

PERMUTATIONS

Permutation

Let X be non-empty set. Let $f: X \to X$ be a bijective function, then f is called a permutation on X.

If f is a permutation on $X = \{1,2,3,....n\}$ then f is written as $f = \begin{pmatrix} 1 & 2 & \dots & \dots & n \\ (1)f & (2)f & \dots & \dots & (n)f \end{pmatrix}$

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ (1)f & (2)f & \dots & (n)f \end{pmatrix}$$

Example

Let
$$X = \{1,2,3\}$$

Let $f: X \rightarrow X$ be defined by

$$(1)f = 2$$

$$(2)f = 3$$

$$(3)f=1$$

Clearly f is a bijective function.

Thus f is a permutation on $X = \{1,2,3\}$ and is written as

$$f = \begin{pmatrix} 1 & 2 & 3 \\ (1)f & (2)f & (3)f \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Note

- The total number of permutations defined on a set $X = \{1,2,3,...,n\}$ with n elements is n!
- The set of all permutations defined on a set X with n elements is denoted by S_n

$$\therefore$$
 Number of elements of $S_n = n!$

Let
$$X = \{1,2,3\}$$

Then number of permutations defined on a set X is 3! i.e. 6 and are given by

$$I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Thus $S_3 = \{I, f_1, f_2, f_3, f_4, f_5\}$

(iii) $l = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ is called identity permutation.

Composition of Permutations

or Multiplication

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ (1)\alpha & (2)\alpha & (3)\alpha & \dots & (n)\alpha \end{pmatrix}$$

And
$$\beta = \begin{pmatrix} 1 & 2 & 3 & \dots & \dots & n \\ (1) \beta & (2) \beta & (3) \beta & \dots & \dots & (n) \beta \end{pmatrix}$$

The composition of α and β is denoted by $\alpha \circ \beta$ and is defined by

$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & \dots & \dots & n \\ (1)(\alpha \circ \beta) & (2)(\alpha \circ \beta) & (3)(\alpha \circ \beta) & \dots & \dots & (n)(\alpha \circ \beta) \end{pmatrix}$$

Where
$$(x)(\alpha \circ \beta) = ((x)\alpha)\beta$$

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
Then $\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ (1)(\alpha \circ \beta) & (2)(\alpha \circ \beta) & (3)(\alpha \circ \beta) \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 \\ ((1)\alpha)\beta & ((2)\alpha)\beta & ((3)\alpha)\beta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ (2)\beta & (3)\beta & (1)\beta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ (3)\beta & (1)\beta \end{pmatrix}$$

Practical Application

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

Write α and β in such a way that 2^{nd} row of α and 1^{st} row of β are same.

i.e.
$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 1 & 3 & 2 \end{pmatrix}$$

Now ignore 2^{nd} row of α and 1^{st} row of β .

i.e.
$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Note

- (i) Some times we write composition of α and β by $\alpha\beta$ instead of $\alpha \circ \beta$.
- (ii) Multiplication or product or composition of α and β are same.

Teorem

The set S_n of all permutations defined on a set X with n elements is a group under the operation of composition of permutations.

Proof:

- (I) Let $f, g \in S_n$. We shall prove that $f \circ g \in S_n$ Since f, g are permutations on X.
 - $f: X \to X$ and $g: X \to X$ are bijective functions then $f \circ g: X \to X$ is also a bijective function.
 - \therefore $f \circ g$ is a permutation on X.

Hence $f \circ g \in S_n$

(II) Let $f, g, h \in S_n$. We shall prove that $(f \circ g) \circ h = f \circ (g \circ h)$ $(x)[(f \circ g) \circ h] = ((x)(f \circ g))h \qquad (x)[f \circ (g \circ h)] = ((x)f)(g \circ h)$ $= ((x)f)gh \qquad = ((x)f)gh$ Clearly $(f \circ g) \circ h = f \circ (g \circ h)$

(III) Let $I: X \to X$ be defined by (x)I = x

Then $I: X \to X$ is a bijective function thus I is a permutation on X.

$$I \in S_n$$

We shall prove that I is an identity element of S_n .

Let $f \in S_n$. We have to show that $f \circ I = I \circ f = f$

$$(x)(f \circ I) = ((x)f)I \qquad (x)(I \circ f) = ((x)I)f$$
$$= (x)f \qquad = (x)f$$

Clearly $f \circ I = I \circ f = f$

(IV) Let $f \in S_n$ then $f: X \to X$ is a bijective function.

 $f^{-1}: X \to X$ defined as $f^{-1}: Y \to X$ defi

Now we shall prove that f^{-1} is the inverse of f and for this we have

to prove that
$$f \circ f^{-1} = f^{-1} \circ f = I$$

 $(x)(f \circ f^{-1}) = ((x)f)f^{-1}$ $(y)(f^{-1} \circ f) = ((y)f^{-1})f$
 $= (y)f^{-1}$ $= (x)f$
 $= x$

 $= (\gamma)I$

$$= (x)I$$
Clearly $f \circ f^{-1} = f^{-1} \circ f = I$

Hence (S_n, \circ) is a group.

Symmetric Group

The group S_n of all permutation defined on a set X with n elements is called symmetric group of degree n.

Example

Show that (S_3, \circ) is a non-abelian group.

Solution

Here S_3 is the set of all permutation defined on a set X with three elements and is group under the composition of permutations. If $X = \{1,2,3\}$, then all the permutations defined on the set X are

$$I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\text{Now } f_1 \circ f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 1 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

And
$$f_3 \circ f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Clearly $f_1 \circ f_3 \neq f_3 \circ f_1$

 \Rightarrow (S_3 , •) is a non-abelian group.

Example

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$,

Show that $f \circ g \neq g \circ f$

Solution

Here
$$f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$
And $g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
Clearly $f \circ g \neq g \circ f$

Example

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 6 & 4 & 1 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix}$,

Show that $\alpha \circ \beta \neq \beta \circ \alpha$

Solution

THE STATE OF THE S

Here
$$\alpha \circ \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 6 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 6 & 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 3 & 2 & 6 & 4 & 1 \\ 6 & 1 & 4 & 5 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 4 & 5 & 2 & 3 \end{pmatrix} -$$
And $\beta \circ \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 6 & 4 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 & 2 & 6 & 5 \\ 2 & 6 & 5 & 3 & 1 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 3 & 1 & 4 \end{pmatrix}$$
Clearly $\alpha \circ \beta \neq \beta \circ \alpha$

CYCLES

Cycle

Let
$$X = \{a_1, a_2, \dots, a_k, a_{k+1}, \dots, a_n\}$$

(1 2 3) (1, 2, 3)

If α is a permutation on X, such that

$$\alpha = \begin{pmatrix} a_1 & a_2 \dots \dots & a_k & a_{k+1} \dots & a_n \\ a_2 & a_3 \dots & \dots & a_1 & a_{k+1} \dots & \dots & a_n \end{pmatrix}$$

Then α is called a cyclic permutation or simply a cycle of length k.

Thus α will be called a cycle of length k if

$$(a_1) \alpha = a_2$$

$$(a_2) \alpha = a_3$$

$$\dots$$

$$(a_k) \alpha = a_1$$

$$(x) \alpha = x \qquad \forall x \in X - \{a_1, a_2, \dots, a_k\}$$

The cycle α of length k can also be written as

$$\alpha = \begin{pmatrix} a_1 & a_2 \dots \dots & a_k \\ a_2 & a_3 \dots & \dots & a_1 \end{pmatrix}$$

In short α can be written as $\alpha = (a_1 a_2 \dots a_k)$

Here $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$ is a cycle of length 6 which can also

be written as $\alpha = (1 \ 2 \ 3 \ 4 \ 5 \ 6)$

And $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 5 & 3 & 6 \end{pmatrix}$ is a cycle of length 3 which can also

be written as $\beta = (3.4.5)$

E mple

Show by means of an example that the product of two cyclic permutations need not be a cyclic permutation.

Solution

Let $\alpha = (1\ 2\ 5)$ and $\beta = (2\ 1\ 4\ 5\ 6)$ be two cycles.

Then
$$\alpha\beta = (1\ 2\ 5)(2\ 1\ 4\ 5\ 6)$$

$$= \begin{pmatrix} 1 & 2 & 5 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 5 & 6 \\ 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 & 4 & 5 & 6 \\ 1 & 3 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix} \begin{pmatrix} 2 & 5 & 3 & 4 & 1 & 6 \\ 1 & 6 & 3 & 5 & 4 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 3 & 5 & 4 & 2 \end{pmatrix}, \text{ This is not a cycle.}$$

Thus product of two cycles need not be a cycle.

Every permutation of degree n can be expressed as a product of cyclic permutations acting on mutually disjoint sets.

Proof:

Let α be permutation on X with n elements.

Suppose $a_1, a_2, \dots, a_k \in X$, on which α acts as

 $(a_k) \alpha = a_1$

where $k \leq n$

If k = n then $\alpha = \alpha_1$ Hence the proof.

k < n then let $b_1, b_2, \dots, b_p \in X - \{a_1, a_2, \dots, a_k\}$ on which α acts as

$$(b_1) \alpha = b_2$$

$$(b_2) \alpha = b_3$$
.....

$$(b_p) \alpha = b_1$$

Let $\alpha_2 = \begin{pmatrix} b_1 & b_2 \dots \dots & b_p \\ b_2 & b_3 \dots & b_1 \end{pmatrix}$, where $k + p \le n$

 $k + \rho = \eta$ then $\alpha = \alpha_1 \alpha_2$ Hence the proof.

 $k \stackrel{t}{\leqslant} n$ then we continue this process of extracting each time a cycle. As degree of α is finite therefore this process must end at some cycle say α_q where

$$\alpha_q = \begin{pmatrix} c_1 & c_2 \dots \dots & c_q \\ c_2 & c_3 \dots & c_1 \end{pmatrix}$$

Hence $\alpha = \alpha_1 \alpha_2 \dots \alpha_q$ where $k + p + \dots + q = n$ Where $\{a_1, a_2, \dots, a_k\} \cap \{b_1, b_2, \dots, b_p\} \cap \dots \cap \{c_1, c_2, \dots, c_q\} = \phi$ Otherwise α will not be a bijective function.

In fact

$$\alpha = \begin{pmatrix} a_1 & a_2 & \dots & \dots & a_k & b_1 & b_2 & \dots & \dots & b_p & \dots & \dots & c_1 & c_2 & \dots & \dots & c_q \\ a_2 & a_3 & \dots & \dots & a_1 & b_2 & b_3 & \dots & \dots & b_1 & \dots & \dots & c_2 & c_3 & \dots & \dots & c_1 \end{pmatrix}$$

TRANSPOSITIONS

Transposition

A cycle of length 2 is called a transposition. Thus the permutation of the type $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ is called a transposition.

Theorem Important

Prove that every cyclic permutation can be expressed as a product of transpositions.

Proof:

Let α be a cyclic permutation of lengthn. i.e. $\alpha=(a_1\ a_2\ ...\ ...\ a_n)$ We shall prove that

$$(a_1 \ a_2 \dots a_n) = (a_1 \ a_2)(a_1 \ a_3) \dots \dots (a_1 \ a_n) \dots \dots (1)$$

We shall prove (1) by principle of mathematical induction.

For n=2

L.H.S =
$$(a_1 \ a_2)$$
 R.H.S = $(a_1 \ a_2)$

Hence (1) is true for n = 2

For n=3

L.H.S of (1) =
$$(a_1 \ a_2 \ a_3)$$

R.H.S'(1) = $(a_1 \ a_2)(a_1 \ a_3)$
= $\begin{pmatrix} a_1 & a_2 \\ a_2 & a_1 \end{pmatrix} \begin{pmatrix} a_1 & a_3 \\ a_3 & a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_1 & a_3 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \\ a_3 & a_2 & a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_1 & a_3 \end{pmatrix} \begin{pmatrix} a_2 & a_1 & a_3 \\ a_2 & a_3 & a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_1 \end{pmatrix}$
= $(a_1 \ a_2 \ a_3)$
= L.H.S of (1)

For n = k

Suppose (1) is true for
$$k$$

i.e.
$$(a_1 a_2 \dots a_k) = (a_1 a_2)(a_1 a_3) \dots (a_1 a_k) \dots (a_k)$$
 (2)

For n = k + 1

We shall prove that (1) is true for n = k + 1i.e. $(a_1 \ a_2 \ ... \ ... \ a_{k+1}) = (a_1 \ a_2)(a_1 \ a_3) \ ... \ ... \ ... \ (a_1 \ a_{k+1})$

R.H.S =
$$(a_1 \ a_2)(a_1 \ a_3) \dots \dots \dots (a_1 \ a_k)(a_1 \ a_{k+1})$$

= $(a_1 \ a_2 \dots a_k)(a_1 \ a_{k+1})$ By (2)
= $\begin{pmatrix} a_1 \ a_2 \dots a_3 \dots a_k \\ a_2 \ a_3 \dots a_1 \end{pmatrix} \begin{pmatrix} a_1 \ a_{k+1} \\ a_{k+1} \ a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \ a_{k+1} \end{pmatrix} \begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_{k+1} \ a_2 \dots a_k \ a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \ a_{k+1} \end{pmatrix} \begin{pmatrix} a_2 \ a_3 \dots a_1 \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \ a_{k+1} \end{pmatrix}$
= $\begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \ a_{k+1} \end{pmatrix}$
= $\begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \dots a_{k+1} \ a_1 \end{pmatrix}$
= $\begin{pmatrix} a_1 \ a_2 \dots a_k \ a_{k+1} \\ a_2 \ a_3 \dots a_1 \dots a_{k+1} \ a_1 \end{pmatrix}$
= $(a_1 \ a_2)(a_1 \ a_3) \dots a_k \dots (a_1 \ a_{k+1})$
= L.H.S

The rem

Every permutation of degree n can be expressed as a product of transpositions.

Proof:

Let α be a permutation of degree n. We know that

9-> yelicatransp

$$\alpha$$
 = Product of disjoint cycles (1)

(: Every permutation can be expressed as a product of disjoint cycles.)

(: Every cyclic permutation can be expressed as a product of transpositions.)

From (1) and (2), It is clear that

 α = Product of transposition

Even Permutation

A permutation α in S_n is said to be an even permutation if it can be written as a product of an even number of transpositions.

For example

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} = (1 \ 2)(3 \ 4)$$

Clearly the number of transpositions in the decomposition of α is 2, which is an even number so, α is an even permutation.

Odd Permutation

A permutation β in S_n is said to be an odd permutation if it can be written as a product of an odd number of transpositions. For example

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = (1 \ 2 \ 3 \ 4) = (1 \ 2)(1 \ 3)(1 \ 4)$$

Clearly the number of transpositions in the decomposition of α is 3, which is an odd number so, β is an odd permutation.

Theorem

- (i) The product of two even or two odd permutations is an even permutation.
- (ii) The product of an even permutation and an odd permutation is an odd permutation.

Proof:

(i) (a) Let α and β are two even permutations. Then α and β can be written as a product of even number of transpositions. Let α can be written as a product of 2m transpositions and β can be written as a product of 2n transpositions.

Then the product $\alpha\beta$ can be written as a product of 2m + 2n = 2(m+n) transpositions i.e. even number of transpositions [: 2(m+n) is an even number].

Thus the product of two even permutations is an even permutation.

(b) Let f and g are two odd permutations. Then f and g can be written as a product of odd number of transpositions. Let f can be written as a product of 2m + 1 transpositions and g can be written as a product of 2n + 1 transpositions.

Then the product fg can be written as a product of (2m+1)+(2n+1)=2(m+n+1) transpositions i.e. even number of transpositions [: 2(m+n+1) is an even number].

Thus the product of two odd permutations is an even permutation.

(ii) Let α be an even permutation and β be an odd permutation. Then α and β can be written as a product of an even and an odd number of transpositions respectively. Let α can be written as a product of 2m transpositions and β can be written as a product of 2n + 1 transpositions.

Then the product $\alpha\beta$ can be written as a product of 2m + (2n + 1) = 2(m + n) + 1 transpositions i.e. odd number of transpositions [: 2(m + n) + 1 is an odd number].

Thus the product of an even and an odd permutation is an odd -permutation.

Theorem

Let α be any permutation of degree n and τ be a transposition then $\alpha\tau$ or $\tau\alpha$ is an even or an odd permutation according as α is odd or even respectively.

Proof:

Suppose α is an even permutation. Then $\alpha = \text{Product of } m \text{ transpositions.}$ (Where m is even.) $\Rightarrow \tau \alpha = \text{Product of } (m+1) \text{ transpositions.}$ (Where (m+1) is odd.) $\Rightarrow \tau \alpha$ is an odd permutation. Suppose α is an odd permutation.

Then $\alpha = \text{Product of } n \text{ transpositions.}$

(Where n is odd.)

 $\Rightarrow \tau \alpha = \text{Product of } (n+1) \text{ transpositions.}$ (Where (n+1) is even.)

 $\Rightarrow \tau \alpha$ is an even permutation.

Theorem

For $n \ge 2$, the number of even permutations in S_n is equal to the number of odd permutations in S_n .

Proof:

We know that S_n is called symmetric group of degree n.

Also the order of $S_n = n!$

Let

 p_1, p_2, \dots, p_r be even permutations,

And

 q_1, q_2, \dots, q_s be odd permutations.

Where r + s = n!

Let τ be a transposition.

are all distinct odd permutations. Then $\tau p_1, \tau p_2, \ldots, \tau p_r$

[: If $\tau p_i = \tau p_j$ for $i \neq j$ then $p_i = p_j$ (cancellation law) $\Rightarrow i = j$ a contradiction]

Thus we have "r" odd permutations in S_n .

But number of odd permutations in S_n is "s"

$$s \geq r \qquad \dots (1)$$

Now $\tau q_1, \tau q_2, \dots, \tau q_r$ are all distinct even permutations.

Thus we have " s " even permutations in S_n .

But number of even permutations in S_n is " r"

$$\therefore r \ge s \qquad \dots (2)$$

From (1) and (2) it is clear that r = s

Since $r+s=n! \Rightarrow r=s=\frac{n!}{2}$

Cheorem

Prove that the set A_n of all even permutations in S_n form a subgroup of S_{n} Explain why the set B_n of all odd permutations in S_n do not form a subgroup of S_n ?

Proof:

Let A_n be the set of all even permutations in S_n .

We shall prove that A_n is a subgroup of S_n .

Obviously $A_n \subseteq S_n$

Let $\alpha, \beta \in A_n$. We have to prove that $\alpha \beta^{-1} \in A_n$.

Now α and β are even permutations.

Also β^{-1} is an even permutation.

(: Inverse of an even permutation is an even permutation)

Hence $\alpha \beta^{-1}$ is an even permutation.

(: Product of two even permutations is an even permutation)

Thus $\alpha \beta^{-1} \in A_n$

Since $\alpha, \beta \in A_n \Rightarrow \alpha \beta^{-1} \in A_n, \ \forall \ \alpha, \beta \in A_n$

Thus A_n is a subgroup of S_n .

Brenx Even - Even.

Let B_n be the set of all odd permutations in S_n .

Obviously $B_n \subseteq S_n$

Let $f,g \in B_n$.

Now f and g are odd permutations.

Also g^{-1} is an odd permutation.

(:: Inverse of an odd permutation is an odd permutation)

But fg^{-1} is not an odd permutation.

(: Product of two odd permutations is an even permutation)

Thus $fg^{-1} \notin B_n$

Since $f,g \in B_n \implies fg^{-1} \in B_n$, $\forall f,g \in B_n$

Thus B_n is not a subgroup of S_n .

Find all the subgroup of S_3

Solution

Here S_3 is set of all permutations defined on a set X with three elements also called symmetric group of degree 3.

Let $X = \{1,2,3\}$. Then all the permutations on X are

$$I=\begin{pmatrix}1&2&3\\1&2&3\end{pmatrix},\qquad \alpha=\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix},\qquad \alpha^2=\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix},$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \alpha^2\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Thus $S_3 = \{ I, \alpha, \alpha^2, \beta, \alpha\beta, \alpha^2\beta \}$

Where
$$\alpha^{3} = \beta^{2} = (\alpha \beta)^{2} = (\alpha^{2} \beta)^{2} = I$$

Trivial subgroups of S_3 are I, S_3

Non-trivial subgroups of S_3 are

Let
$$H_1 = \langle \alpha : \alpha^3 = I \rangle = \{\alpha, \alpha^2, \alpha^3 = I \} = \{\alpha, \alpha^2, I \}$$

$$H_2 = \langle \beta : \beta^2 = I \rangle = \{ \beta, \beta^2 = I \} = \{ \beta, I \}$$

$$H_3 = \langle \alpha\beta : (\alpha\beta)^2 = I \rangle = \{ \alpha\beta, I \}$$

$$H_4=\langle\,\alpha^2\beta:(\alpha^2\beta)^2=I\,\rangle=\{\,\alpha^2\beta,I\,\}$$

Order of a permutation

Let α be a permutation. Then the least positive integer m is called order of α if $\alpha^m = I$, where I is an identity permutation.

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Then $\alpha^2 = \alpha \cdot \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Also
$$\alpha^3 = \alpha \cdot \alpha^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = I$$

Since $\alpha^3 = I \Rightarrow \text{Order of } \alpha = 3$

Note

The order of a transposition is 2.

Let $\tau = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ be a transposition.

Then
$$\tau^2 = \tau \cdot \tau = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} b & a \\ a & b \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$

$$= I$$

Since $\tau_{\bullet}^2 = I \implies \text{Order of } \tau = 2$

Theorem

The order of cyclic permutation of length m is m.

Proof:

Let α be a cyclic permutation of length m.

i.e.
$$\alpha = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_2 & a_3 & a_4 & \dots & a_1 \end{pmatrix}$$

Then $\alpha^2 = \alpha \cdot \alpha = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_2 & a_3 & a_4 & \dots & a_1 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_2 & a_3 & a_4 & \dots & a_1 \end{pmatrix} \begin{pmatrix} a_2 & a_3 & a_4 & \dots & a_1 \\ a_3 & a_4 & a_5 & \dots & a_2 \end{pmatrix}$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_3 & a_4 & a_5 & \dots & a_2 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_3 & a_4 & a_5 & \dots & a_2 \end{pmatrix}$$

Now $\alpha^3 = \alpha^2 \cdot \alpha = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_3 & a_4 & a_5 & \dots & a_2 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_2 & a_3 & a_4 & \dots & a_1 \end{pmatrix}$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_m \\ a_3 & a_4 & a_5 & \dots & a_2 \end{pmatrix} \begin{pmatrix} a_3 & a_4 & a_5 & \dots & a_2 \\ a_4 & a_5 & a_6 & \dots & a_3 \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & \dots & \dots & a_m \\ a_4 & a_5 & a_6 & \dots & \dots & a_3 \end{pmatrix}$$

Similarly $\alpha^4 = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & \dots & a_m \\ a_5 & a_6 & a_7 & \dots & \dots & a_4 \end{pmatrix}$

Also
$$\alpha^m = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & \dots & a_m \\ a_1 & a_2 & a_3 & \dots & \dots & a_m \end{pmatrix}$$

Thus Order of $\alpha = m =$ Length of α

Theorem

The order of a permutation is the least common multiple (L.C.M) of the orders of the disjoint tycles into whose product it is decomposed.

Proof:

Let α be any permutation of degree n.

We know that α can be written as a product of disjoint cycles say

Then
$$\alpha = \alpha_1 \alpha_2 \dots \alpha_k$$

Then $\alpha = \alpha_1 \alpha_2 \dots \alpha_k$

Suppose $m_i = \text{Length of } \alpha_i$ where $i = 1, 2, \dots, k$
 $\Rightarrow m_i = \text{Length of } \alpha_i$ where $i = 1, 2, \dots, k$

(: Length of a cycle = Order of a cycle)

Let L. C. M of
$$m_i = m$$
, $i = 1, 2, ..., k$

Then
$$m = m_i q_i$$
 where $i = 1, 2, \dots, k$, and $q \in Z$

Now from equation (1)
$$\alpha^{m} = \alpha_{1}^{m} \alpha_{2}^{m} \dots \alpha_{k}^{m}$$

$$= \alpha_{1}^{m_{1}q} \alpha_{2}^{m_{2}q_{2}} \dots \alpha_{k}^{m_{k}q_{k}}$$

$$= (\alpha_{1}^{m_{1}})^{q_{1}} (\alpha_{2}^{m_{2}})^{q_{2}} \dots (\alpha_{k}^{m_{k}})^{q_{k}}$$

$$= (I)^{q_{1}} (I)^{q_{2}} \dots (I)^{q_{k}} \therefore m_{i} = O(\alpha_{i})$$

$$= I.I.......I$$

$$= I$$

$$12 = L.C.M of (2,3,4)$$

$$\therefore 12 = 2q, q = 6$$

$$12 = 2q, q = 6$$

$$12 = 4q, q = 3$$

Hence order of $\alpha = m$ $= L. C. M \text{ of } m_1, m_2, \dots, m_k$ $= L. C. M \text{ of } O(\alpha_1), O(\alpha_2), \dots O(\alpha_k)$

Example

Find the order of $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 3 & 4 & 1 & 7 & 9 & 6 & 5 & 8 & 12 & 11 & 10 \end{pmatrix}$

Solution

Here
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 3 & 4 & 1 & 7 & 9 & 6 & 5 & 8 & 12 & 11 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 5 & 7 & 6 & 9 & 8 \\ 7 & 6 & 9 & 8 & 5 \end{pmatrix} \begin{pmatrix} 11 \\ 11 \end{pmatrix} \begin{pmatrix} 10 & 12 \\ 12 & 10 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 7 & 6 & 9 & 8 \\ 7 & 6 & 9 & 8 & 5 \end{pmatrix} \begin{pmatrix} 11 \\ 11 \end{pmatrix} \begin{pmatrix} 10 & 12 \\ 12 & 10 \end{pmatrix}$$

Let
$$\alpha_1 = (1 \ 2 \ 3 \ 4)$$
, $\alpha_2 = (5 \ 7 \ 6 \ 9 \ 8)$, $\alpha_3 = (11)$, $\alpha_4 = (10 \ 12)$

Then lengths of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are 4, 5, 1, 2

 \therefore Orders of $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are 4,5,1,2

Thus order of $\alpha = L.C.M$ of $[O(\alpha_1), O(\alpha_2), O(\alpha_3), O(\alpha_4)]$ = L.C.M of [4.5, 1, 2]

= 20

EXERCISE 2.3

Q. No.1

Multiply the following permutations.

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix}$

(ii)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 4 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 1 & 4 \end{pmatrix}$

(iii)
$$\begin{pmatrix} 2 & 3 & 6 & 7 & 8 & 9 \\ 8 & 6 & 7 & 9 & 2 & 3 \end{pmatrix}$$
 and $\begin{pmatrix} 2 & 3 & 6 & 7 & 8 & 9 \\ 8 & 6 & 7 & 3 & 9 & 2 \end{pmatrix}$

Solution

(i) Here
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 5 & 4 & 1 \\ 1 & 4 & 5 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 5 & 2 & 3 \end{pmatrix}$$

Q. No.2

Find the inverse of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

Solution

Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$

Then
$$\alpha^{-1} = \begin{pmatrix} 3 & 1 & 4 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

Q. No.3

Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 1 & 7 & 2 & 6 \end{pmatrix}$, find the inverse of α .

Solution

Here
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 1 & 7 & 2 & 6 \end{pmatrix}$$

Then
$$\alpha^{-1} = \begin{pmatrix} 3 & 5 & 4 & 1 & 7 & 2 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$

Q. No.4

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
, $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$

Show that
$$f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$
, $f^2 \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$

$$f^3 \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
, Also $f^4 = g^2 = (f \circ g)^2$

Solution

Here
$$f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$f^{2} = f \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

$$f^{3} = f^{2} \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$f^{2} \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

$$f^{3} \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

$$(f \circ g)^{2} = (f \circ g)(f \circ g) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 4 & 3 & 2 \\ 1 & 2 & 3 & 4 \end{pmatrix} = I$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = I$$

$$= I$$

$$= (2)$$

$$g^{2} = g \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix} = I$$

$$= I$$

$$= (2)$$
From (1), (2) and (3) we get

From (1), (2) and (3) we get

$$f^4 = g^2 = (f \circ g)^2$$

Q. No.5

Given the permutations

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}, h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix},$$

Find $f \circ g$, $g \circ f$, $g \circ h$, $h \circ g$, h^2 , g^2 . Also find the orders of f, g and h

Solution

Here
$$f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & 5 & 3 & 1 \\ 5 & 1 & 3 & 2 & 4 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 2 & 4 & 6 \end{pmatrix}$$
And $g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 6 & 5 & 4 & 1 & 2 & 3 \\ 1 & 3 & 5 & 2 & 4 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 2 & 4 & 6 \end{pmatrix}$$
Also $g \circ h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 6 & 5 & 4 & 1 & 2 & 3 \\ 3 & 6 & 2 & 5 & 4 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 6 & 5 & 4 & 1 & 2 & 3 \\ 3 & 6 & 2 & 5 & 4 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 6 & 2 & 5 & 4 & 1 \\ 3 & 6 & 2 & 5 & 4 & 1 \end{pmatrix}$$

Now
$$h \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix} \begin{pmatrix} 5 & 4 & 1 & 2 & 6 & 3 \\ 2 & 1 & 6 & 5 & 3 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 3 & 4 \end{pmatrix}$$

And
$$h^2 = h \circ h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix} \begin{pmatrix} 5 & 4 & 1 & 2 & 6 & 3 \\ 6 & 2 & 5 & 4 & 3 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 5 & 4 & 3 & 1 \end{pmatrix}$$

Also
$$g^2 = g \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 6 & 5 & 4 & 1 & 2 & 3 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix}$$

Now we shall find the orders of f, g & h

Here
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 3 & 1 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 & 4 & 5 & 3 & 6 \\ 2 & 4 & 5 & 3 & 6 & 1 \end{pmatrix}$, This is a cycle of length 6.

$$\therefore$$
 Order of $f = 6$ (: Length of a cycle = Order of cycle)

And
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 1 & 2 & 3 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 6 & 3 & 4 \\ 6 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 5 & 2 \end{pmatrix} = (1 6 3 4)(2 5)$

Let
$$\alpha_1 = (1634)$$
, and $\alpha_2 = (25)$

Then lengths of α_1, α_2 are 4,2

$$\therefore$$
 Orders of α_1, α_2 are 4,2

Thus order of
$$g = L.C.M$$
 of $[O(\alpha_1), O(\alpha_2)]$
= $L.C.M$ of $[4,2]$
= 4

Also
$$h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 2 & 6 & 3 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 5 & 6 & 3 \\ 5 & 6 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} = (1 5 6 3)(2 4)$

Let
$$\beta_1 = (1563)$$
, and $\beta_2 = (24)$

Then lengths of β_1, β_2 are 4, 2

 \therefore Orders of β_1, β_2 are 4, 2

Thus order of
$$h = L.C.M$$
 of $[O(\beta_1), O(\beta_2)]$
= $L.C.M$ of $[4, ?]$
= 4

$$= L.C.M ext{ of } [4,2]$$

= 4

Given the permutation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$, verify that $\alpha^6 = I$

Solution

Here
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 & 5 \\ 4 & 5 & 3 \end{pmatrix} = (1 \ 2)(3 \ 4 \ 5)$

Let $\alpha_1 = (1 \ 2)$, and $\alpha_2 = (3 \ 4 \ 5)$

Then lengths of α_1, α_2 are 2,3

 \therefore Orders of α_1, α_2 are 2,3

Thus order of
$$\alpha = L.C.M$$
 of $[O(\alpha_1), O(\alpha_2)]$
= $L.C.M$ of $[2,3]$
= 6
 $\Rightarrow \alpha^6 = I$ (where I is an identity permutation.)

Q., No.7

Write the multiplication table for the permutations (1), (1234), (1432), (13)(24).

Solution

Let
$$\alpha_{\circ} = (1) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$\alpha_{1} = (1 & 2 & 3 & 4) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$\alpha_{2} = (1 & 4 & 3 & 2) = \begin{pmatrix} 1 & 4 & 3 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

$$\alpha_{3} = (1 & 3)(2 & 4) = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$$

We see that

$$lpha_{\circ}lpha_{\circ}=lpha_{\circ}$$
 $lpha_{\circ}lpha_{1}=lpha_{1}$
 $lpha_{\circ}lpha_{2}=lpha_{2}$
 $lpha_{\circ}lpha_{3}=lpha_{3}$
 $lpha_{1}lpha_{\circ}=lpha_{1}$

				 -
0	α.	α_1	α_2	α_3
α.	α.	α_1	α_2	α_2
α_1	α_1	α_3	α_{\circ}	α_2
α_2	α_2	α.	α_3	α_1
α_3	α_3	α_2	α_1	α.

$$\alpha_{1}\alpha_{0} = \alpha_{1}$$

$$\alpha_{1}\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \alpha_{3}$$

$$\alpha_{1}\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \alpha_{0}$$

$$\alpha_{1}\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 & 1 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \alpha_{2}$$

$$\alpha_{2}\alpha_{0} = \alpha_{2}$$

$$\alpha_{2}\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \alpha_{o}$$

$$\alpha_{2}\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \alpha_{3}$$

$$\alpha_{2}\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 & 3 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \alpha_{1}$$

$$\alpha_{3}\alpha_{o} = \alpha_{3}$$

$$\alpha_{3}\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \alpha_{2}$$

$$\alpha_{3}\alpha_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \alpha_{1}$$

$$\alpha_{3}\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \alpha_{0}$$

$$\alpha_{3}\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = \alpha_{0}$$

Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$, find all the elements of the cyclic group generated by α .

Solution

Here
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

Now $\alpha^2 = \alpha \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 & 5 & 2 & 6 & 1 \\ 5 & 2 & 6 & 4 & 1 & 3 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 & 5 & 2 & 6 & 1 \\ 5 & 2 & 6 & 4 & 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 4 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 4 & 1 & 3 \end{pmatrix} \begin{pmatrix} 5 & 2 & 6 & 4 & 1 & 3 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 6 & 4 & 1 & 2 & 3 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 6 & 4 & 1 & 2 & 3 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 2 & 3 & 5 \end{pmatrix} \begin{pmatrix} 6 & 4 & 1 & 2 & 3 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Clearly $\alpha^4 = I$

Let G be a cyclic group generated by α .

Then $G = \langle \alpha : \alpha^4 = I \rangle$

Available at www.mathcity.org

$$= \{ \alpha, \alpha^2, \alpha^3, I \}$$

Find the following products and express them as a product of cyclic permutations on mutually disjoint sets (124)(13654), (1234)(52341), (14)(235)(35)(45)

Solution

Here

(1 2 4)(1 3 6 5 4) =
$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 6 & 5 & 4 \\ 3 & 6 & 5 & 4 & 1 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 1 & 4 & 5 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix} \begin{pmatrix} 2 & 4 & 3 & 1 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix} \begin{pmatrix} 2 & 4 & 3 & 1 & 5 & 6 \\ 2 & 1 & 6 & 3 & 4 & 5 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 3 & 4 & 5 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 3 & 4 & 5 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 3 & 4 & 5 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix}$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 6 & 2 \\ 2 & 1 & 6 & 5 & 4 & 3 & 4 & 6 \end{pmatrix}$

And $\begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 & 1 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 & 1 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 & 5 & 1 & 2 & 1 \\ 2 & 3 & 4 & 1 & 5 & 1 & 2 & 1 \\ 3 & 3 & 4 & 1 & 5 & 1 & 2 & 1 \\ 4 & 2 & 3 & 4 & 1 & 5 & 1 & 2 \\ 4 & 2 & 3 & 4 & 1 & 5 & 1 & 2 \\ 4 & 2 & 3 & 4 & 1 & 5 & 1 & 2 \\ 4 & 2 & 3 & 4 & 1 & 5 & 1 & 2 \\ 4 & 2 & 3 & 1 & 3 & 1 & 2 & 1 \\ 4 & 2 & 3 & 1 & 3 & 1 & 2 & 1 \\ 4 & 2 & 3 & 1 & 3 & 1 & 2 & 1 \\ 4 & 2 & 3 & 1 & 3 & 1 & 2 & 1 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 & 1$

Express the following permutations as a product of disjoint cycles

- (i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$
- (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$

Solution

Here
$$\binom{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8}{8\ 2\ 6\ 3\ 7\ 4\ 5\ 1} = \binom{1\ 8\ 2\ 3\ 6\ 4\ 5\ 7}{8\ 1\ 2\ 6\ 4\ 3\ 7\ 5}$$

$$= \binom{1\ 8}{8\ 1}\binom{2}{2}\binom{3\ 6\ 4}{6\ 4\ 3}\binom{5\ 7}{7\ 5}$$

$$= (1\ 8)(2)(3\ 6\ 4)(5\ 7)$$
And $\binom{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8}{3\ 6\ 4\ 1\ 8\ 2\ 5\ 7} = \binom{1\ 3\ 4\ 2\ 6\ 5\ 8\ 7}{3\ 4\ 1\ 6\ 2\ 8\ 7\ 5}$

$$= \binom{1\ 3\ 4}{3\ 4\ 1}\binom{2\ 6}{6\ 2}\binom{5\ 8\ 7}{8\ 7\ 5}$$

$$= (1\ 3\ 4)(2\ 6)(5\ 8\ 7)$$

Q. No.11

Express the following permutations as a product of transpositions

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 6 & 5 & 3 & 8 & 9 & 7 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 & 8 \end{pmatrix}$$

Solution

Here
$$\binom{1}{2} \begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 1 & 6 & 5 & 3 & 8 & 9 & 7 \end{pmatrix} = \binom{1}{2} \begin{pmatrix} 2 & 4 & 6 & 3 \\ 2 & 4 & 6 & 3 & 1 \end{pmatrix} \binom{5}{5} \binom{7}{8} \binom{8}{9} \binom{9}{7}$$

$$= (1 & 2 & 4 & 6 & 3)(5)(7 & 8 & 9)$$

$$= (1 & 2)(1 & 4)(1 & 6)(1 & 3)(7 & 8)(7 & 9)$$
And $\binom{1}{2} \begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 & 8 \end{pmatrix} = \binom{1}{2} \begin{pmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \binom{5}{5} \binom{6}{6} \binom{7}{7} \binom{8}{8}$

$$= (1 & 2 & 3 & 4)(5)(6)(7)(8)$$

$$= (1 & 2)(1 & 3)(1 & 4)$$

Q. No.12

- Write (i) all even permutations in S_3
 - (ii) all odd permutations in S_3

Solution

Available at www.mathcity.org We know that S_3 is the set of all permutations defined on a set with 3 elements.

Let
$$X = \{1, 2, 3\}$$

Then all the permutations defined on the set X are

$$I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = (1)(2)(3)$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 \ 2 \ 3) = (1 \ 2)(1 \ 3)$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix} = (1 \ 3 \ 2) = (1 \ 3)(1 \ 2)$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 \ 2)(3) = (1 \ 2)$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} = (1)(2 \ 3) = (2 \ 3)$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = (1 \ 3)(2) = (1 \ 3)$$

We see that in the decomposition of identity permutation *I*, number of transpositions is zero, which is an even number.

Since the permutations l, f_1, f_2 can be written as a product of even number of transpositions therefore, l, f_1, f_2 are even permutations.

Since the permutations f_3 , f_4 , f_5 can be written as a product of odd number of transpositions therefore, f_3 , f_4 , f_5 are odd permutations.

Q. N. 13

Are the permutations

Solution

Since
$$(1\ 2\ 3)(2\ 5\ 6)(4\ 3\ 5\ 1) = (1\ 2)(1\ 3)(2\ 5)(2\ 6)(4\ 3)(4\ 5)(4\ 1)$$

(Odd number of transpositions)

 \therefore (1 2 3)(2 5 6)(4 3 5 1) is an odd permutation.

&
$$(1\ 4\ 7)(3\ 4\ 5)(8\ 7)(8\ 3\ 4\ 5) = (1\ 4)(1\ 7)(3\ 4)(3\ 5)(8\ 7)(8\ 3)(8\ 4)(8\ 5)$$
(Even number of transpositions)

 \therefore (1 4 7)(3 4 5)(8 7)(8 3 4 5) is an even permutation.

Q. No.14

Find the orders of each of the following permutations.

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$

(iii)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$
 (iv) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$

Solution

(i) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} = (1 \ 2)(3 \ 4)$$

Suppose $\alpha_1 = (1 \ 2)$ and $\alpha_2 = (3 \ 4)$

Then lengths of, α_1 and α_2 are 2, 2 respectively.

.. Orders of α_1 and α_2 are 2, 2 respectively. (: Length of cycle = Order of cycle)

Thus order of $\alpha = L.C.M$ of $[O(\alpha_1), O(\alpha_2)]$ = L.C.M of [2,2]

(ii) Let
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 3 \\ 4 & 3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = (1 \ 4 \ 3)(2)$$

Suppose $\beta_1 = (1 \ 4 \ 3)$

Then length of $-1\beta_1$ is 3

Available at www.mathcity.org

 \therefore Order of β_1 is 3

(: Length of cycle = Order of cycle)

. Thus order of β = order of β_1

= 3

(iii) Let
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 5 \\ 4 & 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} = (1.4.5)(2.3)$$

Suppose $\gamma_1 = (1.4.5)$ and $\gamma_2 = (2.3)$

Then lengths of γ_1 and γ_2 are 3,2 respectively.

.. Orders of γ_1 and γ_2 are 3,2 respectively. (:: Length of cycle = Order of cycle)

Thus order of $\gamma = L.C.M$ of $[O(\gamma_1), O(\gamma_2)]$ = L.C.M of [3,2]= 6

(iv) Let
$$\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 & 6 \\ 5 & 6 & 4 \end{pmatrix} = (1 \ 2 \ 3)(4 \ 5 \ 6)$$
Suppose $\delta_1 = (1 \ 2 \ 3)$ and $\delta_2 = (4 \ 5 \ 6)$

Then lengths of δ_1 and δ_2 are 3,3 respectively.

 \therefore Orders of δ_1 and δ_2 are 3,3 respectively.

Thus order of $\delta = L.C.M$ of $[O(\delta_1), O(\delta_2)]$

$$= L.C.M \text{ of } [3,3]$$

= 3

Determine whether the given permutations are even or odd.

(i)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4 \end{pmatrix}$ (iv) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix}$

Solution

(i) Let
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix} = (1 \ 2)(3 \ 4)$$

(Even number of transpositions)

Since α can be written as a product of even number of transpositions, Therefore α is an even permutation.

(ii) Let
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} = (1 5)(2 3)(4)$$

(Even number of transpositions)

Since β can be written as a product of even number of transpositions, Therefore β is an even permutation.

(iii) Let
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 5 & 6 & 4 \\ 3 & 2 & 5 & 6 & 4 & 1 \end{pmatrix}$$

= $(1 & 3 & 2 & 5 & 6 & 4)$
= $(1 & 3)(1 & 2)(1 & 5)(1 & 6)(1 & 4)$
(Odd number of transpositions)

Since γ can be written as a product of even number of transpositions, Therefore γ is an odd permutation.

(iv) Let
$$\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 2 & 6 & 7 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 6 & 7 & 3 \end{pmatrix}$$

= $(1 & 4 & 2 & 3)(5 & 6 & 7)$
= $(1 & 4)(1 & 2)(1 & 3)(5 & 6)(5 & 7)$
(Odd number of transpositions)

Since δ can be written as a product of even number of transpositions, Therefore δ is an odd permutation.

