MathCity.org

Merging man and maths

NOTES OF EXERCISE 9.3

Version:1.0

Homogenous functions:

Definition:

A function $f(x, y)$ is called homogenous of degree " n "if

$$
f(t x, t y)=t^{n} f(x, y)
$$

Where t is a nonzero real number.

Homogenous functions:

Definition:

A first order differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

is said to be homogenous if f is a homogenous function of any degree.

Example:

$$
\frac{d y}{d x}=\frac{x+y}{x-y} \text { is an example of homogenous equation. }
$$

Theorem:

A homogenous equation $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$ can be transformed into a separable equation by the substitution $y=v x$.

EXERCISE 9.3

Question \#1: $(x-y) d x+(x+y) d y=0$

Solution:

Given equation is
$(x-y) d x+(x+y) d y=0$
$\Rightarrow(x+y) d y=-(x-y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-(x-y)}{(x+y)}---(a)$
This is a homogenous differential equation in $x \& y$. To solve this, put

$$
\begin{gathered}
y=v x \\
\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}
\end{gathered}
$$

Thus equation (a) becomes
$v+x \frac{d v}{d x}=\frac{-(x-v x)}{(x+v x)}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{-x(1-v)}{x(1+v)}$
$\Rightarrow x \frac{d v}{d x}=\frac{v-1}{v+1}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{v-1-v^{2}-v}{v+1}$
$\Rightarrow x \frac{d v}{d x}=\frac{-\left(1+v^{2}\right)}{v+1}$
$\Rightarrow \frac{v+1}{1+v^{2}} d v=-\frac{d x}{x}$

Integrating both sides, we have
$\int \frac{v+1}{1+v^{2}} d v=-\int \frac{d x}{x}$
$\Rightarrow \frac{1}{2} \int \frac{2 v}{1+v^{2}} d v+\int \frac{d v}{1+v^{2}}=-\int \frac{d x}{x}$
$\Rightarrow \frac{1}{2} \ln \left(1+v^{2}\right)+\tan ^{-1} v=-\ln x+\ln c$
$\Rightarrow \frac{1}{2} \ln \left(1+\frac{y^{2}}{x^{2}}\right)+\tan ^{-1} \frac{y}{x}=-\ln x+c$
$\Rightarrow \frac{1}{2} \ln \left(\frac{x^{2}+y^{2}}{x^{2}}\right)+\tan ^{-1} \frac{y}{x}=-\ln x+c$
$\Rightarrow \frac{1}{2} \ln \left(x^{2}+y^{2}\right)-\frac{1}{2} \ln \left(x^{2}\right)+\tan ^{-1} \frac{y}{x}=-\ln x+c$
$\Rightarrow \frac{1}{2} \ln \left(x^{2}+y^{2}\right)-\ln (x)+\tan ^{-1} \frac{y}{x}=-\ln x+\ln c$
$\Rightarrow \frac{1}{2} \ln \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{x}=\ln c$
is required solution.

* Question \# 2: $\left(y^{2}+2 x y\right) d x+x^{2} d y=0$

Solution:

Given equation is
$\left(y^{2}+2 x y\right) d x+x^{2} d y=0$
$\Rightarrow \frac{d y}{d x}=-y^{2} \sin x$
$\Rightarrow x^{2} d y=-\left(y^{2}+2 x y\right) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-\left(\boldsymbol{y}^{2}+\mathbf{2 x y}\right)}{x^{2}}$
This is a homogenous differential equation in $x \& y$. To solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes
$v+x \frac{d v}{d x}=\frac{-\left(v^{2} x^{2}+2 x^{2} v\right)}{x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{-x^{2}\left(v^{2}+2 v\right)}{x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=-v^{2}-2 v$
$\Rightarrow x \frac{d v}{d x}=-v^{2}-2 v-v$
$\Rightarrow x \frac{d v}{d x}=-v(v+3)$
$\Rightarrow \frac{d v}{v(v+3)}=-\frac{d x}{x}$
Integrating both sides, we have
$\int \frac{d v}{v(v+3)}=-\int \frac{d x}{x}--(b)$
Suppose that
$\frac{1}{v(v+3)}=\frac{A}{v}+\frac{B}{v+3}$
$\Rightarrow 1=A(v+3)+B v---(c)$
Put $v=0$ in equation (c), we get
$1=A(3)$
$\Rightarrow A=1 / 3$
Put $v+3=0 \Rightarrow v=-3$ in equation (c), we get
$1=B(-3)$

$$
\Rightarrow B=-1 / 3
$$

Hence,

$$
\frac{1}{v(v+3)}=\frac{1}{3 v}-\frac{1}{3(v+3)}
$$

Thus, equation (b) becomes

$$
\begin{aligned}
& \int\left[\frac{1}{3 v}-\frac{1}{3(v+3)}\right] d v=-\int \frac{d x}{x} \\
& \Rightarrow \frac{1}{3} \int \frac{d v}{v}-\frac{1}{3} \int \frac{d v}{v+3}=-\ln x+\ln c \\
& \Rightarrow \frac{1}{3} \ln v-\frac{1}{3} \ln (v+3)=\ln \frac{c}{x} \\
& \Rightarrow \frac{1}{3}[\ln v-\ln (v+3)]=\ln \frac{c}{x} \\
& \Rightarrow \ln \frac{v}{v+3}=3 \ln \frac{c}{x} \\
& \Rightarrow \ln \frac{v}{v+3}=\ln \frac{c^{3}}{x^{3}} \\
& \Rightarrow \ln \frac{(y / x)}{(y / x+3)}=\ln \frac{c^{3}}{x^{3}} \because v=\frac{y}{x} \\
& \Rightarrow \ln \left(\frac{y}{y+3 x}\right)=\ln \frac{c}{x^{3}} \because c^{3}=c(a \text { constant }) \\
& \Rightarrow \frac{y}{y+3 x}=\frac{c}{x^{3}} \\
& \Rightarrow y\left|x^{3}\right|=c|y+3 x|
\end{aligned}
$$

is required solution.

Question \# 3:

$$
\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0
$$

Solution:

Given equation is
$\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0$
$\Rightarrow 2 x y d y=\left(3 y^{2}-x^{2}\right) d x$
$\Rightarrow \frac{d y}{\boldsymbol{d} \boldsymbol{x}}=\frac{3 y^{2}-x^{2}}{2 x y}---(a)$
This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes
$v+x \frac{d v}{d x}=\frac{3 v^{2} x^{2}-x^{2}}{2 v x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{x^{2}\left(3 v^{2}-1\right)}{2 v x^{2}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{3 v^{2}-1}{2 v}$
$\Rightarrow x \frac{d v}{d x}=\frac{3 v^{2}-1}{2 v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{3 v^{2}-1-2 v^{2}}{2 v}=\frac{v^{2}-1}{2 v}$
$\Rightarrow \frac{2 v}{v^{2}-1} d v=\frac{d x}{x}$
Integrating both sides, we have
$\int \frac{2 v}{v^{2}-1} d v=\int \frac{d x}{x}$
$\Rightarrow \ln \left(v^{2}-1\right)=\ln x+\ln c$
$\Rightarrow \ln \left(v^{2}-1\right)=\ln c x$
$\Rightarrow v^{2}-1=c x$
$\Rightarrow \frac{y^{2}}{x^{2}}-1=c x \quad \because v=\frac{y}{x}$
$\Rightarrow\left|y^{2}-x^{2}\right|=|c x| x^{2}$
is required solution.

Question \# 4:

$3 x \cos (y / x) d y=[2 x \sin (y / x)+3 y \cos (y / x)] d y$

Solution:

Given equation is

$$
\begin{aligned}
& 3 x \cos (y / x) d y=[2 x \sin (y / x)+3 y \cos (y / x)] d y \\
& \Rightarrow \frac{d y}{d x}=\frac{2 x \sin (y / x)+3 y \cos (y / x)}{3 x \cos (y / x)}---(a)
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{2 x \sin v+3 v x \cos v}{3 x \cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{2 x \sin v+3 v x \cos v}{3 x \cos v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{2 x \sin v}{3 x \cos v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{2}{3} \tan v
\end{aligned}
$$

$\Rightarrow \frac{d v}{\tan v}=\frac{2}{3} \frac{d x}{x}$
Integrating both sides, we have
$\int \frac{d v}{\tan v}=\frac{2}{3} \int \frac{d x}{x}$
$\Rightarrow \int \cot v d v=\frac{2}{3} \int \frac{d x}{x}$
$\Rightarrow \ln \sin v=\frac{2}{3} \ln x+\ln c^{\prime}$
$\Rightarrow 3 \ln \sin v=2 \ln x+3 \ln c^{\prime}$
$\Rightarrow \ln \sin v^{3}=\ln x^{2}+\ln c^{\prime 3}$
$\because c^{\prime}$ is a constant.
$\Rightarrow c^{\prime 3}=c(w e$ say $)$
$\Rightarrow \ln \sin v^{3}=\ln x^{2}+\ln c$
$\Rightarrow \ln \sin v^{3}=\ln c x^{2}$
$\Rightarrow \sin v^{3}=c x^{2}$
$\Rightarrow\left|\operatorname{Sin}\left(\frac{y}{x}\right)\right|^{3}=c x^{2}$
is required solution.

Question \# 5:

$$
\left(x^{2}+x y+y^{2}\right) d x-x^{2} d y=0
$$

Solution:

Given equation is

$$
\begin{aligned}
& \left(\boldsymbol{x}^{2}+x \boldsymbol{y}+\boldsymbol{y}^{2}\right) \boldsymbol{d} \boldsymbol{x}-\boldsymbol{x}^{2} \boldsymbol{d} \boldsymbol{y}=\mathbf{0} \\
& \Rightarrow x^{2} d y=\left(x^{2}+x y+y^{2}\right) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}--(a)
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
v+x \frac{d v}{d x}=\frac{x^{2}+v x^{2}+v^{2} x^{2}}{x^{2}}
$$

$$
\Rightarrow v+x \frac{d v}{d x}=\frac{x^{2}\left(1+v+v^{2}\right)}{x^{2}}
$$

$$
\Rightarrow x \frac{d v}{d x}=1+v+v^{2}-v
$$

$$
\Rightarrow x \frac{d v}{d x}=1+v^{2}
$$

$$
\Rightarrow \frac{d v}{1+v^{2}}=\frac{d x}{x}
$$

Integrating both sides, we have

$$
\begin{aligned}
& \int \frac{d v}{1+v^{2}}=\int \frac{d x}{x} \\
& \Rightarrow \tan ^{-1} v=\ln x+c \\
& \Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\ln x+c \\
& \Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)-\ln |x|=c
\end{aligned}
$$

is required solution.

* Question \# 6:
 $y d y+x d x=\sqrt{x^{2}+y^{2}} d x$

Solution:

Given equation is
$y d y+x d x=\sqrt{x^{2}+y^{2}} d x$

$$
\begin{align*}
& \Rightarrow y d y=\left(\sqrt{x^{2}+y^{2}}-x\right) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}-x}{y}---(a) \tag{a}
\end{align*}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes
$v+x \frac{d v}{d x}=\frac{\sqrt{x^{2}+v^{2} x^{2}}-x}{v x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{\sqrt{1+v^{2}}-1}{v}$
$\Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1+v^{2}}-1}{v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1+v^{2}}-1-v^{2}}{v}$
$\Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1+v^{2}}-\left(1+v^{2}\right)}{v}$
$\Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1+v^{2}}\left(1-\sqrt{1+v^{2}}\right)}{v}$
$\Rightarrow \frac{v d v}{\sqrt{1+v^{2}}\left(1-\sqrt{1+v^{2}}\right)}=\frac{d x}{x}$
Integrating both sides, we have
$\int \frac{v d v}{\sqrt{1+v^{2}}\left(1-\sqrt{1+v^{2}}\right)}=\int \frac{d x}{x}---$
Consider
$I=\int \frac{v d v}{\sqrt{1+v^{2}}\left(1-\sqrt{1+v^{2}}\right)}$
Put $1-\sqrt{1+v^{2}}=t$
$\Rightarrow-\frac{1}{2}\left(1+v^{2}\right)^{-1 / 2} 2 v d v=d t$
$\Rightarrow \frac{v d v}{\sqrt{1+v^{2}}}=-d t$
Therefore.
$I=-\int \frac{d t}{t}$
$\Rightarrow I=-\ln t$
$\Rightarrow I=-\ln \left(1-\sqrt{\left.1+v^{2}\right)}\right.$
$\Rightarrow \int \frac{v d v}{\sqrt{1+v^{2}}\left(1-\sqrt{1+v^{2}}\right)}=-\ln \left(1-\sqrt{1+v^{2}}\right)$
Hence (b) will becomes
$-\ln \left(1-\sqrt{\left.1+v^{2}\right)}=\ln x+\ln c^{\prime}\right.$
$\Rightarrow \ln \left(1-\sqrt{\left.1+v^{2}\right)}=-\ln c^{\prime} x\right.$
$\Rightarrow \ln \left(1-\sqrt{\left.1+v^{2}\right)}=\ln \left(c^{\prime} x\right)^{-1}\right.$
$\Rightarrow\left(1-\sqrt{\left.1+v^{2}\right)}=\left(c^{\prime} x\right)^{-1}\right.$
$\Rightarrow 1-\sqrt{1+\frac{y^{2}}{x^{2}}}=\left(c^{\prime} x\right)^{-1}$
$\Rightarrow 1-\frac{\sqrt{x^{2}+y^{2}}}{x}=\frac{1}{c^{\prime} x}$
$\Rightarrow \frac{x-\sqrt{x^{2}+y^{2}}}{x}=\frac{c}{x} \because \frac{1}{c^{\prime}}=c$
$\Rightarrow x-\sqrt{x^{2}+y^{2}}=c$
$\Rightarrow-\sqrt{x^{2}+y^{2}}=c-x$
$\Rightarrow\left(-\sqrt{x^{2}+y^{2}}\right)^{2}=(c-x)^{2}$
$\Rightarrow x^{2}+y^{2}=c^{2}+x^{2}-2 c x$
$\Rightarrow y^{2}=c^{2}-2 c x$
$\Rightarrow y^{2}+2 c x-c^{2}=0$
is required solution.

Question \# 7:

$$
\frac{d y}{d x}=\frac{4 y-3 x}{2 x-y}
$$

Solution:

Given equation is
$\frac{d y}{d x}=\frac{4 y-3 x}{2 x-y}---(a)$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& \Rightarrow v+x \frac{d v}{d x}=\frac{4 v x-3 x}{2 x-v x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{4 v-3}{2-v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{4 v-3}{2-v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{4 v-3-2 v+v^{2}}{2-v}
\end{aligned}
$$

$\Rightarrow x \frac{d v}{d x}=\frac{v^{2}+2 v-3}{2-v}$
Integrating both sides, we have
$\int \frac{(2-v)}{v^{2}+2 v-3} d v=\int \frac{d x}{x}$
$\Rightarrow \int \frac{(2-v)}{(v+3)(v-1)} d v=\int \frac{d x}{x}--(b)$

Suppose

$\frac{2-v}{(v+3)(v-1)}=\frac{A}{v+3}+\frac{B}{v-1}$
$\Rightarrow 2-v=A(v-1)+B(v+3)---(i)$
Put $v+3=0 \Rightarrow v=-3$ in (i), we have
$2+3=A(-4)$

$$
\Rightarrow A=-\frac{5}{4}
$$

Put $v-1=0 \Rightarrow v=1$ in (i), we have
$2-1=B(4)$
$\Rightarrow B=\frac{1}{4}$
Thus equation (i) becomes
$\frac{2-v}{(v+3)(v-1)}=\frac{-5}{4(v+3)}+\frac{1}{4(v-1)}$
Thus equation (b) becomes

$$
\begin{aligned}
& \int\left(\frac{-5}{4(v+3)}+\frac{1}{4(v-1)}\right) d v=\int \frac{d x}{x} \\
& \Rightarrow-\frac{5}{4} \int \frac{d v}{v+3}+\frac{1}{4} \int \frac{d v}{v-1}=\int \frac{d x}{x} \\
& \Rightarrow-\frac{5}{4} \ln (v+3)+\frac{1}{4} \ln (v-1)=\ln x+\ln c
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-5 \ln (v+3)+\ln (v-1)=4(\ln x+\ln c) \\
& \Rightarrow \ln (v+3)^{-5}+\ln (v-1)=\ln (c x)^{4} \\
& \Rightarrow \ln \frac{(v-1)}{(v+3)^{5}}=\ln (c x)^{4} \\
& \Rightarrow \frac{(v-1)}{(v+3)^{5}}=(c x)^{4} \\
& \Rightarrow \frac{\left(\frac{y}{x}-1\right)}{\left(\frac{y}{x}+3\right)^{5}}=(c x)^{4} \because v=\frac{y}{x} \\
& \Rightarrow \frac{(y-x) x^{4}}{(y+3 x)^{5}}=(c x)^{4} \\
& \Rightarrow|y-x|=c|y+3 x|^{5}
\end{aligned}
$$

is required solution.

Question \# 8:

$$
x \sin \left(\frac{y}{x}\right) d y=\left[y \sin \left(\frac{y}{x}\right)-x\right] d x
$$

Solution:

Given equation is
$x \sin \left(\frac{y}{x}\right) d y=\left[y \sin \left(\frac{y}{x}\right)-x\right] d x$
$\Rightarrow \frac{d y}{d x}=\frac{y \sin \left(\frac{y}{x}\right)-x}{x \sin \left(\frac{y}{x}\right)}$
This is a homogenous differential equation in x \& y. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes
$v+x \frac{d v}{d x}=\frac{v x \sin -x}{x \sin v}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v \sin v-1}{\sin v}$
$\Rightarrow x \frac{d v}{d x}=\frac{v \sin v-1}{\sin v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{v \sin v-1-v \sin v}{\sin v}$
$\Rightarrow x \frac{d v}{d x}=-\frac{1}{\sin v}$
$\Rightarrow-\sin v d v=\frac{d x}{x}$
Integrating both sides, we have
$-\int \sin v d v=\int \frac{d x}{x}$
$\Rightarrow \cos v=\ln x+c$
$\Rightarrow \cos \frac{y}{x}=\ln x+c \quad \because v=\frac{y}{x}$
is required solution.

- Question \# 9:

$$
\left(x^{2}+y^{2} \sqrt{x^{2}+y^{2}}\right) d x-x y \sqrt{x^{2}+y^{2}} d y=0
$$

Solution:

Given equation is

$$
\begin{aligned}
& \left(x^{2}+y^{2} \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right) \boldsymbol{d} \boldsymbol{x}-\boldsymbol{x y} \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}} \boldsymbol{d} \boldsymbol{y} \\
& \quad=\mathbf{0} \\
& \Rightarrow x y \sqrt{x^{2}+y^{2}} d y=\left(x^{2}+y^{2} \sqrt{x^{2}+y^{2}}\right) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{x^{2}+y^{2} \sqrt{x^{2}+y^{2}}}{x y \sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{gathered}
y=v x \\
\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}
\end{gathered}
$$

Thus equation (a) becomes
$\Rightarrow v+x \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2} \sqrt{x^{2}+v^{2} x^{2}}}{x(v x) \sqrt{x^{2}+v^{2} x^{2}}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{x^{3}+v^{2} x^{3} \sqrt{1+v^{2}}}{v x^{3} \sqrt{1+v^{2}}}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{1+v^{2} \sqrt{1+v^{2}}}{v \sqrt{1+v^{2}}}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2} \sqrt{1+v^{2}}}{v \sqrt{1+v^{2}}}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2} \sqrt{1+v^{2}}-v^{2} \sqrt{1+v^{2}}}{v \sqrt{1+v^{2}}}$
$\Rightarrow x \frac{d v}{d x}=\frac{1}{v \sqrt{1+v^{2}}}$
$\Rightarrow v \sqrt{1+v^{2}} d v=\frac{d x}{x}$
Integrating both sides, we have

$$
\int v \sqrt{1+v^{2}} d v=\int \frac{d x}{x}
$$

$\Rightarrow \frac{1}{2} \int 2 v \sqrt{1+v^{2}} d v=\ln x+\ln c$
$\Rightarrow \frac{1}{2} \frac{\left(1+v^{2}\right)^{\frac{3}{2}}}{\frac{3}{2}}=\ln (c x)$
$\Rightarrow \frac{1}{3}\left(1+\frac{y^{2}}{x^{2}}\right)^{\frac{3}{2}}=\ln (c x) \because v=\frac{y}{x}$
$\Rightarrow\left(\frac{x^{2}+y^{2}}{x^{2}}\right)^{\frac{3}{2}}=3 \ln (c x)$
$\Rightarrow \frac{\left(x^{2}+y^{2}\right)^{3}}{x^{3}}=\ln \left(c x^{3}\right)$.
$\Rightarrow\left(x^{2}+y^{2}\right)^{3}=x^{3} \ln \left(c x^{3}\right)$
is required solution.

- Question \# 10:

$(\sqrt{x+y}+\sqrt{x-y}) d x-(\sqrt{x+y}-\sqrt{x-y}) d y=0$

Solution:

Given equation is

$$
\begin{gathered}
(\sqrt{\boldsymbol{x}+\boldsymbol{y}}+\sqrt{\boldsymbol{x}-\boldsymbol{y}}) \boldsymbol{d} x-(\sqrt{\boldsymbol{x}+\boldsymbol{y}}-\sqrt{\boldsymbol{x}-\boldsymbol{y}}) \boldsymbol{d y}=\mathbf{0} \\
\Rightarrow(\sqrt{x+y}-\sqrt{x-y}) d y \\
=(\sqrt{x+y}+\sqrt{x-y}) d x \\
\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x+y}+\sqrt{x-y}}{\sqrt{x+y}-\sqrt{x-y}}---(a)
\end{gathered}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{\sqrt{x+v x}+\sqrt{x-v x}}{\sqrt{x+v x}-\sqrt{x-v x}} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{\sqrt{1+v}+\sqrt{1-v}}{\sqrt{1+v}-\sqrt{1-v}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v+x \frac{d v}{d x}= \frac{\sqrt{1+v}+\sqrt{1-v}}{\sqrt{1+v}-\sqrt{1-v}} \\
& \times \frac{\sqrt{1+v}+\sqrt{1-v}}{\sqrt{1+v}+\sqrt{1-v}} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{1+v+1-v+2 \sqrt{1-v^{2}}}{1+v-1-v} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{2+2 \sqrt{1-v^{2}}}{2 v} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{2\left(1+\sqrt{1-v^{2}}\right)}{2 v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1+\sqrt{1-v^{2}}}{v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{1+\sqrt{1-v^{2}}-v^{2}}{v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1-v^{2}}+\left(1-v^{2}\right)}{v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{\sqrt{1-v^{2}}\left(1+\sqrt{1-v^{2}}\right)}{v} \\
& \Rightarrow \frac{v d v}{\sqrt{1-v^{2}}\left(1+\sqrt{1-v^{2}}\right)}=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we have

$$
\int \frac{v d v}{\sqrt{1-v^{2}}\left(1+\sqrt{1-v^{2}}\right)}=\int \frac{d x}{x}
$$

$$
\text { Put } 1+\sqrt{1-v^{2}}=t
$$

$$
\Rightarrow \frac{1}{2}\left(1-v^{2}\right)^{\frac{-1}{2}}(-2 v) d v=d t
$$

$$
\Rightarrow \frac{v d v}{\sqrt{1-v^{2}}}=-d t
$$

therefore,

$$
\begin{aligned}
& \int \frac{-d t}{t}=\int \frac{d x}{x} \\
& \Rightarrow-\int \frac{d t}{t}=\int \frac{d x}{x} \\
& \Rightarrow-\ln t=\ln x+\ln c \\
& \Rightarrow-\ln \left(1+\sqrt{1-v^{2}}\right)=\ln x+\ln c \\
& \Rightarrow-\ln \left(1+\sqrt{1-v^{2}}\right)=\ln c x \\
& \Rightarrow \ln \left(1+\sqrt{1-v^{2}}\right)=-\ln c x \\
& \Rightarrow \ln \left(1+\sqrt{1-v^{2}}\right)=\ln (c x)^{-1} \\
& \Rightarrow\left(1+\sqrt{1-v^{2}}\right)=\frac{1}{c x} \\
& \Rightarrow 1+\sqrt{1-\frac{y^{2}}{x^{2}}}=\frac{1}{c x} \because v=\frac{y}{x} \\
& \Rightarrow 1+\frac{\sqrt{x^{2}-y^{2}}}{x}=\frac{1}{c x} \\
& \Rightarrow \frac{x+\sqrt{x^{2}-y^{2}}}{x}=\frac{1}{c x} \\
& \Rightarrow x+\sqrt{x^{2}-y^{2}}=\frac{1}{c}=c(\mathrm{a} \text { constant }) \\
& \Rightarrow x+\sqrt{x^{2}-y^{2}}=c
\end{aligned}
$$

is required solution.

Solve the initial value problem

Question \# 11:

$$
\frac{d y}{d x}=\frac{x+y}{x} \quad y(1)=1
$$

Solution:

Given equation is
$\frac{d y}{d x}=\frac{x+y}{x}---(a)$
This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x+v x}{x} \\
& \Rightarrow v+x \frac{d v}{d x}=1+v \\
& \Rightarrow x \frac{d v}{d x}=1+v-v \\
& \Rightarrow x \frac{d v}{d x}=1+v-v \\
& \Rightarrow d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we have

$$
\begin{aligned}
& \int d v=\int \frac{d x}{x} \\
& \Rightarrow v=\ln x+c \\
& \Rightarrow \frac{y}{x}=\ln x+c---(b) \quad \because v=\frac{y}{x}
\end{aligned}
$$

Applying the condition $y(1)=1$ on (b), we have
$1=0+c$
$\Rightarrow c=1$
Therefore,
$\frac{y}{x}=\ln x+1$
$\Rightarrow y=x \ln x+x$
is required solution.

- Question \# 12:

$\left(y+\sqrt{x^{2}+y^{2}}\right) d x-x d y=0 \quad y(1)=0$

Solution:

Given equation is

$$
\begin{aligned}
& \left(y+\sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}\right) d \boldsymbol{x}-\boldsymbol{x} \boldsymbol{d} \boldsymbol{y}=\mathbf{0} \\
& \Rightarrow x d y=\left(y+\sqrt{x^{2}+y^{2}}\right) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}--(a)
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{v x+\sqrt{x^{2}+v^{2} x^{2}}}{x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{v x+x \sqrt{1+v^{2}}}{x} \\
& \Rightarrow v+x \frac{d v}{d x}=v+\sqrt{1+v^{2}} \\
& \Rightarrow x \frac{d v}{d x}=v+\sqrt{1+v^{2}}-v
\end{aligned}
$$

$\Rightarrow x \frac{d v}{d x}=\sqrt{1+v^{2}}$
$\Rightarrow \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}$
Integrating both sides, we have
$\int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x}$
$\Rightarrow \operatorname{Sinh}^{-1} v=\ln x+c$
$\Rightarrow \operatorname{Sinh}^{-1}\left(\frac{y}{x}\right)=\ln x+c---(b) \because v=\frac{y}{x}$
Applying the condition $y(1)=0$ on (b), we have
$\operatorname{Sinh}^{-1}\left(\frac{0}{1}\right)=\ln 1+c$
$\Rightarrow c=0$
Therefore (b) becomes
$\operatorname{Sinh}^{-1}\left(\frac{y}{x}\right)=\ln x$
$\because \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$. Therefore,
$\Rightarrow \ln \left(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right)=\ln x$
$\Rightarrow \frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}=x$
$\Rightarrow \frac{y+\sqrt{x^{2}+y^{2}}}{x}=x$
$\Rightarrow y+\sqrt{x^{2}+y^{2}}=x^{2}$
is required solution.

Question \# 13:

$$
\begin{aligned}
(2 x-5 y) d x+ & (4 x-y) d y=0 \quad y(1) \\
& =4
\end{aligned}
$$

Solution:

Given equation is

$$
\begin{aligned}
& (2 \boldsymbol{x}-\mathbf{5 y}) d x+(4 \boldsymbol{x}-\boldsymbol{y}) d y=\mathbf{0} \\
& \Rightarrow(4 x-y) d y=-(2 x-5 y) d x \\
& \Rightarrow(4 x-y) d y=(5 y-2 x) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{5 y-2 x}{4 x-y}=-- \text { (a) }
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{5 v x-2 x}{4 x-v x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{5 v-2}{4-v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{5 v-2}{4-v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{5 v-2-4 v+v^{2}}{4-v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v^{2}+v-2}{4-v} \\
& \Rightarrow \frac{4-v}{v^{2}+v-2} d v=\frac{d x}{x} \\
& \Rightarrow \frac{4-v}{(v+2)(v-1)} d v=\frac{d x}{x}---(b)
\end{aligned}
$$

Consider that
$\frac{4-v}{(v+2)(v-1)}=\frac{A}{v+2}+\frac{B}{v-1}$
$\Rightarrow 4-v=A(v-1)+B(v+2)---(i)$
Put $v+2=0 \Rightarrow v=-2$ in (i), we have
$6=A(-3)$
$\Rightarrow A=-2$
Put $v-1=0 \Rightarrow v=1$ in (i), we have
$3=B(3)$
$\Rightarrow B=1$
therefore,
$\frac{4-v}{(v+2)(v-1)}=\frac{-2}{v+2}+\frac{1}{v-1}$
Thus equation (b) becomes
$\frac{-2}{v+2}+\frac{1}{v-1}=\frac{d x}{x}$
Integrating both sides, we have
$\int\left(\frac{-2}{v+2}+\frac{1}{v-1}\right) d v=\int \frac{d x}{x}$
$-2 \int \frac{d v}{v+2}+\int \frac{d v}{v-1}=\int \frac{d x}{x}$
$\Rightarrow-2 \ln (v+2)+\ln (v-1)=\ln x+\ln c$
$\Rightarrow \ln (v+2)^{-2}+\ln (v-1)=\ln c x$
$\Rightarrow \ln \frac{(v-1)}{(v+2)^{2}}=\ln c x$

$$
\Rightarrow \frac{(v-1)}{(v+2)^{2}}=c x
$$

$\Rightarrow \frac{\frac{y}{x}-1}{\left(\frac{y}{x}+2\right)^{2}}=c x \quad \because v=\frac{y}{x}$

$$
\begin{aligned}
& \frac{(y-x) / x}{(y+2 x)^{2} / x^{2}}=c x \\
\Rightarrow & \frac{(y-x) x}{(y+2 x)^{2}}=c x \\
\Rightarrow & y-x=c(y+2 x)^{2}---(c)
\end{aligned}
$$

Applying the condition $y(1)=4$ on (b), we have
$4-1=c(4+2)^{2}$
$\Rightarrow c=\frac{1}{12}$
(c) $\Rightarrow y-x=\frac{1}{12}(y+2 x)^{2}$
$\Rightarrow(y+2 x)^{2}=12(y-x)$
is required solution.

* Question \# 14:

$$
\left(3 x^{2}+9 x y+5 y^{2}\right) d x-\left(6 x^{2}+4 x y\right) d y=0 y(2)
$$

$$
=-6
$$

Solution:

Given equation is

$$
\begin{aligned}
& \left(3 \boldsymbol{x}^{2}+\mathbf{9 x y}+\mathbf{5} \boldsymbol{y}^{2}\right) \boldsymbol{d x}-\left(\mathbf{6} \boldsymbol{x}^{2}+\mathbf{4 x y}\right) \boldsymbol{d} \boldsymbol{y}=\mathbf{0} \\
& \Rightarrow\left(6 x^{2}+4 x y\right) d y=\left(3 x^{2}+9 x y+5 y^{2}\right) d x \\
& \Rightarrow \frac{d y}{d x}=\frac{\left(3 x^{2}+9 x y+5 y^{2}\right)}{\left(6 x^{2}+4 x y\right)}---(a)
\end{aligned}
$$

This is a homogenous differential equation in $x \& y$. to solve this, put

$$
\begin{aligned}
y & =v x \\
\Rightarrow \frac{d y}{d x} & =v+x \frac{d v}{d x}
\end{aligned}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{3 x^{2}+9 v x^{2}+5 v^{2} x^{2}}{6 x^{2}+4 v x^{2}} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{3+9 v+5 v^{2}}{6+4 v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{3+9 v+5 v^{2}}{6+4 v}-v \\
& \Rightarrow x \frac{d v}{d x}=\frac{3+9 v+5 v^{2}-6 v-4 v^{2}}{6+4 v} \\
& \Rightarrow x \frac{d v}{d x}=\frac{v^{2}+3 v+3}{6+4 v} \\
& \Rightarrow \frac{6+4 v}{v^{2}+3 v+3} d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we have

$$
\begin{aligned}
& \int \frac{6+4 v}{v^{2}+3 v+3} d v=\int \frac{d x}{x} \\
& \Rightarrow 2 \int \frac{(2 v+3)}{v^{2}+3 v+3} d v=\int \frac{d x}{x} \\
& \Rightarrow 2 \ln \left(v^{2}+3 v+3\right)=\ln x+\ln c \\
& \Rightarrow \ln \left(v^{2}+3 v+3\right)^{2}=\ln c x \\
& \Rightarrow\left(v^{2}+3 v+3\right)^{2}=c x \\
& \Rightarrow\left(\frac{y^{2}}{x^{2}}+3 \frac{y}{x}+3\right)^{2}=c x
\end{aligned}
$$

$$
\Rightarrow\left(\frac{y^{2}+3 x y+3 x^{2}}{x^{2}}\right)^{2}=c x
$$

$$
\Rightarrow\left(y^{2}+3 x y+3 x^{2}\right)^{2}=c x^{5}---(b)
$$

Applying the condition $y(2)=6$ on (b), we have
$(36-36+12)^{2}=c(8)$
$\Rightarrow 144=32 c$
$\Rightarrow \frac{144}{32}=c$
$\Rightarrow c=\frac{9}{2}$
Therefore (b) becomes
$\left(y^{2}+3 x y+3 x^{2}\right)^{2}=\frac{9}{2} x^{5}$
$\Rightarrow 2\left(y^{2}+3 x y+3 x^{2}\right)^{2}=9 x^{5}$
is required solution.

Solve:

Question \# 15:

$$
\frac{d y}{d x}=\frac{x+3 y-5}{x-y-1}
$$

Solution:

Given equation is
$\frac{d y}{d x}=\frac{x+3 y-5}{x-y-1}---(a)$
Put

$$
\begin{array}{lll}
x=X+h & \& & y=Y+k \\
\Rightarrow d x=d X & \& & d y=d Y
\end{array}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& \frac{d Y}{d X}=\frac{X+h+3(Y+k)-5}{X+h-(Y+k)-1} \\
& \Rightarrow \frac{d Y}{d X}=\frac{X+h+3 Y+3 k-5}{X+h-Y-k-1} \\
& \Rightarrow \frac{d Y}{d X}=\frac{X+3 Y+h+3 k-5}{X-Y+h-k-1} \\
& \quad \text { Put } \quad \mathrm{h}+3 \mathrm{k}-5=0---(*) \\
& \quad \& \quad \mathrm{~h}-\mathrm{k}-1=0---(* *)
\end{aligned}
$$

On solving (*) \& (**), we have
$h=-2 \& k=-1$
Therefore,
$1+1=B$

$\Rightarrow B=2$

To find the value of A, we have to solve the (i). Therefore,
$1-v=A v+A+B$
Comparing the coefficient of v, we have

$A=1$

Therefore,
$\frac{1-v}{(v+1)^{2}}=\frac{-1}{v+1}+\frac{2}{(v+1)^{2}}$
Now $(i) \Rightarrow \frac{d Y}{d X}=\frac{X+3 Y}{X-Y}---(b)$
This is a homogenous differential equation in X \& Y. to solve this, put

$$
\begin{aligned}
Y & =v X \\
\Rightarrow \frac{d Y}{d X} & =v+X \frac{d v}{d X}
\end{aligned}
$$

Thus equation (b) becomes

$$
\begin{aligned}
& v+X \frac{d v}{d X}=\frac{X+3 v X}{X-v X} \\
& \Rightarrow v+X \frac{d v}{d X}=\frac{1+3 v}{1-v} \\
& \Rightarrow X \frac{d v}{d X}=\frac{1+3 v}{1-v}-v \\
& \Rightarrow X \frac{d v}{d X}=\frac{1+3 v-v+v^{2}}{1-v} \\
& \Rightarrow X \frac{d v}{d X}=\frac{v^{2}+2 v+1}{1-v} \\
& \Rightarrow \frac{(1-v)}{v^{2}+2 v+1} d v=\frac{d X}{X}
\end{aligned}
$$

$$
\Rightarrow \frac{(1-v)}{(v+1)^{2}} d v=\frac{d X}{X}
$$

Integrating both sides, we have

$$
\int \frac{(1-v)}{(v+1)^{2}} d v=\int \frac{d X}{X}---(i)
$$

Suppose that

$$
\begin{aligned}
& \frac{(1-v)}{(v+1)^{2}}=\frac{A}{v+1}+\frac{B}{(v+1)^{2}} \\
& 1-v=A(v+1)+B---(i i)
\end{aligned}
$$

$$
\text { Put } v+1=0 \Rightarrow v=-1 \text { in (ii) }
$$

$$
\begin{aligned}
& \int\left[\frac{-1}{v+1}+\frac{2}{v+1^{2}}\right] d v=\int \frac{d X}{X} \\
& -\int \frac{d v}{v+1}+2 \int \frac{d v}{(v+1)^{2}}=\int \frac{d X}{X} \\
& -\ln (v+1))+2\left(\frac{-1}{v+1}\right)=\ln X+\ln C \\
& \Rightarrow-\ln \left(\frac{Y}{X}+1\right)-\frac{2}{\frac{Y}{X}+1}=\ln X+\ln C \\
& \Rightarrow-\ln \left(\frac{X+Y}{X}\right)-\frac{2 X}{X+Y}=\ln X+\ln C
\end{aligned}
$$

Putting the v alues of X and Y , we have

$$
\begin{gathered}
-\ln \left(\frac{x-2+y-1}{x-2}\right)-\frac{2(x-2)}{x-2+y-1} \\
=\ln (x-2)+\ln C \\
\Rightarrow-\ln \left(\frac{x+y-3}{x-2}\right)-\frac{2(x-2)}{x+y-3} \\
=\ln (x-2)+\ln C \\
\Rightarrow-\ln (x+y-3)+\ln (x-2)-\frac{2(x-2)}{x+y-3} \\
=\ln (x-2)+\ln C
\end{gathered}
$$

$\Rightarrow-\ln (x+y-3)-\frac{2(x-2)}{x+y-3}=\ln C$
$\Rightarrow-\frac{2(x-2)}{x+y-3}=\ln C+\ln (x+y-3)$
$\Rightarrow-\frac{2(x-2)}{x+y-3}=\ln C(x+y-3)$
is required solution.

Question \# 16:

$$
\frac{d y}{d x}=-\frac{4 x+3 y+15}{2 x+y+7}
$$

Solution:

Given equation is
$\frac{d y}{d x}=-\frac{4 x+3 y+15}{2 x+y+7}---(a)$
Put

$$
\begin{array}{cc}
x=X+h & \& \quad y=Y+k \\
\Rightarrow d x=d X & \& \\
d y=d Y
\end{array}
$$

Thus equation (a) becomes

$$
\begin{aligned}
& \frac{d Y}{d X}=-\left(\frac{4(X+h)+3(Y+k)+15}{2(X+h)+Y+k+7}\right) \\
& \Rightarrow \frac{d Y}{d X}=-\left(\frac{4 X+4 h+3 Y+3 k+15}{2 X+2 h+Y+k+7}\right) \\
& \Rightarrow \frac{d Y}{d X}=\frac{4 X+3 Y+4 h+3 k+15}{2 X+Y+2 h+k+7}
\end{aligned}
$$

$$
\text { Put } \quad 4 h+3 k+15=0---(*)
$$

$$
\& \quad 2 h+k+7=0---(* *)
$$

On solving (*) \& (**), we have
$h=-3 \& k=-1$
Therefore,
$\frac{d Y}{d X}=\frac{4 X+3 Y}{2 X+Y}---(b)$

This is a homogenous differential equation in X \& Y. to solve this, put

$$
\begin{aligned}
Y & =v X \\
\Rightarrow \frac{d Y}{d X} & =v+X \frac{d v}{d X}
\end{aligned}
$$

Thus equation (b) becomes
$v+X \frac{d v}{d X}=-\left(\frac{4 X+3 v X}{2 X+v X}\right)$
$\Rightarrow v+X \frac{d v}{d X}=-\left(\frac{4+3 v}{2+v}\right)$
$\Rightarrow X \frac{d v}{d X}=-\left(\frac{4+3 v}{2+v}\right)-v$
$\Rightarrow X \frac{d v}{d X}=\frac{-4-3 v-2 v-v^{2}}{2+v}$
$\Rightarrow X \frac{d v}{d X}=\frac{-v^{2}-5 v-4}{2+v}$
$\Rightarrow X \frac{d v}{d X}=\frac{-\left(v^{2}+5 v+4\right)}{2+v}$
$\Rightarrow X \frac{d v}{d X}=-\frac{(v+1)(v+4)}{2+v}$
$\Rightarrow \frac{2+v}{(v+1)(v+4)} d v=-\frac{d X}{X}$
Integrating both sides, we have
$\int \frac{2+v}{(v+1)(v+4)} d v=-\int \frac{d X}{X}$
Consider,
$\frac{v+2}{(v+1)(v+4)}=\frac{A}{v+1}+\frac{B}{v+4}$
$\Rightarrow v+2=A(v+4)+B(v+1)---(i)$
Put $v+1=0 \Rightarrow v=-1$ in (i)
$-1+2=A(-1+4)$
$\Rightarrow A=\frac{1}{3}$
Put $v+4=0 \Rightarrow v=-4$ in (i)
$-4+2=B(-4+1)$
$\Rightarrow B=\frac{2}{3}$
Thus,
$\frac{v+2}{(v+1)(v+4)}=\frac{1}{3(v+1)}+\frac{2}{3(v+4)}$
Putting values in (3)

$$
\int\left[\frac{1}{3(v+1)}+\frac{2}{3(v+4)}\right] d v=-\int \frac{d X}{X}
$$

$$
\Rightarrow \frac{1}{3} \int \frac{d v}{v+1}+\frac{2}{3} \int \frac{d v}{v+4}=-\int \frac{d X}{X}
$$

$$
\Rightarrow \frac{1}{3} \ln (v+1)+\frac{2}{3} \ln (v+4)=-\ln X+\ln C
$$

$$
\Rightarrow \ln (v+1)^{\frac{1}{3}}+\ln (v+4)^{\frac{2}{3}}=\ln \frac{C}{X}
$$

$$
\Rightarrow \ln (v+1)^{\frac{1}{3}}(v+4)^{\frac{2}{3}}=\ln \frac{C}{X}
$$

$\Rightarrow(v+1)^{\frac{1}{3}}(v+4)^{\frac{2}{3}}=\frac{C}{X}$
$\Rightarrow\left(\frac{Y}{X}+1\right)^{\frac{1}{3}}\left(\frac{Y}{X}+4\right)^{\frac{2}{3}}=\frac{C}{X}$
$\Rightarrow\left(\frac{Y+X}{X}\right)^{\frac{1}{3}}\left(\frac{Y+4 X}{X}\right)^{\frac{2}{3}}=\frac{C}{X}$
$\Rightarrow(Y+X)^{\frac{1}{3}}(Y+4 X)^{\frac{2}{3}}=C$
Putting the values of X and Y
$(y+1+x+3)^{\frac{1}{3}}(y+1+4 x+12)^{\frac{2}{3}}=c$
$\Longrightarrow(x+y+4)^{\frac{1}{3}}(y+4 x+13)^{\frac{2}{3}}=c$
$\Rightarrow(x+y+4)(y+4 x+13)^{2}=c$
is required solution.

* Question \# 17:

$(3 y-7 x-3) d x+(7 y-3 x-7) d y=0$

Solution:

Given equation is
$(3 y-7 x-3) d x+(7 y-3 x-7) d y=0$
$\frac{d y}{d x}=-\frac{(3 y-7 x-3)}{(7 y-3 x-7)}---(a)$
Put
$x=X+h$
\& $\quad y=Y+k$
$\Rightarrow d x=d X$
$\& \quad d y=d Y$

Thus equation (a) becomes
$\frac{d Y}{d X}=-\frac{3(Y+k)-7(X+h)-3}{7(Y+k)-3(X+h)-7}$
$\Rightarrow \frac{d Y}{d X}=-\frac{3 Y+3 k-7 X-7 h-3}{7 Y+7 k-3 X-3 h-7}$
$\Rightarrow \frac{d Y}{d X}=-\frac{3 Y-7 X+3 k-7 h-3}{7 Y-3 X+7 k-3 h-7}$

$$
\begin{array}{ll}
\text { Put } & 3 k-7 h-3=0---(*) \\
\& & 7 k-3 h-7=0---(* *)
\end{array}
$$

On solving (*) \& (**), we have
$h=0 \& k=1$
Therefore,
$\frac{d Y}{d X}=\frac{4 X+3 Y}{2 X+Y}---(b)$
This is a homogenous differential equation in $X \& Y$. to solve this, put

$$
Y=v X
$$

$$
\Rightarrow \frac{d Y}{d X}=v+X \frac{d v}{d X}
$$

Thus equation (b) becomes
$v+X \frac{d v}{d X}=\frac{7 X-3 v X}{-3 X+7 v X}$
$\Rightarrow v+X \frac{d v}{d X}=\frac{7-3 v}{-3+7 v}$
$\Rightarrow X \frac{d v}{d X}=\frac{7-3 v}{-3+7 v}-v$
$\Rightarrow X \frac{d v}{d X}=\frac{7-3 v+3 v-7 v^{2}}{-3+7 v}$
$\Rightarrow X \frac{d v}{d X}=\frac{7\left(1-v^{2}\right)}{-3+7 v}$
$\Rightarrow \frac{(-3+7 v)}{7\left(1-v^{2}\right)} d v=\frac{d X}{X}$
$\Rightarrow \frac{7\left(\frac{-3}{7}+v\right)}{7\left(1-v^{2}\right)} d v=\frac{d X}{X}---(c)$
Consider,
$\Rightarrow \frac{v-\frac{3}{7}}{1-v^{2}}=\frac{A}{1-v}+\frac{B}{1+v}$
$\Rightarrow v-\frac{3}{7}=A(1+v)+B(1-v)---(i)$
Put $1-V=0 \Rightarrow V=1$ in (i), we have
$1-\frac{3}{7}=A(2)$
$\Rightarrow \frac{4}{7}=A(2)$
$\Rightarrow A=\frac{\mathbf{2}}{7}$
Put $1+V=0 \Rightarrow V=-1$ in (i)
$\Rightarrow-1-\frac{3}{7}=B(2)$
$\Rightarrow B=\frac{-5}{7}$
So,
$\frac{v-\frac{3}{7}}{1-v^{2}}=\frac{2}{7(1-v)}+\frac{-5}{7(1+v)}$
Equation (c) will be
$\left[\frac{2}{7(1-v)}-\frac{5}{7(1+v)}\right] d v=\frac{d X}{X}$
Integrating both sides, we have
$\frac{2}{7} \int \frac{d v}{1-v}-\frac{5}{7} \int \frac{d v}{1+v}=\int \frac{d X}{X}$
$\frac{-2}{7} \ln (1-v)-\frac{5}{7} \ln (1+v)=\ln X+\ln C$
$(1-v)^{\frac{-2}{7}}(1+v)^{\frac{-5}{7}}=C X$
$\Rightarrow\left(1-\frac{Y}{X}\right)^{\frac{-2}{7}}\left(1+\frac{Y}{X}\right)^{\frac{-5}{7}}=C X \quad \because v=\frac{Y}{X}$
$\left(\frac{X-Y}{X}\right)^{\frac{-2}{7}}\left(\frac{X+Y}{X}\right)^{\frac{-5}{7}}=\frac{1}{C X}$
$\left(\frac{1}{C}\right)^{7}=(X-Y)^{2}(X+Y)^{5}$
Putting values of X and Y
$(x-y+1)^{2}(x+y-1)^{5}=c$
is required solution.

* Question \# 18:

$$
\frac{d y}{d x}=\frac{3 x-4 y-2}{3 x-4 y-3}
$$

Solution:

Given equation is
$\frac{d y}{d x}=\frac{3 x-4 y-2}{3 x-4 y-3}---(a)$
Put
$t=3 x-4 y$
$\Rightarrow \frac{d t}{d x}=3-4 \frac{d y}{d x}$
$\Rightarrow 4 \frac{d y}{d x}=3-\frac{d t}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{4}-\frac{1}{4} \frac{d t}{d x}$
Thus equation (a) becomes
$\frac{3}{4}-\frac{1}{4} \frac{d t}{d x}=\frac{t-2}{t-3}$
$\Rightarrow \frac{1}{4} \frac{d t}{d x}=\frac{3}{4}-\frac{t-2}{t-3}$
$\Rightarrow \frac{1}{4} \frac{d t}{d x}=\frac{3(t-3)-4(t-2)}{4(t-3)}$
$\Rightarrow \frac{1}{4} \frac{d t}{d x}=\frac{3 t-9-4 t+8}{4(t-3)}$
$\Rightarrow \frac{d t}{d x}=\frac{-t-1}{t-3}$
$\Rightarrow \frac{d t}{d x}=\frac{-(t+1)}{t-3}$
$\Rightarrow \frac{t-3}{t+1} d t=d x$
Integrating both sides, we have
$\int \frac{t-3}{t+1} d t=\int d x$
$\Rightarrow \int \frac{t+1-1-3}{t+1} d t=\int d x$
$\Rightarrow \int \frac{t+1}{t+1} d t-4 \int \frac{d t}{t+1}=\int d x$
$\Rightarrow t-4 \ln (t+1)=x+c$
$\Rightarrow 3 x-4 y-4 \ln (3 x-4 y+1)=x+c$
is required solution.

- Question \# 19:

$$
\frac{d y}{d x}=\frac{y-x+1}{y-x+5}
$$

Solution:

Given equation is
$\frac{d y}{d x}=\frac{y-x+1}{y-x+5}--(a)$
Put
$y-x=t$
$\Rightarrow \frac{d y}{d x}-1=\frac{d t}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{d t}{d x}+1$
Thus equation (a) becomes
$\Rightarrow \frac{d t}{d x}+1=\frac{t+1}{t+5}$
$\Rightarrow \frac{d t}{d x}=\frac{t+1}{t+5}-1$
$\Rightarrow \frac{d t}{d x}=\frac{t+1-t-5}{t+5}$
$\Rightarrow \frac{d t}{d x}=\frac{-4}{t+5}$
$\Rightarrow(t+5) d t=-4 d x$
Integrating both sides, we have

$$
\begin{aligned}
& \Rightarrow \int(t+5) d t=-4 \int d x \\
& \begin{array}{c}
\Rightarrow \frac{t^{2}}{2}+5 t=-4 x+c
\end{array} \\
& \begin{array}{c}
\Rightarrow \frac{1}{2}(y-x)^{2}+5(y-x)=-4 x+c \because t \\
\\
=y-x
\end{array} \\
& \begin{array}{c}
\Rightarrow \frac{1}{2}(y-x)^{2}+5 y-5 x=-4 x+c \\
\Rightarrow \frac{1}{2}(y-x)^{2}+5 y-x=c
\end{array} \\
& \Rightarrow(y-x)^{2}-2 x+10 y=2 c \\
& \Rightarrow(y-x)^{2}-2 x+10 y=c^{\prime}
\end{aligned}
$$

is required solution.

Question \# 20:

$$
\frac{d y}{d x}=\frac{x-2 y+5}{2 x+y-1}
$$

Solution:

Given equation is

$$
\frac{d y}{d x}=\frac{x-2 y+5}{2 x+y-1}---(i)
$$

Put

$$
\begin{array}{ll}
x=X+h & \& \quad y=Y+k \\
\Rightarrow d x=d X & \& \quad d y=d Y
\end{array}
$$

Thus equation (a) becomes
$\frac{d Y}{d X}=\frac{(X+h)-2(Y+k)+5}{2(X+h)+(Y+k)-1}$
$\Rightarrow \frac{d Y}{d X}=\frac{X+h-2 Y-2 k+5}{2 X+2 h+Y+k-1}$
$\Rightarrow \frac{d Y}{d X}=\frac{X-2 Y+h-2 k+5}{2 X+Y+2 h+k-1}$

$$
\begin{array}{ll}
\text { Put } & h-2 k+5=0---(*) \\
\& & 2 h+k-1=0---(* *)
\end{array}
$$

On solving (*) \& (**), we have
$h=-\frac{3}{5} \& k=+\frac{11}{5}$
Therefore,
$\frac{d Y}{d X}=\frac{X-2 Y}{2 X+Y}---(b)$
This is a homogenous differential equation in X \& Y. to solve this, put
$Y=v X$

$$
\Rightarrow \frac{d Y}{d X}=v+X \frac{d v}{d X}
$$

Thus equation (b) becomes

$$
v+X \frac{d v}{d X}=\frac{X-2 v X}{2 X+v X}
$$

$$
\Rightarrow v+X \frac{d v}{d X}=\frac{1-2 v}{2+v}
$$

$$
\Rightarrow X \frac{d v}{d X}=\frac{1-2 v}{2+v}-v
$$

$$
\Rightarrow X \frac{d v}{d X}=\frac{1-2 v-2 v-v^{2}}{2+v}
$$

$$
\Rightarrow X \frac{d v}{d X}=\frac{-v^{2}-4 v+1}{2+v}
$$

$$
\Rightarrow X \frac{d v}{d X}=\frac{-\left(v^{2}+4 v-1\right)}{2+v}
$$

$$
\Rightarrow \frac{v+2}{v^{2}+4 v-1} d v=-\frac{d X}{X}
$$

Integrating both sides, we have
$\int \frac{v+2}{v^{2}+4 v-1} d v=-\int \frac{d X}{X}$
$\frac{1}{2} \int \frac{2 v+4}{v^{2}+4 v-1} d v=-\int \frac{d X}{X}$
$\frac{1}{2} \ln \left(v^{2}+4 v-1\right)=-\ln X+\ln C$
$\left(v^{2}+4 v-1\right)^{\frac{1}{2}}=\frac{c}{X}$
$\sqrt{\left(v^{2}+4 v-1\right)}=\frac{C}{X}$
$\sqrt{\frac{Y^{2}}{X^{2}}+4 \frac{Y}{X}-1}=\frac{C}{X} \quad \because v=\frac{Y}{X}$
$\frac{\sqrt{Y^{2}+4 X Y-X^{2}}}{X}=\frac{C}{X}$
$\sqrt{Y^{2}+4 X Y-X^{2}}=C$
Putting the values of Y and X

$$
\begin{gathered}
\sqrt{\left(y-\frac{11}{5}\right)^{2}+4\left(x+\frac{3}{5}\right)\left(y-\frac{11}{5}\right)-\left(x+\frac{3}{5}\right)^{2}} \\
=C
\end{gathered}
$$

On solving this by simple algebraic formulae and operation, we will finally obtain the answer as follow:
$x^{2}-y^{2}-4 x y+10 x+2 y=c$
is required solution.

