EXERCISE # 10.1

Question # 1: $(9D^2 - 12D + 4)y = 0$	$\Rightarrow D = \frac{-50 \pm \sqrt{(50)^2 - 4(75)(12)}}{2(75)}$
Solution:	
Given equation is	$\Rightarrow D = \frac{-50 \pm \sqrt{2500 - 3600}}{150}$
$(9D^2 - 12D + 4)y = 0 (i)$	
The characteristics equation of (i) will be	$D = \frac{-50 \pm \sqrt{-1100}}{150}$
$9D^2 - 12D + 4 = 0$	
$\Rightarrow D = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(9)(4)}}{18}$	$\Rightarrow D = \frac{-50 \pm 10\sqrt{-11}}{150}$
	$\Rightarrow D = -10\left(\frac{-5\pm\sqrt{-11}}{150}\right)$
$\Rightarrow D = \frac{12 \pm \sqrt{144 - 144}}{18}$	$-5\pm i\sqrt{11}$
$D = \frac{12}{18} + 0 \; ; \; D = \frac{12}{18} - 0$	$ \begin{array}{c} D = 15 \\ -5 i\sqrt{11} \end{array} $
$D = \frac{2}{3}, \frac{2}{3}$	$\Rightarrow D = \frac{-5}{15} \pm \frac{i\sqrt{11}}{15}$
3 3 Therefore, the complementary function is	$D = \frac{-1}{3} + \frac{i\sqrt{11}}{15}$
$y_{c} = c_{1}e^{\left(\frac{2}{3}x\right)} + c_{2}xe^{\left(\frac{2}{3}x\right)}$	Therefore, the complementary function is
$\Rightarrow y = (c_1 + c_2 x)e^{\binom{2}{3}x} \Rightarrow y_c = y$	$y_c = \left(c_1 cos\left(\frac{\sqrt{11}}{15}x\right) + c_2 sin\left(\frac{\sqrt{11}}{15}x\right)\right) e^{\frac{-1}{3}x}$
is required solution.	
<i>Question #2</i> : $(75D^2 + 50D + 12)y = 0$	$\Rightarrow y = \left(c_1 cos\left(\frac{\sqrt{11}}{15}x\right) + c_2 sin\left(\frac{\sqrt{11}}{15}x\right)\right) e^{\frac{-1}{3}x}$
Solution:	
Given equation is	is required solution.
$(75D^2 + 50D + 12)\mathbf{y} = 0 (i)$	Question #3: $(D^3 - 4D^2 + D + 6)y = 0$
The characteristics equation of (i) will be	Solution:
$75D^2 + 50D + 12 = 0$	Given equation is
	$(D^3 - 4D^2 + D + 6)y = 0$

 $e^{\frac{-1}{3}x}$

The characteristics equation of (i) will be

$$D^3 - 4D^2 + D + 6 = 0$$

ī

Since D = -1 is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-4	1	6
-1	0	-1	5	-6
	1	-5	6	0

Now, the residual equation will be

- $D^{2} 5D + 6 = 0$ $\Rightarrow D^{2} - 2D - 3D + 6 = 0$ $\Rightarrow D(D - 2) - 3(D - 2)$ $\Rightarrow (D - 2)(D - 3) = 0$
- \Rightarrow D = 2 or D = 3

Therefore, the complementary function is

$$y_c = c_1 e^{-x} + c_2 e^{2x} + c_3 e^{3x}$$

$$\Rightarrow y = c_1 e^{-x} + c_2 e^{2x} + c_3 e^{3x} \because y_c$$

is required solution.

Question #4: $(D^3 + D^2 + D + 1)y = 0$

Solution:

Given equation is

 $(D^3 + D^2 + D + 1)y = 0 - - - (i)$

The characteristics equation of (i) will be

 $D^3 + D^2 + D + 1 = 0$

 $\Rightarrow D^2(D+1) + (D+1) = 0$

 $\Rightarrow (D+1)(D^2+1) = 0$

 \Rightarrow D = -1 or D = $\pm i$

Therefore, the complementary function is

$$y_c = c_1 e^{-x} + c_2 \cos x + c_3 \sin x$$

$$\Rightarrow y = c_1 e^{-x} + c_2 \cos x + c_3 \sin x \quad \because y_c$$
$$= y$$

is required solution.

Question #5: $(D^3 - 6D^2 + 12D - 8)y = 0$

Solution:

Given equation is

$$(D^3 - 6D^2 + 12D - 8)y = 0 - - - (i)$$

The characteristics equation of (i) will be

 $D^3 - 6D^2 + 12D - 8 = 0$

Since D = 2 is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-6	12	-8
2	0	2	-8	8
	1	-4	4	0

Now the residual equation will be

$$D^{2} - 4D + 4 = 0$$
$$\implies (D - 2)^{2} = 0$$

 \Rightarrow D = 2,2

Therefore, the complementary function is

$$y_c = c_1 e^{2x} + c_2 x e^{2x} + c_3 x^2 e^{3x}$$

$$\Rightarrow y = (c_1 + c_2 x + c_3 x^2) e^{2x} :: y_c = y$$

is required solution.

<u>*Question # 6*</u>: $(D^3 - 6D^2 + 3D + 10)y = 0$

Solution:

Given equation is

 $(D^3 - 6D^2 + 3D + 10)y = 0 - - - (i)$

The characteristics equation of (i) will be

 $D^3 - 6D^2 + 3D + 10 = 0$

Since D = 2 is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-6	3	10
2	0	2	-8	-10
	1	-4	-5	0

Now, the residual equation will be

 $D^2 - 4D - 5 = 0$

 $\implies D^2 - 5D + D - 5 = 0$

$$\Rightarrow (D+1)(D-5) = 0$$

 $\Rightarrow D = -1 \text{ or } D = 5$

Therefore, the complementary solution is

 $y_c = c_1 e^{2x} + c_2 e^{-x} + c_3 e^{5x}$

 $\Rightarrow y = c_1 e^{2x} + c_2 e^{-x} + c_3 e^{5x} \quad \because y_c = y$

is required solution.

 $\underline{Ouestion \# 7}: (D^3 - 27)y = 0$

Solution:

Given equation is

$$(D^3 - 27)y = 0 - - - (i)$$

The characteristics equation of (i) will be

$$D^{3} - 27 = 0$$

$$\Rightarrow (D)^{3} - (3)^{3} = 0$$

$$\Rightarrow (D - 3)(D^{2} + 3D + 9) = 0$$

$$\Rightarrow (D - 3) = 0 \text{ or } (D^{2} + 3D + 9) = 0$$

$$\Rightarrow D = 3$$

$$\text{ or } (D^{2} + 3D + 9) = 0$$

$$\Rightarrow D = \frac{-3 \pm \sqrt{(3)^{2} - 4(1)(9)}}{2}$$

$$\Rightarrow D = \frac{-3 \pm \sqrt{9 - 36}}{2}$$

$$D = \frac{-3 \pm \sqrt{9 - 36}}{2}$$

$$D = \frac{-3 \pm \sqrt{-27}}{2}$$

$$\Rightarrow D = \frac{-3 \pm \sqrt{-27}}{2}$$

$$\Rightarrow D = \frac{-3}{2} \pm i \frac{3\sqrt{3}}{2}$$
Therefore, the complementary solution is
$$y_{c} = c_{1}e^{3x} + \left[c_{2}cos\left(\frac{3\sqrt{3}}{2}x\right) + c_{3}sin\left(\frac{3\sqrt{3}}{2}x\right)\right]e^{-\frac{3x}{2}}$$

$$\Rightarrow y = c_{1}e^{3x} + \left[c_{2}cos\left(\frac{3\sqrt{3}}{2}x\right) + c_{3}sin\left(\frac{3\sqrt{3}}{2}x\right)\right]e^{-\frac{3x}{2}}$$
is required solution.
$$\boxed{\text{fuestion # \$} \cdot (4D^{4} - 4D^{3} - 3D^{2} + 4D - 1)y = 0 - - - (i)$$
The characteristics equation of (i) will be

 $4D^4 - 4D^3 - 3D^2 + 4D - 1 = 0$

Since D = 1, -1 are the roots of characteristic equation. So we use synthetic division in order

B.Sc. Mathematics (Mathematical Methods) Chapter # 10: Differential Equations of Higher Order

to find the other roots. The synthetic division is as follow:-

	4	-4	-3	4	-1
1	4 0	-	0	-3	1
	4	0	-3	1	0
-1	0	-4	4	-1	
	4	-4	1	0	

Now, the residual equation will be

 $4D^{2} - 4D + 1 = 0$ $\Rightarrow (2D - 1)(2D - 1) = 0$ $\Rightarrow 2D = 1; 2D = 1$ $\Rightarrow D = \frac{1}{2}; D = \frac{1}{2}$ Therefore, the complementary

Therefore, the complementary solution is

$$y_{c} = c_{1}e^{x} + c_{2}e^{-x} + c_{3}e^{\frac{x}{2}} + c_{4}xe^{\frac{x}{2}}$$

$$OR \quad y = c_{1}e^{x} + c_{2}e^{-x} + (c_{3} + c_{4}x)e^{\frac{x}{2}}$$

is required solution.

 $\underline{Question \# 9}: (D^4 + 2D^3 - 2D^2 - 6D + 5)y = 0$

Solution:

Given equation is

 $(D^4 + 2D^3 - 2D^2 - 6D + 5)y = 0 - - - (i)$

The characteristics equation of (i) will be

$$D^4 + 2D^3 - 2D^2 - 6D + 5 = 0$$

Since D = 1,1 are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

1	1 0	2 1	-2 3	-6 1	5 -5	
1	1 0	3 1	1 4	-5 5	0	
	1	4	5	0		
No	w, the	residu	al equ	ation w	vill be	
D^2	+4D	+ 5 =	0		.6	
\Rightarrow	D = -	$-4 \pm $	/ <u>16 —</u> 2	20	6)	
\Rightarrow	D = -	$\frac{-4 \pm \sqrt{2}}{2}$	/-4			
\Rightarrow	$D = \frac{1}{2}$	$\frac{-4\pm2}{2}$	<u>2i</u>			
\Rightarrow	D = -	-2 <u>+</u> i				
The	erefore	, the c	omple	mentar	ry solution is	
<i>y</i> _c :	$= c_1 e^x$	$+ c_2 x_0$	e ^x + (c ₃ cosx	$+ c_4 sinx)e^{-2x}$	
\Rightarrow	<i>y</i> = (<i>a</i>	$c_1 + c_2$	x)e ^x -	⊦ (c ₃ co	$sx + c_4 sinx)e^{-2x}$	
is r	equire	d solui	tion.			
	estion y = 0	<u># 10</u> (1	$D^4 - 1$	$5D^3 +$	$6D^2+4D-$	

Solution:

Given equation is

$$(D^4 - 5D^3 + 6D^2 + 4D - 8)y = 0 - - - (i)$$

The characteristics equation of (i) will be

$D^4 - 5D^3 + 6D^2 + 4D - 8 = 0$

Since D = -1,2 are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Now, the residual equation will be $D^{2} - 4D + 4 = 0$ $\Rightarrow D^{2} - 2D - 2D + 4 = 0$ $\Rightarrow D(D - 2) - 2(D - 2)$ $\Rightarrow (D - 2)(D - 2) = 0$ $\Rightarrow D = 2,2$ Therefore, the complementary solution is $y_{c} = c_{1}e^{-x} + c_{2}e^{2x} + c_{3}xe^{2x} + c_{4}x^{2}e^{2x}$ $y_{c} = c_{1}e^{-x} + (c_{2} + c_{3}x + c_{4}x^{2})e^{2x}$ OR $y = c_{1}e^{-x} + (c_{2} + c_{3}x + c_{4}x^{2})e^{2x}$	Now, the residual equation will be $D^{2} - 7D + 12 = 0$ $\Rightarrow D^{2} - 3D - 4D + 12 = 0$ $\Rightarrow D(D - 3) - 4(D - 3) = 0$ $\Rightarrow (D - 3)(D - 4) = 0$ $\Rightarrow D = 3,4$ Therefore, the complementary solution is $y_{c} = c_{1}e^{4x} + c_{2}e^{3x} + c_{3}e^{-2x} + c_{4}e^{-x}$ OR $y = c_{1}e^{-x} + (c_{2} + c_{3}x + c_{4}x^{2})e^{2x}$
is required solution. Question # 11	is required solution. Question # 12 $(D^4 + 4)y = 0$
$(D^{4} - 4D^{3} - 7D^{2} + 22D + 24)y = 0$ Solution: Given equation is $(D^{4} - 4D^{3} - 7D^{2} + 22D + 24)y$ $= 0 (i)$ The characteristics equation of (i) will be $D^{4} - 4D^{3} - 7D^{2} + 22D + 24 = 0$ Since $D = -1, -2$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-	Solution: Given equation is $(D^4 + 4)y = 0 (i)$ The characteristics equation of (i) will be $D^4 + 4 = 0$ $\Rightarrow (D^2)^2 + (2)^2 + 2(D^2)(2) - 2(D^2)(2) = 0$ $\Rightarrow (D^2 + 2)^2 - 4D^2 = 0$ $\Rightarrow (D^2 + 2)^2 - (2D)^2 = 0$ $\Rightarrow (D^2 + 2 + 2D)(D^2 + 2 - 2D) = 0$ $\Rightarrow D^2 + 2D + 2 = 0 : D^2 - 2D + 2 = 0$

 $\Rightarrow D = -1, -1$

$$\Rightarrow D = \frac{-2 \pm \sqrt{4-8}}{2}; \quad D = \frac{-2 \pm \sqrt{4-8}}{2}$$
$$\Rightarrow D = \frac{-2 \pm 2i}{2}; \quad D = \frac{-2 \pm 2i}{2}$$
$$\Rightarrow D = \frac{2(-1 \pm i)}{2}; \quad D = \frac{2(-1 \pm i)}{2}$$
$$\Rightarrow D = -1 \pm i; \quad D = 1 \pm i$$

Therefore, the complementary solution is

$$y_c = (c_1 cosx + c_2 sinx)e^{-x} + (c_3 cosx + c_4 sinx)e^{x}$$

is required solution.

 $Question \# 13(D^4 - D^3 - 3D^2 + D + 2)y = 0$

Solution:

Given equation is

 $(D^4 - D^3 - 3D^2 + D + 2)y = 0 - - - (i)$

The characteristics equation of (i) will be

 $D^4 - D^3 - 3D^2 + D + 2 = 0$

Since D = 1,2 are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

Now, the residual equation will be

 $D^2 + 2D + 1 = 0$

$$\Rightarrow (D+1)^2 = 0$$

 $\Longrightarrow (D+1)(D+1) = 0$

Therefore, the complementary solution is

$$y_{c} = c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{-x} + c_{4}xe^{-x}$$

$$\therefore y_{p} = 0. Therefore,$$

$$y = c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{-x} + c_{4}xe^{-x}$$
is required solution.
Question # 14(16D⁶ + 8D⁴ + D²)y = 0
Solution:
Given equation is
(16D⁶ + 8D⁴ + D²)y = 0 - - - (i)
The characteristics equation of (i) will be
16D⁶ + 8D⁴ + D² = 0

$$\Rightarrow D^{2}(16D^{4} + 8D^{2} + 1) = 0$$

$$\Rightarrow D^{2}(4D^{2} + 1)^{2} = 0$$

$$\Rightarrow D^{2} = 0 \quad ; \quad (4D^{2} + 1)^{2} = 0$$

$$D = 0,0$$
& $(4D^{2} + 1)(4D^{2} + 1) = 0$

$$4D^{2} = -1 \quad \text{or} \quad 4D^{2} = -1$$

$$\Rightarrow D^{2} = \frac{-1}{4} \quad \text{or} \quad D^{2} = \frac{-1}{4}$$

$$\Rightarrow D = \sqrt{\frac{i^{2}}{4}} \quad \text{or} \quad D = \sqrt{\frac{i^{2}}{4}}$$
Therefore, the complementary solution is

$$y_{c} = c_{1}e^{0x} + c_{2}xe^{0x} + c_{3}\cos\frac{x}{2} + c_{4}x\cos\frac{x}{2} + c_{5}\sin\frac{x}{2} + c_{6}x\sin\frac{x}{2}$$

6

$$y_{c} = (c_{1} + c_{2}x) + (c_{3} + c_{4}x)\cos\frac{x}{2} + (c_{5} + c_{6}x)\sin\frac{x}{2}$$

$$\because y_{p} = 0. Therefore,$$

$$y = (c_{1} + c_{2}x) + (c_{3} + c_{4}x)\cos\frac{x}{2} + (c_{5} + c_{6}x)\sin\frac{x}{2}$$

is required solution.

Question #15

 $(D^4 + 6D^3 + 15D^2 + 20D + 12)y = 0$

v

Solution:

Given equation is

 $(D^4 + 6D^3 + 15D^2 + 20D + 12)y = 0 - -(i)$

The characteristics equation of (i) will be

 $D^4 + 6D^3 + 15D^2 + 20D + 12 = 0$

Since D = -2, -2 are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

	1	6	15	20	12
-2	0	-2	-8	-14	-12
	1	4	7	6	0
-2	0	-2	-4	-6	
	1	2	3	0	_

Now, the residual equation will be $D^2 + 2D + 3 = 0$

$$\implies D = \frac{-2 \pm \sqrt{4 - 12}}{2}$$

$$\implies D = \frac{-2 \pm 2i\sqrt{2}}{2}$$

$$\Rightarrow D = -1 \pm i\sqrt{2}$$

Therefore, the complementary solution is $y_c = (c_1 + c_2 x)e^{-2x} + (c_3 cos \sqrt{2}x + c_4 sin \sqrt{2}x)e^{-x}$ $\therefore y_n = 0$. Therefore, $y = (c_1 + c_2 x)e^{-2x} + (c_3 \cos\sqrt{2}x + c_4 \sin\sqrt{2}x)e^{-x}$ is required solution. Solve each of the following initial problem. Question # 16 $(D^2 + 8D - 9)y = 0$ y(1) = 1, y'(1) = 0Solution: Given equation is $(D^2 + 8D - 9)y = 0 - - - (i)$ The characteristics equation of (i) will be $D^2+8D-9=0$ $\Rightarrow D^2 + 9D - D - 9 = 0$ $\implies D(D+9) - 1(D+9) = 0$ $\Rightarrow (D-1)(D+9) = 0$ $\Rightarrow D = 1 \text{ or } D = -9$ Therefore, the complementary solution is $y_c = c_1 e^x + c_2 e^{-9x}$ $\therefore y_n = 0$. Therefore $y = c_1 e^x + c_2 e^{-9x} - - - (a)$

Differentiating w.r.t "x", we have

$$y' = c_1 e^x - 9c_2 e^{-9x} - - -(b)$$

Applying
$$y(1) = 1$$
 on (a) , we have,

$$1 = c_1 e^1 + c_2 e^{-9}$$

$$\implies c_1 e + \frac{c_2}{e^9} = 1 - - - (c)$$

Applying y'(1) = 0 on (b), we have,

$$\Rightarrow D = \frac{-6 \pm \sqrt{16i^2}}{2}$$
$$\Rightarrow D = \frac{-6 \pm 4i}{2}$$
$$\Rightarrow D = \frac{2(-3 \pm 2i)}{2}$$
$$\Rightarrow D = -3 \pm 2i$$

Therefore, the complementary solution is

$$y_c = (c_1 cos 2x + c_2 sin 2x)e^{-3x}$$

$$\because y_p = 0. Therefore$$

$$y = (c_1 cos 2x + c_2 sin 2x)e^{-3x} - - -$$

Differentiating w.r.t "x", we have

 $y' = (-2c_1sin2x + 2c_2cos2x)e^{-3x} - 3(c_1cos2x + c_2sin2x)e^{-3x} - - - (b)$

(a)

Applying y(0) = 3 on (a), we have,

 $3 = (c_1 cos0 + c_2 sin0)e^0$

 $\Rightarrow c_1 = 3$

- Applying $\mathbf{y}'(\mathbf{0}) = -\mathbf{1}$ on (\mathbf{b}) , we have,
- $-1 = 2c_2 3c_1$
- $\Rightarrow -1 = 2c_2 3(3)$
- $\Rightarrow -1 = 2c_2$
- $\Rightarrow 2c_2 = 8$

 $\Rightarrow c_2 = 4$

Thus equation (a) becomes

$$y = (3\cos 2x + 4\sin 2x)e^{-3x}$$

`is required solution.

Question # 19

$$(D^3 - 6D^2 + 11D - 6)y = 0$$

$$y(0) = 0, y'(0) = 0, y''(0) = 2$$

Solution:

Given equation is $(D^3 - 6D^2 + 11D - 6)y = 0 - - - (i)$ The characteristics equation of (i) will be

$$D^3 - 6D^2 + 11D - 6 = 0$$

Since D = 1 is a root of characteristic equation. So we use synthetic division in order to find the other roots.

Now, the residual equation will be $D^{2} - 5D + 6 = 0$ $\Rightarrow D^{2} - 2D - 3D + 6 = 0$ $\Rightarrow D(D - 2) - 3(D - 2) = 0$ $\Rightarrow (D - 2)(D - 3) = 0$ $\Rightarrow D = 2 \text{ or } D = 3$

Therefore, the complementary solution is

$$y_{c} = c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{3x}$$

$$\therefore y_{p} = 0. Therefore$$

$$y = c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{3x} - - - (a)$$

Differentiating w.r.t "x", we have

$$y' = c_{1}e^{x} + 2c_{2}e^{2x} + 3c_{3}e^{3x} - - - (b)$$

$$\Rightarrow c_{1} + c_{4} = 1 - - - (1)$$
Applying $\mathbf{y}'(\mathbf{0}) = \mathbf{1}$ on (b) , we have,

$$1 = c_{2} + c_{4}$$
Applying $\mathbf{y}''(\mathbf{1}) = \mathbf{3}\mathbf{e}$ on (c) , we have,

$$3e = 2c_{3} + c_{4}e$$

$$\Rightarrow 2c_{3} + c_{4}e = 3e - - - (3)$$
Applying $\mathbf{y}''(\mathbf{1}) = \mathbf{e}$ on (d) , we have,

$$e = c_{4}e$$

$$\Rightarrow \underline{c_{4} = 1}$$

$$(3) \Rightarrow \underline{c_{3} = 1}$$

$$(2) \Rightarrow \underline{c_{2} = 0}$$

$$(1) \Rightarrow \underline{c_{1} = 0}$$
Thus equation (a) becomes

$$y = x^{2} + e^{x}$$
is required solution.
THE END (1) $(a) = \mathbf{1}$

$$(b) = \mathbf{1}$$

$$(c) = \mathbf{1}$$

$$(c$$

11