EXERCISE \# 10.1

Question \# 1: $\left(9 D^{2}-12 D+4\right) y=0$

Solution:

Given equation is
$\left(9 D^{2}-12 D+4\right) y=0---(i)$
The characteristics equation of (i) will be
$9 D^{2}-12 D+4=0$
$\Rightarrow D=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(9)(4)}}{18}$
$\Rightarrow D=\frac{12 \pm \sqrt{144-144}}{18}$
$D=\frac{12}{18}+0 ; D=\frac{12}{18}-0$
$D=\frac{2}{3}, \frac{2}{3}$
Therefore, the complementary function is
$y_{c}=c_{1} e^{\left(\frac{2}{3} x\right)}+c_{2} x e^{\left(\frac{2}{3} x\right)}$
$\Rightarrow y=\left(c_{1}+c_{2} x\right) e^{\left(\frac{2}{3} x\right)}: y_{c}=y$
is required solution
Question \# 2: $\left(75 D^{2}+50 D+12\right) \boldsymbol{y}=\mathbf{0}$

Solution:

Given equation is
$\left(75 D^{2}+50 D+12\right) \boldsymbol{y}=\mathbf{0}---(i)$
The characteristics equation of (i) will be
$75 D^{2}+50 D+12=0$
$\Rightarrow D=\frac{-50 \pm \sqrt{(50)^{2}-4(75)(12)}}{2(75)}$
$\Rightarrow D=\frac{-50 \pm \sqrt{2500-3600}}{150}$
$D=\frac{-50 \pm \sqrt{-1100}}{150}$
$\Rightarrow D=\frac{-50 \pm 10 \sqrt{-11}}{150}$
$\Rightarrow D=-10\left(\frac{-5 \pm \sqrt{-11}}{150}\right)$

$D=\frac{-5 \pm i \sqrt{11}}{15}$

$\Rightarrow D=\frac{-5}{15} \pm \frac{i \sqrt{11}}{15}$
$D=\frac{-1}{3}+\frac{i \sqrt{11}}{15}$
Therefore, the complementary function is
$y_{c}=\left(c_{1} \cos \left(\frac{\sqrt{11}}{15} x\right)+c_{2} \sin \left(\frac{\sqrt{11}}{15} x\right)\right) e^{\frac{-1}{3} x}$
$\Rightarrow y=\left(c_{1} \cos \left(\frac{\sqrt{11}}{15} x\right)+c_{2} \sin \left(\frac{\sqrt{11}}{15} x\right)\right) e^{\frac{-1}{3} x}$
is required solution.

Question \# 3: $:\left(D^{3}-4 D^{2}+D+6\right) y=0$

Solution:

Given equation is
$\left(D^{3}-4 D^{2}+D+6\right) y=0$

The characteristics equation of (i) will be

$$
D^{3}-4 D^{2}+D+6=0
$$

Since $D=-1$ is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-4	1	6
-1	0	-1	5	-6
	1	-5	6	0

Now, the residual equation will be
$D^{2}-5 D+6=0$
$\Rightarrow D^{2}-2 D-3 D+6=0$
$\Rightarrow D(D-2)-3(D-2)$
$\Rightarrow(D-2)(D-3)=0$
$\Rightarrow D=2$ or $D=3$
Therefore, the complementary function is
$y_{c}=c_{1} e^{-x}+c_{2} e^{2 x}++c_{3} e^{3 x}$
$\Rightarrow y=c_{1} e^{-x}+c_{2} e^{2 x}++c_{3} e^{3 x} \because y_{c}=y$
is required solution.
Question \# 4: $\left(D^{3}+D^{2}+D+1\right) y=0$

Solution:

Given equation is
$\left(D^{3}+D^{2}+D+1\right) \boldsymbol{y}=\mathbf{0}---(i)$
The characteristics equation of (i) will be
$D^{3}+D^{2}+D+1=0$
$\Rightarrow D^{2}(D+1)+(D+1)=0$
$\Rightarrow(D+1)\left(D^{2}+1\right)=0$
$\Rightarrow D=-1$ or $D= \pm i$

Therefore, the complementary function is

$$
\begin{aligned}
& y_{c}=c_{1} e^{-x}+c_{2} \cos x+c_{3} \sin x \\
& \quad \Rightarrow y=c_{1} e^{-x}+c_{2} \cos x+c_{3} \sin x \because y_{c} \\
& \quad=y
\end{aligned}
$$

is required solution.

Question \# 5: $\left(D^{3}-6 D^{2}+12 D-8\right) y=0$

Solution:

Given equation is

$$
\left(D^{3}-6 D^{2}+12 D-8\right) y=0---(i)
$$

The characteristics equation of (i) will be

$D^{3}-6 D^{2}+12 D-8=0$

Since $D=2$ is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-6	12	-8
2	0	2	-8	8
	1	-4	4	0

Now the residual equation will be
$D^{2}-4 D+4=0$
$\Rightarrow(D-2)^{2}=0$
$\Rightarrow D=2,2$
Therefore, the complementary function is
$y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}++c_{3} x^{2} e^{3 x}$
$\Rightarrow y=\left(c_{1}+c_{2} x++c_{3} x^{2}\right) e^{2 x} \because y_{c}=y$
is required solution.

Question \# 6: $\left(D^{3}-6 D^{2}+3 D+10\right) y=0$

Solution:

Given equation is
$\left(D^{3}-6 D^{2}+3 D+10\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{3}-6 D^{2}+3 D+10=0$
Since $D=2$ is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-6	3	10
2	0	2	-8	-10
	1	-4	-5	0

Now, the residual equation will be
$D^{2}-4 D-5=0$
$\Rightarrow D^{2}-5 D+D-5=0$
$\Rightarrow(D+1)(D-5)=0$
$\Rightarrow D=-1$ or $D=5$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{2 x}+c_{2} e^{-x}+c_{3} e^{5 x}$
$\Rightarrow y=c_{1} e^{2 x}+c_{2} e^{-x}+c_{3} e^{5 x} \quad \because y_{c}=y$
is required solution.
Question \#7: $\left(D^{3}-27\right) y=0$

Solution:

Given equation is
$\left(D^{3}-27\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{3}-\mathbf{2 7}=0$
$\Rightarrow(D)^{3}-(3)^{3}=0$
$\Rightarrow(D-3)\left(D^{2}+3 D+9\right)=0$
$\Rightarrow(D-3)=0$ or $\left(D^{2}+3 D+9\right)=0$
$\Rightarrow D=3$
or $\left(D^{2}+3 D+9\right)=0$
$\Rightarrow D=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(9)}}{2}$
$\Rightarrow D=\frac{-3 \pm \sqrt{9-36}}{2}$
$D=\frac{-3 \pm \sqrt{-27}}{2}$
$\frac{-3 \pm 3 \sqrt{3} i}{2}$
$\Rightarrow D=\frac{-3}{2} \pm i \frac{3 \sqrt{3}}{2}$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{3 x}+\left[c_{2} \cos \left(\frac{3 \sqrt{3}}{2} x\right)+c_{3} \sin \left(\frac{3 \sqrt{3}}{2} x\right)\right] e^{-\frac{3 x}{2}}$
$\Rightarrow y=c_{1} e^{3 x}+\left[c_{2} \cos \left(\frac{3 \sqrt{3}}{2} x\right)+c_{3} \sin \left(\frac{3 \sqrt{3}}{2} x\right)\right] e^{-\frac{3 x}{2}}$
is required solution.
Ouestion \# 8: $\left(4 D^{4}-4 D^{3}-3 D^{2}+4 D-1\right) y=0$

Solution:

Given equation is
$\left(4 D^{4}-4 D^{3}-3 D^{2}+4 D-1\right) y=0---(i)$
The characteristics equation of (i) will be
$4 D^{4}-4 D^{3}-3 D^{2}+4 D-1=0$
Since $D=1,-1$ are the roots of characteristic equation. So we use synthetic division in order
to find the other roots. The synthetic division is as follow:-

	4	-4	-3	4	-1
1	0	4	0	-3	1
	4	0	-3	1	0
-1	0	-4	4	-1	
	4	-4	1	0	

Now, the residual equation will be
$4 D^{2}-4 D+1=0$
$\Rightarrow(2 D-1)(2 D-1)=0$
$\Rightarrow 2 D=1 ; 2 D=1$
$\Rightarrow D=\frac{1}{2} ; D=\frac{1}{2}$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{\frac{x}{2}}+c_{4} x e^{\frac{x}{2}}$
OR $y=c_{1} e^{x}+c_{2} e^{-x}+\left(c_{3}+c_{4} x\right) e^{\frac{x}{2}}$ is required solution.

Question \# 9: $\left(D^{4}+2 D^{3}-2 D^{2}-6 D+\right.$ 5) $y=0$

Solution:

Given equation is
$\left(D^{4}+2 D^{3}-2 D^{2}-6 D+5\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{4}+2 D^{3}-2 D^{2}-6 D+5=0$
Since $D=1,1$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

	1	2	-2	-6	5
1	0	1	3	1	-5
	1	3	1	-5	0
1	0	1	4	5	
	1	4	5	0	

Now, the residual equation will be
$D^{2}+4 D+5=0$
$\Rightarrow D=\frac{-4 \pm \sqrt{16-20}}{2}$
$\Rightarrow D=\frac{-4 \pm \sqrt{-4}}{2}$
$\Rightarrow D=\frac{-4 \pm 2 i}{2}$
$\Rightarrow D=-2 \pm i$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} x e^{x}+\left(c_{3} \cos x+c_{4} \sin x\right) e^{-2 x}$
$\Rightarrow y=\left(c_{1}+c_{2} x\right) e^{x}+\left(c_{3} \cos x+c_{4} \sin x\right) e^{-2 x}$ is required solution.

Question \# $10\left(D^{4}-5 D^{3}+6 D^{2}+4 D-\right.$ 8) $y=0$

Solution:

Given equation is

$$
\begin{gathered}
\left(D^{4}-5 D^{3}+6 D^{2}+4 D-8\right) y \\
=0---(i)
\end{gathered}
$$

The characteristics equation of (i) will be
$D^{4}-5 D^{3}+6 D^{2}+4 D-8=0$
Since $D=-1,2$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

	1	-5	6	4	-8
-1	0	-1	6	-12	8
	1	-6	12	-8	0
2	0	2	-8	8	
	1	-4	4	0	

	1	-4	-7	22	24
-1	0	-1	5	2	-24
	1	-5	-2	24	0
-2	0	-2	14	-24	
	1	-7	12	0	

Now, the residual equation will be
$D^{2}-4 D+4=0$
$\Rightarrow D^{2}-2 D-2 D+4=0$
$\Rightarrow D(D-2)-2(D-2)$
$\Rightarrow(D-2)(D-2)=0$
$\Rightarrow D=2,2$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} x e^{2 x}+c_{4} x^{2} e^{2 x}$
$y_{c}=c_{1} e^{-x}+\left(c_{2}+c_{3} x+c_{4} x^{2}\right) e^{2 x}$ OR
$y=c_{1} e^{-x}+\left(c_{2}+c_{3} x+c_{4} x^{2}\right) e^{2 x}$ is required solution.

Question \# 11

$$
\left(D^{4}-4 D^{3}-7 D^{2}+22 D+24\right) y=0
$$

Solution:

Given equation is

$$
\begin{aligned}
\left(D^{4}-4 D^{3}-\right. & \left.7 D^{2}+22 D+24\right) y \\
& =0-
\end{aligned}
$$

The characteristics equation of (i) will be
$D^{4}-4 D^{3}-7 D^{2}+22 D+24=0$
Since $D=-1,-2$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

Now, the residual equation will be
$D^{2}-7 D+12=0$
$\Rightarrow D^{2}-3 D-4 D+12=0$
$\Rightarrow D(D-3)-4(D-3)=0$
$\Rightarrow(D-3)(D-4)=0$
$\Rightarrow D=3,4$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{4 x}+c_{2} e^{3 x}+c_{3} e^{-2 x}+c_{4} e^{-x}$
$y=c_{1} e^{-x}+\left(c_{2}+c_{3} x+c_{4} x^{2}\right) e^{2 x}$
is required solution.
Question \# $12\left(D^{4}+4\right) y=0$

Solution:

Given equation is

$$
\left(D^{4}+4\right) y=0---(i)
$$

The characteristics equation of (i) will be

$$
D^{4}+4=0
$$

$\Rightarrow\left(D^{2}\right)^{2}+(2)^{2}+2\left(D^{2}\right)(2)-2\left(D^{2}\right)(2)=0$
$\Rightarrow\left(D^{2}+2\right)^{2}-4 D^{2}=0$
$\Rightarrow\left(D^{2}+2\right)^{2}-(2 D)^{2}=0$
$\Rightarrow\left(D^{2}+2+2 D\right)\left(D^{2}+2-2 D\right)=0$
$\Rightarrow D^{2}+2 D+2=0 \quad: \quad D^{2}-2 D+2=0$
$\Rightarrow D=\frac{-2 \pm \sqrt{4-8}}{2} ; \quad D=\frac{-2 \pm \sqrt{4-8}}{2}$
$\Rightarrow D=\frac{-2 \pm 2 i}{2} \quad ; \quad D=\frac{-2 \pm 2 i}{2}$
$\Rightarrow D=\frac{2(-1 \pm i)}{2} \quad ; \quad D=\frac{2(-1 \pm i)}{2}$
$\Rightarrow D=-1 \pm i \quad ; \quad D=1 \pm i$
Therefore, the complementary solution is
$y_{c}=\left(c_{1} \cos x+c_{2} \sin x\right) e^{-x}+\left(c_{3} \cos x+c_{4} \sin x\right) e^{x}$ is required solution.

Question \# 13 $\left(D^{4}-D^{3}-3 D^{2}+D+2\right) y=0$

Solution:

Given equation is
$\left(D^{4}-D^{3}-3 D^{2}+D+2\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{4}-D^{3}-3 D^{2}+D+2=0$
Since $D=1,2$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

| | 1 | -1 | -3 | 1 | 2 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 1 | 0 | -3 | -2 |
| | 1 | 0 | -3 | -2 | 0 |
| 2 | 0 | 2 | 4 | 2 | |
| | 1 | 2 | 1 | 0 | |

Now, the residual equation will be
$D^{2}+2 D+1=0$
$\Rightarrow(D+1)^{2}=0$
$\Rightarrow(D+1)(D+1)=0$
$\Rightarrow D=-1,-1$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{-x}+c_{4} x e^{-x}$
$\because y_{p}=0$. Therefore,
$y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{-x}+c_{4} x e^{-x}$
is required solution.

Question \# 14 $\left(16 D^{6}+8 D^{4}+D^{2}\right) y=0$

Solution:

Given equation is
$\left(16 D^{6}+8 D^{4}+D^{2}\right) y=0---(i)$
The characteristics equation of (i) will be

$$
16 D^{6}+8 D^{4}+D^{2}=0
$$

$$
\Rightarrow D^{2}\left(16 D^{4}+8 D^{2}+1\right)=0
$$

$$
\Rightarrow D^{2}\left(4 D^{2}+1\right)^{2}=0
$$

$$
\Rightarrow D^{2}=0 \quad ; \quad\left(4 D^{2}+1\right)^{2}=0
$$

$$
D=0,0
$$

$$
\& \quad\left(4 D^{2}+1\right)\left(4 D^{2}+1\right)=0
$$

$$
4 D^{2}=-1 \quad \text { or } \quad 4 D^{2}=-1
$$

$$
\Rightarrow D^{2}=\frac{-1}{4} \text { or } D^{2}=\frac{-1}{4}
$$

$$
\Rightarrow D=\sqrt{\frac{i^{2}}{4}} \text { or } D=\sqrt{\frac{i^{2}}{4}}
$$

$$
\Rightarrow D= \pm \frac{i}{2} ; D= \pm \frac{i}{2}
$$

Therefore, the complementary solution is

$$
\begin{gathered}
y_{c}=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} \cos \frac{x}{2}+c_{4} x \cos \frac{x}{2} \\
+c_{5} \sin \frac{x}{2}+c_{6} x \sin \frac{x}{2}
\end{gathered}
$$

$$
\begin{array}{r}
y_{c}=\left(c_{1}+c_{2} x\right)+\left(c_{3}+c_{4} x\right) \cos \frac{x}{2} \\
+\left(c_{5}+c_{6} x\right) \sin \frac{x}{2}
\end{array}
$$

$\because y_{p}=0$. Therefore,

$$
\begin{aligned}
y=\left(c_{1}+c_{2} x\right) & +\left(c_{3}+c_{4} x\right) \cos \frac{x}{2} \\
& +\left(c_{5}+c_{6} x\right) \sin \frac{x}{2}
\end{aligned}
$$

is required solution.

Question \# 15

$$
\left(D^{4}+6 D^{3}+15 D^{2}+20 D+12\right) y=0
$$

Solution:

Given equation is
$\left(D^{4}+6 D^{3}+15 D^{2}+20 D+12\right) y=0--(i)$
The characteristics equation of (i) will be
$D^{4}+6 D^{3}+15 D^{2}+20 D+12=0$
Since $D=-2,-2$ are the roots of characteristic equation. So we use synthetic division in order to find the other roots. The synthetic division is as follow:-

	1	6	15	20	12
-2	0	-2	-8	-14	-12
	1	4	7	6	0
-2	0	-2	-4	-6	
	1	2	3	0	

Now, the residual equation will be
$D^{2}+2 D+3=0$
$\Rightarrow D=\frac{-2 \pm \sqrt{4-12}}{2}$
$\Rightarrow D=\frac{-2 \pm 2 i \sqrt{2}}{2}$
$\Rightarrow D=-1 \pm i \sqrt{2}$

Therefore, the complementary solution is
$y_{c}=\left(c_{1}+c_{2} x\right) e^{-2 x}+\left(c_{3} \cos \sqrt{2} x+c_{4} \sin \sqrt{2} x\right) e^{-x}$
$\because y_{p}=0$. Therefore,
$y=\left(c_{1}+c_{2} x\right) e^{-2 x}+\left(c_{3} \cos \sqrt{2} x+c_{4} \sin \sqrt{2} x\right) e^{-x}$
is required solution.

Solve each of the following initial problem.

Question \# 16

$\left(D^{2}+8 D-9\right) y=0 \quad y(1)=1, y^{\prime}(1)=0$

Solution:

Given equation is

$$
\left(D^{2}+8 D-9\right) y=0---(i)
$$

The characteristics equation of (i) will be

$$
D^{2}+8 D-9=0
$$

$\Rightarrow D^{2}+9 D-D-9=0$
$\Rightarrow D(D+9)-1(D+9)=0$
$\Rightarrow(D-1)(D+9)=0$
$\Rightarrow D=1$ or $D=-9$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{-9 x}$
$\because y_{p}=0$. Therefore
$y=c_{1} e^{x}+c_{2} e^{-9 x}---(a)$
Differentiating w.r.t " x ", we have
$y^{\prime}=c_{1} e^{x}-9 c_{2} e^{-9 x}---(b)$
Applying $y(\mathbf{1})=\mathbf{1}$ on (a), we have,
$1=c_{1} e^{1}+c_{2} e^{-9}$
$\Rightarrow c_{1} e+\frac{c_{2}}{e^{9}}=1---(c)$
Applying $\boldsymbol{y}^{\prime}(\mathbf{1})=\mathbf{0}$ on (b), we have,
$0=c_{1} e-9 c_{2} e^{-9}$
$\Rightarrow c_{1} e=9 c_{2} e^{-9}---(d)$
Using (d) in (c), we have
$9 c_{2} e^{-9}+\frac{c_{2}}{e^{9}}=1$
$\Rightarrow \frac{9 c_{2}}{e^{9}}+\frac{c_{2}}{e^{9}}=1$
$\Rightarrow \frac{10 c_{2}}{e^{9}}=1$
$\Rightarrow c_{2}=\frac{e^{9}}{10}$
Now $(d) \Rightarrow$
$c_{1} e=9 \frac{e^{9}}{10} e^{-9}$
$\Rightarrow c_{1}=\frac{9}{10 e}$
Thus equation (a) becomes
$y=\frac{9}{10 e} \cdot e^{x}+\frac{e^{9}}{10} \cdot e^{-9 x}$
$y=\frac{9}{10} e^{x-1}+\frac{1}{10} e^{-9(x-1)}$
is required solution.

Question \# 17

$\left(D^{2}+6 D+9\right) y=0 \quad y(0)=2, y^{\prime}(0)=-3$

Solution:

Given equation is
$\left(D^{2}+6 D+9\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{2}+6 D+9=0$
$\Rightarrow D^{2}+3 D+3 D+9=0$
$\Rightarrow D(D+3)+3(D+3)$
$\Rightarrow(D+3)(D+3)=0$
$\Rightarrow D=-3 \quad D=-3$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$
$\because y_{p}=0$. Therefore
$y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}---(a)$
Differentiating w.r.t " x ", we have
$y^{\prime}=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 x e^{-3 x}--$ (b)
Applying $\mathbf{y}(0)=\mathbf{2}$ on (a), we have,
$2=c_{1}$
Applying $\mathbf{y}^{\prime}(0)=-\mathbf{3}$ on (b), we have,
$-3=-3 c_{1}+c_{2}$
$\Rightarrow c_{2}=-3+6$
$\Rightarrow c_{2}=3$
Thus equation (a) becomes
$y=2 e^{-3 x}+3 x e^{-3 x}$
$\Rightarrow y=(2+3 x) e^{-3 x}$
is required solution.

Question \# 18

$\left(D^{2}+6 D+13\right) y=0 \quad y(0)=3, y^{\prime}(0)=-1$

Solution:

Given equation is
$\left(D^{2}+6 D+13\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{2}+6 D+13=0$
$\Rightarrow D=\frac{-6 \pm \sqrt{36-52}}{2}$
$\Rightarrow D=\frac{-6 \pm \sqrt{16 i^{2}}}{2}$
$\Rightarrow D=\frac{-6 \pm 4 i}{2}$
$\Rightarrow D=\frac{2(-3 \pm 2 i)}{2}$
$\Rightarrow D=-3 \pm 2 i$
Therefore, the complementary solution is
$y_{c}=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) e^{-3 x}$
$\because y_{p}=0$. Therefore
$y=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) e^{-3 x}---(a)$
Differentiating w.r.t " x ", we have
$y^{\prime}=\left(-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x\right) e^{-3 x}-3\left(c_{1} \cos 2 x+\right.$ $\left.c_{2} \sin 2 x\right) e^{-3 x}---(b)$

Applying $\mathbf{y}(0)=\mathbf{3}$ on (a), we have,
$3=\left(c_{1} \cos 0+c_{2} \sin 0\right) e^{0}$
$\Rightarrow c_{1}=3$
Applying $\mathbf{y}^{\prime}(\mathbf{0})=-\mathbf{1}$ on (b), we have,
$-1=2 c_{2}-3 c_{1}$
$\Rightarrow-1=2 c_{2}-3(3)$
$\Rightarrow-1=2 c_{2}-9$
$\Rightarrow 2 c_{2}=8$
$\Rightarrow c_{2}=4$
Thus equation (a) becomes
$y=(3 \cos 2 x+4 \sin 2 x) e^{-3 x}$
`is required solution.

Question \# 19

$$
\begin{aligned}
& \left(D^{3}-6 D^{2}+11 D-6\right) y=0 \\
& y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=2
\end{aligned}
$$

Solution:

Given equation is
$\left(D^{3}-6 D^{2}+11 D-6\right) y=0---(i)$
The characteristics equation of (i) will be
$D^{3}-6 D^{2}+11 D-6=0$
Since $D=1$ is a root of characteristic equation. So we use synthetic division in order to find the other roots.

	1	-6	11	-6
1	0	1	-5	6
	1	-5	6	0

Now, the residual equation will be
$D^{2}-5 D+6=0$
$\Rightarrow D^{2}-2 D-3 D+6=0$
$\Rightarrow D(D-2)-3(D-2)=0$
$\Rightarrow(D-2)(D-3)=0$
$\Rightarrow D=2$ or $D=3$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$
$\because y_{p}=0$. Therefore
$y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}---(a)$
Differentiating w.r.t " x ", we have
$y^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}+3 c_{3} e^{3 x}---(b)$

Applying $\mathbf{y}(\mathbf{0})=\mathbf{0}$ on (b), we have,
$0=c_{1}+c_{2}+c_{3}$
$\Rightarrow c_{1}+c_{2}+c_{3}=0---(c)$
Applying $\mathbf{y}^{\prime}(\mathbf{0})=\mathbf{0}$ on (b), we have,
$0=c_{1}+2 c_{2}+3 c_{3}$
$\Rightarrow c_{1}+2 c_{2}+3 c_{3}=0---(d)$
Now, differentiating (b) w.r.t " x ", we have
$y^{\prime \prime}=c_{1} e^{x}+4 c_{2} e^{2 x}+9 c_{3} e^{3 x}---(e)$
Applying $\mathbf{y}^{\prime \prime}(0)=2$ on (b), we have,
$2=c_{1}+4 c_{2}+9 c_{3}$
$\Rightarrow c_{1}+4 c_{2}+9 c_{3}=2---(f)$
$\mathrm{BY}(c)-(d)$, we have
$-c_{2}-2 c_{3}=0$
$\Rightarrow c_{2}=-2 c_{3}---(g)$
BY $(c)-(f)$, we have
$-3 c_{2}-8 c_{3}=-2$
$\Rightarrow-\left(3 c_{2}+8 c_{3}\right)=-2$
$\Rightarrow 3 c_{2}+8 c_{3}=2$
$\Rightarrow 3\left(-2 c_{3}\right)+8 c_{3}=2 ; c_{2}=-2 c_{3}$
$\Rightarrow-6 c_{3}+8 c_{3}=2$
$\Rightarrow c_{3}=1$
$\Rightarrow \boldsymbol{c}_{2}=-2$
$\Rightarrow c_{1}-2+1=0$
$\Rightarrow c_{1}=1$

Thus equation (a) becomes
$y=e^{x}-2 e^{2 x}+e^{3 x}$
is required solution.

Question \# 20

$$
\left(D^{4}-D^{3}\right) y=0
$$

$$
y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(1)=3 e, y^{\prime \prime \prime}(1)=e
$$

Solution:

Given equation is
$\left(\boldsymbol{D}^{4}-\boldsymbol{D}^{\widehat{3}}\right) \boldsymbol{y}=\mathbf{0}--(\boldsymbol{i})$
The characteristios equation of (i) will be $D^{4}-D^{3}=0$
$\Rightarrow D^{3}(D-1)=0$
$\Rightarrow D^{3}=0 ; D-1=0$
$\Rightarrow D=\{0,0,0,1\}$
Therefore, the complementary solution is
$y_{c}=c_{1} e^{0}+c_{2} x e^{0}+c_{3} x^{2} e^{0}+c_{4} e^{x}$
$\because y_{p}=0$. Therefore
$y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}---(a)$
Differentiating w.r.t " x ", we have
$y^{\prime}=c_{2}+2 c_{3} x+c_{4} e^{x}---(b)$
Again differentiating w.r.t " x ", we have
$y^{\prime \prime}=2 c_{3}+c_{4} e^{x}----(c)$
Again differentiating w.r.t " x ", we have
$y^{\prime \prime \prime}=c_{4} e^{x}----(d)$
Applying $\mathbf{y}(\mathbf{0})=\mathbf{1}$ on (a), we have, $1=c_{1}+c_{4}$

$$
\Rightarrow c_{1}+c_{4}=1---(1)
$$

Applying $\mathbf{y}^{\prime}(\mathbf{0})=\mathbf{1}$ on (b), we have, $1=c_{2}+c_{4}$

Applying $\mathbf{y}^{\prime \prime}(\mathbf{1})=3 \mathrm{e}$ on (\mathbf{c}, we have,
$3 e=2 c_{3}+c_{4} e$
$\Rightarrow 2 c_{3}+c_{4} e=3 e---(3)$
Applying $\mathbf{y}^{\prime \prime \prime}(\mathbf{1})=\mathbf{e}$ on (\boldsymbol{d}), we have,
$e=c_{4} e$
$\Rightarrow c_{4}=1$
(3) $\Rightarrow \boldsymbol{c}_{3}=\mathbf{1}$
(2) $\Rightarrow \boldsymbol{c}_{\mathbf{2}}=\mathbf{0}$
(1) $\Rightarrow \boldsymbol{c}_{\mathbf{1}}=\mathbf{0}$

Thus equation (a) becomes
$y=x^{2}+e^{x}$
is required solution.
THE END

Written by:

Muhammad umer asghar

Sese (math)

Govt. elementary school malwal

Special Thanks:

(i)

Prof. Muhammad
Ali(www.houseofphy.co

$$
\underline{m}
$$

(ii) Dr. Attique Ur Rehman Sb(www.mathcity.org)

Contact \#:

03074896454

