2}}{D\left(1+D^{2}\right)}+\frac{4 \operatorname{Im} e^{i x}}{D\left(1+D^{2}\right)}
$$

$$
\Rightarrow y_{p}=\frac{2 x^{2}}{D}\left(1+D^{2}\right)^{-1}+\frac{4 \operatorname{Im} e^{i x}}{D(D+i)(D-i)}
$$

$$
\Rightarrow y_{p}=\frac{2 x^{2}}{D}\left(1-D^{2}\right)+\frac{4 x \operatorname{Im} e^{i x}}{i(i+i)}
$$

$$
\Rightarrow y_{p}=\frac{1}{D}\left(2 x^{2}-4\right)+\frac{4 x \operatorname{Im}(\cos x+i \sin x)}{-2}
$$

$$
\Rightarrow y_{p}=\frac{2}{3} x^{3}-4 x-2 x \sin x
$$

Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1}+c_{2} \cos x+c_{3} \sin x+\frac{2}{3} x^{3}-4 x$ $-2 x \sin x$
is the required solution.
Question \# 9: $\left(D^{4}+D^{2}\right) y=3 x^{2}+6 \sin x-$ $2 \boldsymbol{\operatorname { c o s }} \boldsymbol{x}$

## Solution:

Given equation is
$\left(D^{4}+D^{2}\right) y=3 x^{2}+6 \sin x-2 \cos x---(i)$
The characteristics equation of (i) will be
$D^{4}+D^{2}=0$
$\Rightarrow D^{2}\left(D^{2}+1\right)=0$
$\Rightarrow D=\mathbf{0}, \mathbf{0}, \boldsymbol{D}= \pm \boldsymbol{i}$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} \cos x+c_{4} \sin x$
$\Rightarrow y_{c}=c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x$

## Now,

$y_{p}=\frac{3 x^{2}+6 \sin x-2 \cos x}{D^{4}+D^{2}}$
$\Rightarrow y_{p}=\frac{3 x^{2}}{D^{4}+D^{2}}+\frac{6 \sin x}{D^{4}+D^{2}}-\frac{2 \cos x}{D^{4}+D^{2}}$
$\Rightarrow y_{p}=\frac{3 x^{2}}{D^{2}\left(1+D^{2}\right)}+\frac{6 \operatorname{Im} e^{i x}}{D^{2}\left(D^{2}+1\right)}-\frac{2 R e e^{i x}}{D^{2}\left(D^{2}+1\right)}$
$\Rightarrow y_{p}=\frac{3 x^{2}}{D^{2}}\left(1+D^{2}\right)^{-1}+\frac{6 \operatorname{Im} e^{i x}}{D^{2}(D+i)(D-i)}$

$$
-\frac{2 \operatorname{Re} e^{i x}}{D^{2}(D+i)(D-i)}
$$

$\Rightarrow y_{p}=\frac{3 x^{2}}{D^{2}}\left(1-D^{2}\right)+\frac{6 x \operatorname{Im} e^{i x}}{i^{2}(i+i)}-\frac{2 x \operatorname{Re} e^{i x}}{i^{2}(i+i)}$

$$
\begin{array}{r}
\Rightarrow y_{p}=\frac{1}{D^{2}}\left(3 x^{2}-6\right)-\frac{3 x \operatorname{Im}(\cos x+i \sin x)}{i} \\
+\frac{x \operatorname{Re}(\cos x+i \sin x)}{i} \\
\Rightarrow y_{p}=\frac{x^{4}}{4}-3 x^{2}-\frac{3 x \operatorname{Im}(i \cos x-\sin x)}{i^{2}} \\
+\frac{x \operatorname{Re}(i \cos x-\sin x)}{i^{2}}
\end{array}
$$

$\Rightarrow y_{p}=\frac{x^{4}}{4}-3 x^{2}+3 x \operatorname{Im}(i \cos x-\sin x)$

$$
-x \operatorname{Re}(i \cos x-\sin x)
$$

$\Rightarrow y_{p}=\frac{x^{4}}{4}-3 x^{2}+3 x \cos x+x \sin x$

## Hence,

$y=y_{c}+y_{p}$

$$
\Rightarrow y=c_{1}+c_{2} x+c_{3} \cos x+c_{4} \sin x+\frac{x^{4}}{4}-3 x^{2}
$$

$$
+3 x \cos x+x \sin x
$$

is the required solution.

Question \# 10: $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$

## Solution:

Given equation is

$$
\left(D^{2}-2 D+4\right) y=e^{x} \cos x---(i)
$$

The characteristics equation of (i) will be
$D^{2}-2 D+4=0$
$\Rightarrow D=\frac{-(-2) \pm \sqrt{4-16}}{2}$
$\Rightarrow D=\frac{2 \pm \sqrt{-12}}{2}$
$\Rightarrow D=\frac{2 \pm 2 \sqrt{3} i}{2}$
$\Rightarrow D=1 \pm \sqrt{3} i$
Therefore, the complementary solution is
$y_{c}=\left(c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right) e^{x}$
Now,
$y_{p}=\frac{e^{x} \cos x}{D^{2}-2 D+4}$
$\Rightarrow y_{p}$
$=\frac{e^{x} \cos x}{(D+1)^{2}-2(D+1)+4}($ By exponential shift $)$
$\Rightarrow y_{p}=\frac{e^{x} \cos x}{D^{2}+2 D+1-2 D-2+4}$
$\Rightarrow y_{p}=\frac{e^{x} \cos x}{D^{2}+3}$
$\Rightarrow y_{p}=\frac{e^{x} \operatorname{Re} e^{i x}}{D^{2}+3}$
$\Rightarrow y_{p}=\frac{e^{x} \operatorname{Re}(\cos x+i \sin x)}{-1+3}$
$\Rightarrow y_{p}=\frac{e^{x} \cos x}{2}$

## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=\left(c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right) e^{x}+\frac{e^{x} \cos x}{2}$ is the required solution.

Question \# 11: $\left(D^{3}-D^{2}+3 D+5\right) y=e^{x} \sin 2 x$
Solution:
Given equaction is
$\left(D^{3}-D^{2}+3 D+5\right) y=e^{x} \sin 2 x---(i)$
The characteristics equation of (i) will be
$D^{3}-D^{2}+3 D+5=0$
$D=-1$ is a root of characteristics equation. So we use synthetic division in order to find the other roots of synthetic division.

|  | 1 | -1 | 3 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | -1 | 2 | -5 |
|  | 1 | -2 | 5 | 0 |

Now, the residual equation will be
$D^{2}-2 D+5=0$
$\Rightarrow D=\frac{-(-2) \pm \sqrt{4-20}}{2}$
$\Rightarrow D=\frac{2 \pm \sqrt{-16}}{2}$
$\Rightarrow D=\frac{2 \pm 4 i}{2}$
$\Rightarrow D=1 \pm 2 i$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-x}+\left(c_{2} \cos 2 x+c_{3} \sin 2 x\right) e^{x}$
Now,
$y_{p}=\frac{e^{x} \sin 2 x}{D^{3}-D^{2}+3 D+5}$
$\Rightarrow y_{p}=\frac{e^{x} \sin 2 x}{(D+1)^{3}-(D+1)^{2}+3(D+1)+5}$
(By exponential shift)
$\Rightarrow y_{p}=\frac{e^{x} \sin 2 x}{D^{3}+1+3 D^{2}+3 D-D^{2}-2 D-1+3 D+3+5}$
$\Rightarrow y_{p}=\frac{e^{x} \sin 2 x}{D^{3}+2 D^{2}+4 D+8}$
$\Rightarrow y_{p}=\frac{e^{x} \sin 2 x}{D^{2}(D+2)+4(D+2)}$
$\Rightarrow y_{p}=\frac{e^{x} \sin 2 x}{(D+2)\left(D^{2}+4\right)}$
$\Rightarrow y_{p}=\frac{e^{x} \operatorname{Im} e^{2 i x}}{(D+2)(D+2 i)(D-2 i)}$
$\Rightarrow y_{p}=\frac{x e^{x} I m e^{2 i x}}{(2 i+2)(2 i+2 i)}$
$\Rightarrow y_{p}=\frac{x e^{x} \operatorname{Im} e^{2 i x}}{8 i(i+1)}$
$\Rightarrow y_{p}=\frac{x e^{x} \operatorname{Im} e^{2 i x}}{8(i-1)}$
$\Rightarrow y_{p}=\frac{x e^{x} \operatorname{Im} e^{2 i x}}{8(i-1)} \times \frac{i+1}{i+1}$
$\Rightarrow y_{p}=\frac{x e^{x} \operatorname{Im}(\cos 2 x+i \sin 2 x)(i+1)}{8\left(i^{2}-1\right)}$
$\Rightarrow y_{p}=\frac{x e^{x} \operatorname{Im}(i \cos 2 x+\cos 2 x-\sin 2 x+i \sin 2 x)}{8(-2)}$
$\Rightarrow y_{p}=-\frac{x e^{x}(\cos 2 x+\sin 2 x)}{16}$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{-x}+\left(c_{2} \cos 2 x+c_{3} \sin 2 x\right) e^{x}$ $-\frac{x e^{x}(\cos 2 x+\sin 2 x)}{16}$
is the required solution.

Question \# 12: $\left(D^{3}-7 D-6\right) y=e^{2 x}(1+x)$
Solution:
Given equation is
$\left(D^{3}-7 D-6\right) y=e^{2 x}(1+x)---(i)$
The characteristics equation of $(i)$ will be
$D^{3}-7 D-6=0$
$D=-1$ is a root of characteristics equation. So we use synthetic division in order to find the other roots of characteristics equation.

|  | 1 | 0 | -7 | -6 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | -1 | 1 | 6 |
|  | 1 | -1 | -6 | 0 |
|  |  |  |  |  |

Now, the residual equation will be
$D^{2}-D+6=0$
$\Rightarrow D^{2}-3 D+2 D-6=0$
$\Rightarrow D(D-3)+2(D-3)=0$
$\Rightarrow(D-3)(D+2)=0$
$\Rightarrow D=3$ or $D=-2$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}$
Now,
$y_{p}=\frac{e^{2 x}(1+x)}{D^{3}-7 D-6}$

$$
\Rightarrow y_{p}=\frac{e^{2 x}(1+x)}{(D+2)^{3}-7(D+2)-6}
$$

(By exponential shift)
$\Rightarrow y_{p}=\frac{e^{2 x}(1+x)}{D^{3}+8+6 D^{2}+12 D-7 D-14-6}$
$\Rightarrow y_{p}=\frac{e^{2 x}(1+x)}{D^{3}+6 D^{2}+5 D-12}$
$\Rightarrow y_{p}=-\frac{e^{2 x}(1+x)}{12\left(1-\frac{D^{3}+6 D^{2}+5 D}{12}\right)}$
$\Rightarrow y_{p}=-\frac{e^{2 x}(1+x)}{12}\left(1-\frac{D^{3}+6 D^{2}+5 D}{12}\right)^{-1}$
$\Rightarrow y_{p}=-\frac{e^{2 x}(1+x)}{12}\left(1+\frac{D^{3}+6 D^{2}+5 D}{12}+\cdots\right)$
$\Rightarrow y_{p}=-\frac{e^{2 x}(1+x)}{12}\left(1+\frac{5 D}{12}\right.$

+ neglecting higher power factors)
$\Rightarrow y_{p}=-\frac{e^{2 x}(1+x)}{12}\left(1+\frac{5 D}{12}\right)$
$\Rightarrow y_{p}=-\frac{e^{2 x}}{12}\left(1+x+\frac{5}{12}\right)$
$\Rightarrow y_{p}=-\frac{e^{2 x}}{12}\left(x+\frac{17}{12}\right)$


## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}-\frac{e^{2 x}}{12}\left(x+\frac{17}{12}\right)$
is the required solution.
Question \# 13: $\left(D^{2}-7 D+12\right) y=e^{2 x}\left(x^{3}-5 x^{2}\right)$

## Solution:

Given equation is
$\left(D^{2}-7 D+12\right) y=e^{2 x}\left(x^{3}-5 x^{2}\right)---(i)$
The characteristics equation of (i) will be
$D^{2}-7 D+12=0$
$\Rightarrow D^{2}-3 D-4 D+12=0$
$\Rightarrow D(D-3)-4(D-3)=0$
$\Rightarrow(D-3)(D-4)=0$
$\Rightarrow D=3$ or $D=4$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{3 x}+c_{2} e^{4 x}$
Now,
$y_{p}=\frac{e^{2 x}\left(x^{3}-5 x^{2}\right)}{D^{2}-7 D+12}$
$\Rightarrow y_{p}=\frac{e^{2 x}\left(x^{3}-5 x^{2}\right)}{(D+2)^{2}-7(D+2)+12}$
(By exponential shift)
$\Rightarrow y_{p}=\frac{e^{2 x}\left(x^{3}-5 x^{2}\right)}{D^{2}+4+4 D-7 D-14+12}$
$\Rightarrow y_{p}=\frac{e^{2 x}\left(x^{3}-5 x^{2}\right)}{D^{2}-3 D+2}$
$\Rightarrow y_{p}=\frac{e^{2 x}\left(x^{3}-5 x^{2}\right)}{2\left(1+\frac{D^{2}-3 D}{2}\right)}$
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(1+\frac{D^{2}-3 D}{2}\right)^{-1}\left(x^{3}-5 x^{2}\right)$
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(1-\frac{D^{2}-3 D}{2}+\frac{\left(D^{2}-3 D\right)^{2}}{4}\right.$
$\left.-\frac{\left(D^{2}-3 D\right)^{3}}{8}+\cdots\right)\left(x^{3}-5 x^{2}\right)$
$\Rightarrow y_{p}$
$=\frac{e^{2 x}}{2}\left(1-\frac{D^{2}}{2}+\frac{3 D}{2}+\frac{9 D^{2}}{4}-\frac{6 D^{3}}{4}+\frac{27 D^{3}}{8}\right.$
$+\cdots)\left(x^{3}-5 x^{2}\right)$ neglecting greater powers
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(1+\frac{15 D^{3}}{8}+\frac{7 D^{2}}{4}+\frac{3 D}{2}\right)\left(x^{3}-5 x^{2}\right)$
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(x^{3}-5 x^{2}+\frac{90}{8}+\frac{42}{4} x-\frac{70}{4}+\frac{9 x^{2}}{2}-\frac{30 x}{2}\right)$
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(x^{3}-\frac{x^{2}}{2}-\frac{18 x}{4}-\frac{50}{8}\right)$
$\Rightarrow y_{p}=\frac{e^{2 x}}{2}\left(x^{3}-\frac{x^{2}}{2}-\frac{9 x}{2}-\frac{25}{4}\right)$
$\Rightarrow y_{p}=\frac{e^{2 x}}{8}\left(4 x^{3}-2 x^{2}-18 x-25\right)$
Hence,
$y=y_{c}+y_{p}$

$$
\begin{aligned}
\Rightarrow y=c_{1} e^{3 x} & +c_{2} e^{4 x} \\
& +\frac{e^{2 x}}{8}\left(4 x^{3}-2 x^{2}-18 x-25\right)
\end{aligned}
$$

is the required solution.
Question \# 14: $\left(D^{4}+8 D^{2}-9\right) y=9 x^{3}+5 \cos 2 x$

## Solution:

## Given equation is

$\left(D^{4}+8 D^{2}-9\right) y=9 x^{3}+5 \cos 2 x---(i)$
The characteristics equation of $(i)$ will be
$D^{4}+8 D^{2}-9=0$
$\Rightarrow D^{4}+9 D^{2}-D^{2}-9=0$
$\Rightarrow D^{2}\left(D^{2}+9\right)-1\left(D^{2}+9\right)=0$
$\Rightarrow\left(D^{2}+9\right)\left(D^{2}-1\right)=0$
$\Rightarrow D= \pm 3 i$ or $D= \pm 1$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos 3 x+c_{4} \sin 3 x$
Now,

$$
\begin{aligned}
& y_{p}=\frac{9 x^{3}+5 \cos 2 x}{D^{4}+8 D^{2}-9} \\
& \begin{array}{c}
\Rightarrow y_{p}=\frac{9 x^{3}}{D^{4}+8 D^{2}-9}+\frac{5 \cos 2 x}{D^{4}+8 D^{2}-9} \\
\Rightarrow y_{p}=-\frac{9 x^{3}}{9\left(1-\frac{D^{4}+8 D^{2}}{9}\right)}+\frac{5 \operatorname{Re} e^{2 i x}}{\left(D^{2}+9\right)\left(D^{2}-1\right)} \\
\Rightarrow y_{p}=-x^{3}\left(1-\frac{D^{4}+8 D^{2}}{9}\right)^{-1} \\
\\
\quad+\frac{5 \operatorname{Re} e^{2 i x}}{\left((2 i)^{2}+9\right)\left((2 i)^{2}-1\right)} \\
\Rightarrow y_{p}=-x^{3}\left(1+\frac{D^{4}+8 D^{2}}{9}+\cdots\right) \\
\quad+\frac{5 \operatorname{Re} e^{2 i x}}{(-4+9)(-4-1)}
\end{array}
\end{aligned}
$$

$\Rightarrow y_{p}=-x^{3}\left(1+\frac{8 D^{2}}{9}+\cdots\right.$ neglecting terms $)$

$$
+\frac{5 \operatorname{Re}(\cos 2 x+i \sin 2 x)}{(5)(-5)}
$$

$\Rightarrow y_{p}=-x^{3}-\frac{8}{9}(6 x)+\frac{\cos 2 x}{(-5)}$
$\Rightarrow y_{p}=-x^{3}-\frac{16}{3} x-\frac{\cos 2 x}{5}$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos 3 x+c_{4} \sin 3 x-x^{3}$
$-\frac{16}{3} x-\frac{\cos 2 x}{5}$
is the required solution. Question \# 15:

$$
\left(D^{4}+3 D^{2}-4\right) y=\sinh x-\cos ^{2} x
$$

## Solution:

Given equation is
$\left(D^{4}+3 D^{2}-4\right) y=\sinh x-\cos ^{2} x---(i)$
The characteristics equation of (i) will be
$D^{4}+3 D^{2}-4=0$
$D=1 \& D=-1$ are the roots of characteristics equation. So we use synthetic division in order to find the other roots of characteristics equation.

|  | 1 | 0 | 3 | 0 | -4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 4 | 4 |
|  | 1 | 1 | 4 | 4 | 0 |
| -1 | 0 | -1 | 0 | -4 |  |
|  | 1 | 0 | 4 | 0 |  |
|  |  |  |  |  |  |

## Now, the residual equation will be

$$
\begin{aligned}
& D^{2}+4=0 \\
& \Rightarrow D^{2}=-4
\end{aligned}
$$

$\Rightarrow D= \pm 2 i$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos 2 x+c_{4} \sin 2 x$

## Now,

$$
\begin{aligned}
& y_{p}=\frac{\sinh x-\cos ^{2} x}{D^{4}+3 D^{2}-4} \\
& \Rightarrow y_{p}=\frac{\sinh x}{D^{4}+3 D^{2}-4}-\frac{\cos ^{2} x}{D^{4}+3 D^{2}-4} \\
& \Rightarrow y_{p}=\frac{\frac{e^{x}-e^{-x}}{2}}{(D+1)(D-1)(D+2 i)(D-2 i)} \\
& \quad-\frac{\frac{1+\cos 2 x}{2}}{D^{4}+3 D^{2}-4}
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& y_{p_{1}}=\frac{\frac{e^{x}-e^{-x}}{2}}{(D+1)(D-1)(D+2 i)(D-2 i)} \\
& \Rightarrow y_{p_{1}}=\frac{1}{2}\left[\frac{e^{x}}{(D+1)(D-1)(D+2 i)(D-2 i)}\right. \\
& \left.\quad-\frac{e^{-x}}{(D+1)(D-1)(D+2 i)(D-2 i)}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y_{p_{1}}=\frac{1}{2}[ & \frac{e^{x}}{(D+1)(D-1)(D+2 i)(D-2 i)} \\
& \left.-\frac{\left.e^{-x}\right)}{(D+1)(D-1)(D+2 i)(D-2 i)}\right]
\end{aligned}
$$

$$
\Rightarrow y_{p_{1}}=\frac{1}{2}\left[\frac{x e^{x}}{(1+1)(1+2 i)(1-2 i)}\right.
$$

$$
\left.-\frac{x e^{-x}}{(-1-1)(-1+2 i)(-1-2 i)}\right]
$$

$$
\Rightarrow y_{p_{1}}=\frac{1}{2}\left[\frac{x e^{x}}{10}-\frac{x e^{-x}}{10}\right]
$$

$$
\Rightarrow y_{p_{1}}=\frac{x}{2}\left[\frac{e^{x}}{10}-\frac{e^{-x}}{10}\right]
$$

$$
\Rightarrow y_{p_{1}}=\frac{x}{2}\left[\frac{e^{x}-e^{-x}}{10}\right]
$$

$\Rightarrow y_{p_{1}}=\frac{x}{10}\left[\frac{e^{x}-e^{-x}}{2}\right]$
$\Rightarrow y_{p_{1}}=\frac{x \sinh x}{10}$

## Now consider,

$y_{p_{2}}=\frac{\frac{1+\cos 2 x}{2}}{D^{4}+3 D^{2}-4}$
$y_{p_{2}}=\frac{1}{2}\left[\frac{1}{D^{4}+3 D^{2}-4}+\frac{\cos 2 x}{D^{4}+3 D^{2}-4}\right]$
$\Rightarrow \boldsymbol{y}_{\boldsymbol{p}_{2}}$
$=\frac{1}{2}\left[\frac{1}{-4\left(1-\frac{D^{4}+3 D^{2}}{4}\right)}\right.$
$\left.+\frac{\cap \operatorname{Re} e^{2 i x}}{(D+1)(D-1)(D+2 i)(D-2 i)}\right]$

$$
\begin{aligned}
& \Rightarrow y_{p_{2}}= \frac{1}{2}\left[-\frac{1}{4}\left(1-\frac{D^{4}+3 D^{2}}{4}\right)^{-1}\right. \\
&\left.+\frac{x \operatorname{Re} e^{2 i x}}{(2 i+1)(2 i-1)(2 i+2 i)}\right] \\
& \Rightarrow y_{p_{2}}= \frac{1}{2}\left[-\frac{1}{4}(1)+\frac{x \operatorname{Re} e^{2 i x}}{(-5)(4 i)}\right] \\
& \Rightarrow y_{p_{2}}=\frac{1}{2}\left[-\frac{1}{4}-\frac{x \operatorname{Re} e^{2 i x}}{20 i}\right] \\
& \Rightarrow y_{p_{2}}=\frac{1}{2}\left[-\frac{1}{4}+\frac{x \operatorname{Re}(\cos 2 x+i \sin 2 x) i}{20}\right] \\
& \Rightarrow y_{p_{2}}=\frac{1}{2}\left[-\frac{1}{4}+\frac{x \operatorname{Re}(i \cos 2 x-\sin 2 x)}{20}\right] \\
& \Rightarrow y_{p_{2}}=\frac{1}{2}\left[-\frac{1}{4}+\frac{x(-\sin 2 x)}{20}\right] \\
& \Rightarrow y_{p_{2}}=\frac{1}{2}\left[-\frac{1}{4}-\frac{x \sin 2 x}{20}\right] \\
& \Rightarrow y_{p_{2}}=-\frac{1}{8}+\frac{x \sin 2 x}{40}
\end{aligned}
$$

Thus equation (a) becomes
$\Rightarrow y_{p}=\frac{x \sinh x}{10}-\frac{1}{8}+\frac{x \sin 2 x}{40}$

## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos 2 x+c_{4} \sin 2 x$ $+\frac{x \sinh x}{10}-\frac{1}{8}+\frac{x \sin 2 x}{40}$
is the required solution.

## * Solve the initial value problem.

## Question \# 16:

$$
y^{\prime \prime}-8 y^{\prime}+15 y=9 x e^{2 x} \quad y(0)=5, y^{\prime}(0)=10
$$

## Solution:

## Given equation is

$y^{\prime \prime}-8 y^{\prime}+15 y=9 x e^{2 x}$
The characteristics equation of (i) will be
$D^{2}-8 D+15=0$
$\Rightarrow D^{2}-3 D-5 D+15=0$
$\Rightarrow D(D-3)-5(D-3)=0$
$\Rightarrow(D-3)(D-5)=0$
$\Rightarrow D=3$ or $D=5$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{3 x}+c_{2} e^{5 x}$
Now,

$$
\begin{aligned}
& y_{p}=\frac{9 x e^{2 x}}{D^{2}-8 D+15} \\
& \Rightarrow y_{p}=\frac{9 x e^{2 x}}{(D+2)^{2}-8(D+2)+15}
\end{aligned}
$$

(By exponential shift)
$\Rightarrow y_{p}=\frac{9 x e^{2 x}}{D^{2}+4+4 D-8 D-16+15}$
$\Rightarrow y_{p}=\frac{9 x e^{2 x}}{D^{2}-4 D+3}$
$\Rightarrow y_{p}=\frac{9 x e^{2 x}}{3\left(1+\frac{D^{2}-4 D}{3}\right)}$
$\Rightarrow y_{p}=3 e^{2 x}\left(1+\frac{D^{2}-4 D}{3}\right)^{-1}$
$\Rightarrow y_{p}=3 e^{2 x}\left(1-\frac{D^{2}-4 D}{3}+\left(\frac{D^{2}-4 D}{3}\right)^{2}\right.$

## $x$

$\Rightarrow y_{p}=3 e^{2 x}\left(1+\frac{4 D}{3}\right.$

+ neglecting higher powers) $x$
$\Rightarrow y_{p}=3 e^{2 x}\left(1+\frac{4 D}{3}\right) x$
$\Rightarrow y_{p}=3 e^{2 x}\left(x+\frac{4}{3}\right)$
$\Rightarrow y_{p}=3 x e^{2 x}+4 e^{2 x}$
Hence,
$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{3 x}+c_{2} e^{5 x}+3 x e^{2 x}+4 e^{2 x}---(i i)$
Applying $y(0)=5$ on (ii), we have
$5=c_{1}+c_{2}+4$
$\Rightarrow c_{1}+c_{2}=1$
$\Rightarrow c_{2}=1-c_{1}--(a)$


## Differentiating (ii) w.r.t " $x$ ", we have

$$
\begin{gathered}
y^{\prime}=3 c_{1} e^{3 x}+5 c_{2} e^{5 x}+3 e^{2 x}+6 x e^{2 x}+8 e^{2 x} \\
\Rightarrow y^{\prime}=3 c_{1} e^{3 x}+5 c_{2} e^{5 x}+6 x e^{2 x}+11 e^{2 x}-- \\
-(i i i)
\end{gathered}
$$

Applying $y^{\prime}(0)=10$ on (iii), we have
$10=3 c_{1}+5 c_{2}+11$
$\Rightarrow 3 c_{1}+5 c_{2}=-1$
$\Rightarrow 3 c_{1}+5\left(1-c_{1}\right)=-1$
$\Rightarrow 3 c_{1}+5-5 c_{1}=-1$
$\Rightarrow-2 c_{1}=-6$
$\Rightarrow \boldsymbol{c}_{1}=3$
Now $(a) \Longrightarrow$
$c_{2}=1-3$
$\Rightarrow c_{2}=-2$

## Hence,

$y=3 e^{3 x}-2 e^{5 x}+3 x e^{2 x}+4 e^{2 x}$
is the required solution.

Question \# 17:
$y^{\prime \prime}-4 y^{\prime}+13 y=8 \sin 3 x \quad y(0)=1, y^{\prime}(0)=2$

## Solution:

Given equation is
$y^{\prime \prime}-4 y^{\prime}+13 y=8 \sin 3 x---(i)$
The characteristics equation of (i) will be
$D^{2}-4 D+13=0$
$\Rightarrow D=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(13)}}{2(1)}$
$\Rightarrow D=\frac{4 \pm \sqrt{-36}}{2}$
$\Rightarrow D=\frac{4 \pm 6 i}{2}$
$\Rightarrow D=2 \pm 3 i$
Therefore, the complementary solution is
$y_{c}=\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right) e^{2 x}$

Now,

$$
\begin{aligned}
& y_{p}=\frac{8 \sin 3 x}{D^{2}-4 D+13} \\
& \Rightarrow y_{p}=\frac{8 \operatorname{Im} e^{3 i x}}{D^{2}-4 D+13} \\
& \Rightarrow y_{p}=\frac{8 \operatorname{Im} e^{3 i x}}{-9-12 i+13} \\
& \Rightarrow y_{p}=\frac{8 \operatorname{Im} e^{3 i x}}{4-12 i} \\
& \Rightarrow y_{p}=\frac{8 \operatorname{Im} e^{3 i x}}{4(1-3 i)} \times \frac{1+3 i}{1+3 i} \\
& \Rightarrow y_{p}=\frac{2 \operatorname{Im}(\cos 3 x+i \sin 3 x)(1+3 i)}{1+9} \\
& \Rightarrow y_{p}=\frac{2 \operatorname{Im}(\cos 3 x+3 i \cos 3 x+i \sin 3 x-3 \sin 3 x)}{10} \\
& \Rightarrow y_{p}=\frac{3 \cos 3 x+\sin 3 x}{5} \\
& \Rightarrow
\end{aligned}
$$

## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right) e^{2 x}$
$+\frac{3 \cos 3 x+\sin 3 x}{5}---(i i)$
Applying $y(0)=1$ on (ii), we have
$1=c_{1}+\frac{3}{5}$
$\Rightarrow c_{1}=1-\frac{3}{5}$
$\Rightarrow c_{1}=\frac{2}{5}---(a)$
Differentiating (ii) w.r.t " $x$ ", we have

$$
\begin{aligned}
y^{\prime}=2\left(c_{1} \cos 3 x\right. & \left.+c_{2} \sin 3 x\right) e^{2 x} \\
& +\left(-3 c_{1} \sin 3 x+3 c_{2} \cos 3 x\right) e^{2 x} \\
& +\frac{-9 \sin 3 x+3 \cos 3 x}{5}--(i i i)
\end{aligned}
$$

Applying $y^{\prime}(0)=2$ on (iii), we have
$2=2 c_{1}+3 c_{2}+\frac{3}{5}$
$\Rightarrow 2=\frac{4}{5}+3 c_{2}+\frac{3}{5}$
$\Rightarrow 2=\frac{7}{5}+3 c_{2}$
$\Rightarrow 2-\frac{7}{5}=3 c_{2}$
$\Rightarrow \frac{3}{5}=3 c_{2}$
$\Rightarrow c_{2}=\frac{1}{5}$
Hence,
$y=\left(\frac{2}{5} \cos 3 x+\frac{1}{5} \sin 3 x\right) e^{2 x}+\frac{3 \cos 3 x+\sin 3 x}{5}$
$\Rightarrow y=\frac{1}{5}\left[(\sin 3 x+2 \cos 3 x) e^{2 x}+3 \cos 3 x+\sin 3 x\right]$
is the required solution.
Question \# 18: $y^{\prime \prime}-4 y=2-8 x \quad y(0)=$
$0, y^{\prime}(0)=5$

## Solution:

## Given equation is

$y^{\prime \prime}-4 y=2-8 x---(i)$
The characteristics equation of (i) will be
$D^{2}-4=0$
$\Rightarrow D^{2}=4$
$\Rightarrow D= \pm 2$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$
Now,
$y_{p}=\frac{2-8 x}{D^{2}-4}$
$\Rightarrow y_{p}=-\frac{2-8 x}{4\left(1-\frac{D^{2}}{4}\right)}$
$\Rightarrow y_{p}=-\frac{2-8 x}{4}\left(1-\frac{D^{2}}{4}\right)^{-1}$
$\Rightarrow y_{p}=-\frac{2-8 x}{4}\left(1+\frac{D^{2}}{4}+\cdots\right)$
$\Rightarrow y_{p}=-\frac{2-8 x}{4}(1)$
$\Rightarrow y_{p}=-\frac{2-8 x}{4}$

## Hence,

$y=y_{c}+y_{p}$
$\Rightarrow y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{2-8 x}{4}---(i i)$
Applying $y(0)=0$ on (ii), we have
$0=c_{1}+c_{2}-\frac{2}{4}$
$\Rightarrow c_{1}+c_{2}=\frac{1}{2}$
$\Rightarrow c_{2}=\frac{1}{2}-c_{1}--(a)$
Differentiating (ii) w.r.t " $x$ ", we have
$y^{\prime}=2 c_{1} e^{2 x}-2 c_{2} e^{-2 x}-\frac{1}{4}(-8)$
$y^{\prime}=2 c_{1} e^{2 x}-2 c_{2} e^{-2 x}+2---(i i i)$
Applying $y^{\prime}(0)=5$ on (iii), we have
$5=2 c_{1}-2 c_{2}+2$
$\Rightarrow 2 c_{1}-2 c_{2}=3$
$\Rightarrow 2 c_{1}-2\left(\frac{1}{2}-c_{1}\right)=3$
$\Rightarrow 4 c_{1}=3+1$
$\Rightarrow c_{1}=1$
$\operatorname{Now}(a) \Longrightarrow$
$c_{2}=\frac{1}{2}-(1)$
$\Rightarrow c_{2}=-\frac{1}{2}$

## Hence,

$y=e^{2 x}-\frac{1}{2} e^{-2 x}-\frac{2-8 x}{4}$
$\Rightarrow y=e^{2 x}-\frac{1}{2} e^{-2 x}+2 x-\frac{1}{2}$
is the required solution.
Question \# 19: $y^{\prime \prime}+y=x \sin x$

$$
y(0)=1, y^{\prime}(0)=2
$$

## Solution:

Given equation is
$y^{\prime \prime}+y=x \sin x---(i)$
The characteristics equation of (i) will be
$D^{2}+1=0$
$\Rightarrow D^{2}=-1$
$\Rightarrow D= \pm i$
Therefore, the complementary solution is
$y_{c}=c_{1} \cos x+c_{2} \sin x$

## Now,

$y_{p}=\frac{x \sin x}{D^{2}+1}$
$\Rightarrow y_{p}=\frac{\operatorname{Im} x e^{i x}}{D^{2}+1}$
$\Rightarrow y_{p}$
$=\operatorname{Im} \frac{x e^{i x}}{(D+i)^{2}+1}($ by exponential shift $)$
$\Rightarrow y_{p}=\operatorname{Im} \frac{x e^{i x}}{D^{2}-1+2 D i+1}$
$\Rightarrow y_{p}=\operatorname{Im} \frac{x e^{i x}}{D^{2}+2 D i}$
$\Rightarrow y_{p}=\operatorname{Im} \frac{x e^{i x}}{2 i D\left(1+\frac{D}{2 i}\right)}$
$\Rightarrow y_{p}=\operatorname{Im} \frac{e^{i x}}{2 i D}\left(1+\frac{D}{2 i}\right)^{-1} x$
$\Rightarrow y_{p}=\operatorname{Im} \frac{e^{i x}}{2 i D}\left(1-\frac{D}{2 i}\right) x$
$\Rightarrow y_{p}=\operatorname{Im} e^{i x} \frac{1}{D} \frac{1}{2 i}\left(x-\frac{1}{2 i}\right)$
$\Rightarrow y_{p}=\operatorname{Im} e^{i x} \frac{1}{D}\left(\frac{x}{2 i}-\frac{1}{4 i^{2}}\right)$
$\Rightarrow y_{p}=\operatorname{Im} e^{i x} \frac{1}{D}\left(\frac{x}{2 i}+\frac{1}{4}\right)$
$\Rightarrow y_{p}=\operatorname{Im} e^{i x}\left(\frac{x^{2}}{4 i}+\frac{x}{4}\right)$
$\Rightarrow y_{p}=\operatorname{Im}(\cos x+i \sin x)\left(\frac{x^{2}}{4 i}+\frac{x}{4}\right)$
$\Rightarrow y_{p}=\operatorname{Im}\left(\frac{x^{2}}{4 i} \cos x+\frac{x}{4} \cos x+\frac{x^{2}}{4 i} i \sin x\right.$
$\left.+\frac{x}{4} i \sin x\right)$
$\Rightarrow y_{p}=\operatorname{Im}\left(-\frac{i x^{2}}{4} \cos x+\frac{x}{4} \cos x+\frac{x^{2}}{4} \sin x\right.$

$$
\left.+\frac{x}{4} i \sin x\right)
$$

$\Rightarrow y_{p}=-\frac{x^{2}}{4} \cos x+\frac{x}{4} \sin x$
$\Rightarrow y_{p}=\frac{x \sin x}{4}-\frac{x^{2} \cos x}{4}$
Hence,
$y=y_{c}+y_{p}$
$y=c_{1} \cos x+c_{2} \sin x+\frac{x \sin x}{4}-\frac{x^{2} \cos x}{4}--(i i)$

Applying $y(0)=1$ on (ii), we have
$1=c_{1}$
Differentiating (ii) w.r.t " $x$ ", we have
$y^{\prime}=-c_{1} \sin x+c_{2} \cos x+\frac{\sin x}{4}+\frac{x \cos x}{4}$

$$
-\frac{2 x \cos x}{4}+\frac{x^{2} \sin x}{4}---(i i i)
$$

Applying $y^{\prime}(0)=2$ on (iii), we have
$2=c_{2}$
Hence,
$y=\cos x+2 \sin x+\frac{x \sin x}{4}-\frac{x^{2} \cos x}{4}$
Is the required solution.
Question \# 20:

$$
\begin{array}{r}
y^{\prime \prime \prime}+3 y^{\prime \prime}+7 y^{\prime}+5 y=16 e^{-x} \cos 2 x \\
y(0)=2, y^{\prime}(0)=-4, y^{\prime \prime}(0)=-2
\end{array}
$$

## Solution:

## Given equation is

$y^{\prime \prime \prime}+3 y^{\prime \prime}+7 y^{\prime}+5 y$

$$
\begin{equation*}
=16 e^{-x} \cos 2 x \tag{i}
\end{equation*}
$$

The characteristics equation of $(i)$ is
$D^{3}+3 D^{2}+7 D+5=0$
$D=1 \& D=-1$ are the roots of characteristics equation. So we use synthetic division in order to find the other roots of characteristics equation.

|  | 1 | 3 | 7 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | 0 | -1 | -2 | -5 |
|  | 1 | 2 | 5 | 0 |
|  |  |  |  |  |

Now, the residual equation will be
$D^{2}+2 D+5=0$
$\Rightarrow D=\frac{-(2) \pm \sqrt{(2)^{2}-4(1)(5)}}{2(1)}$
$\Rightarrow D=\frac{-2 \pm \sqrt{4-20}}{2}$
$\Rightarrow D=\frac{-2 \pm \sqrt{-16}}{2}$
$\Rightarrow D=\frac{-2+4 i}{2}$
$\Rightarrow D=-1 \pm 2 i$
Therefore, the complementary solution is
$y_{c}=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) e^{-x}+c_{3} e^{-x}$
Now,
$y_{p}=\frac{16 e^{-x} \cos 2 x}{D^{3}+3 D^{2}+7 D+5}$
First, we will use the exponential shift and then use the process which is used in above questions and finally we will reach
$y_{p}=-2 e^{-x} x \cos 2 x$
Hence,
$y=y_{c}+y_{p}$
$y=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) e^{-x}+c_{3} e^{-x}$

$$
-2 e^{-x} x \cos 2 x--(i i)
$$

Since initial boundary value conditions are given. We will use that conditions and obtain the final result as below
$y=2 e^{-x} \cos 2 x-2 e^{-x} x \cos 2 x$
Is the required solution.

