

Chapter No. 2 (Mathematical Methods)

GROUPS

Bahzad Ahmad Khan Lecturer (Mathematics) Govt College Kot Sultur District Layyah.

Binary Helation Spration

A binary relation on a non-empty set A is a function $*: A \times A \rightarrow A$. So, for each (a,b) in $A \times A$, we associate an element *(a,b) of A. We shall denote *(a,b) by a*b. If A is a non-empty set with a binary operation "*" then A is said to be closed under "*".

Group

A pair (G,*), where G is a non-empty set and "*" is a binary operation on G is called a *group* if the following conditions, called axioms of a group, are satisfied in G.

- (I) The binary operation " * " is associative. That is $(a*b)*c = a*(b*c); \forall a,b,c \in G$.
- (II) There is an element e in G such that $a * e = e * a = a : \forall a \in G$.
- (III) For each $a \in G$, there is an $a' \in G$ such that a * a' = a' * a = e; a' is called the inverse of a.

<u>Examples</u>

The pairs
$$(Z, +)$$
, $(Q, +)$, $(R, +)$, $(C, +)$ and $(Q - \{0\}, \bullet)$, $(R - \{0\}, \bullet)$, $(C - \{0\}, \bullet)$ are groups.

Abelian Group

A group (G,*) is called an abelian group if a*b=b*a; $\forall a,b \in G$.

If there is a pair of elements $a, b \in G$ such that $a * b \neq b * a$, then G is called non-abelian group.

Note: (i) If (G, +) is a group then $a^{-1} = -a$

(ii) If (6.3) is a group then $a^{-1} = \frac{1}{a}$

(iii) In practice, the product a.b of two elements in a group G under multiplication is written simply as ab. Also, we shall denote a group (G, \bullet) by G only.

Idempotent Element

An element x of a group G is said to be idempotent if $x^2 = x$

Theorem

The only idempotent element in a group is the identity element.

Proof:

Let $x \in G$ be an idempotent element.

Then
$$x^2 = x$$

$$\Rightarrow x^{-1}.x^2 = x^{-1}.x$$

$$\Rightarrow x^{-1}.x.x = e$$

$$\Rightarrow e.x = e$$

$$\Rightarrow$$
 $x = e$ Hence the proof.

Cayley's Table

To verify that a finite set is a group we list the products in the form of a table called Cayley's Multiplication Table. This is illustrated by the following examples.

Example

Let $G = \{1, \omega, \omega^2\}$, where ω is the complex cube root of unity. Show that (G, \bullet) is a group.

Solution

" \bullet " is closed over G. (I)

 $a \bullet b \in G, \forall a, b \in G.$

(It is clear from the table.)

•	1	ω	ω^2
1	1	ω	ω^2
ψ	ω	ω^2	1
ω^2	ω^2	1	ω

Associative B.O (II)

"•" is associative over G.

(1.01) w= 1.(w.w2)

i.e., $(a \cdot b) \cdot c = a \cdot (b \cdot c)$; $\forall a, b, c \in G$.

(: Associative law w.r.t. " • " holds in the set of complex numbers.)

10.00 = 1.1

(III) "1" is the identity element in G w.r.t. " • ".

(It is clear from the table.)

Identity 1=e

(IV) $(1)^{-1} = 1$;

 $(\omega)^{-1}=\omega^2;$

(It is clear from the table.)

e.a=a Example

Hence (G, \bullet) is a group.

1

1

i

Let $G = \{1, -1, i, -i\}$ of all the fourth roots of unity. Show that (G, \bullet) is a group.

Solution

Chred

Associative 60 (1)

"•" is closed over G.

 $a \cdot b \in G, \forall a, b \in G.$

 $((-1) \cdot i) = i \cdot (-1) \cdot i$ (It is clear from the table.)

 $| -c| = -1 \cdot c$ $| -c| = -1 \cdot c$ i.e. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

i.e.. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$; \forall

I by the derivative law w.r.t. "•" holds in the set of complex numbers.) $e \cdot a = a \cdot e = a$ (III) "1" is the identity element in G w.r.t. "•".

(It is clear from the table.)

Inverse inverse q.151(IV) $(1)^{-1}=1$, $(-1)^{-1}=-1$, $(i)^{-1}=-i$, $(-i)^{-1}=i$

Hence (G.•) is a group.

Example

Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$. Show that G is a group under the multiplication of symbols defined by

$$ij = k$$
 $ji = -k$ $i^2 = -1$
 $jk = i$ $kj = -i$ $j^2 = -1$
 $ki = j$ $ik = -j$ $k^2 = -1$

Available at www.mathcity.org

i

1

-1

(I) "Multiplication" is closed over G. $: ab \in G$, $\forall a, b \in G$

(II) "Multiplication" is associative over G. \therefore (ab)c = a(bc);

•	Τ		ı.		_ J	J	7.	
1	1	-1	i	-i	j	-ј	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	<u></u> -ј	j	i	-i	1	-1

Take $i, j, k \in G$

 $\forall a, b, c \in G$.

$$(ij)k = (k)k$$
 $i(jk) = i(i)$
= k^2 = i^2
= -1 = -1

Thus (ij)k = i(jk)

Similarly by taking any three elements of G we can prove the associative property.

- (III) "1" is the identity element in G w.r.t. "Multiplication" (It is clear from the table.)
- (IV) $(1)^{-1} = 1$, $(-1)^{-1} = -1$, $(i)^{-1} = -i$, $(-i)^{-1} = i$ $(j)^{-1} = -j$, $(-j)^{-1} = j$, $(k)^{-1} = -k$, $(-k)^{-1} = k$ (It is clear from the table.)

Thus G is group under the multiplication of symbols defined above.

Example

Let G be the set of all 2×2 non-singular real matrices. Prove that G is group under the usual multiplication of matrices.

Solution

Let $A, B \in G$ (i.e. A and B non-singular matrices of order 2) Then AB is also a non singular matrix of order 2. i.e. $AB \in G$.

Thus multiplication is closed over G.

Associative (II) Let $A, B, C \in G$

Then (AB)C = A(BC); $\forall A, B, C \in G$.

(: Associative law w.r.t. "multiplication" holds in matrices)

Identity

(III) Let "I" be the identity matrix of order 2. i.e. $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Since $\det(I) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 - 0 = 1 \neq 0$

So, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is a non singular matrix of order 2. i.e. $I \in G$.

Let $A \in G$ Then AI = IA = A

Hence "I" is an identity element of G w.r.t multiplication.

(IV) Let $A \in G$

i.e. A is a non-singular matrix of order 2. $\therefore A^{-1}$ exists.

Since $(A^{-1})^{-1} = A$ i.e. $(A^{-1})^{-1}$ exists.

Hence A^{-1} is a non-singular matrix of order 2. i.e. $A^{-1} \in G$ Thus G is a group under multiplication of matrices.

Note

The set G of all non-singular real matrices is non-abelian group under multiplication of matrices. $AB \neq BA$; $\forall A, B \in G$

Example

Let $S = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}}$ be the set of residue classes modulo 5. Show that S is a group under the addition modulo 5.

Solution

Let $\bar{a}, \bar{b} \in S$ then $\bar{a} + \bar{b} = \bar{r}$, where \bar{r} is the remainder obtained after dafter the division of $\bar{a} + \bar{b}$ by 5 when $\bar{a} + \bar{b}$ equals or exceed 5.

e.g $\bar{3} + \bar{1} = \bar{4}$

e.g $\overline{3} + 1 = 4$ & $\overline{3} + \overline{4} = \overline{2}$ (I) Addition modulo 5 is closed over S

i.e. $\bar{a} + \bar{b} \in S$; $\forall \bar{a}, \bar{b} \in S$ (It is clear from the table.)

(II) Addition modulo 5 is associative

+	Ō٠	ī	2	3	4
Ō	ā	ī	2	3	4
1	ī	2	3	4	Ō
2	2	3	4	Ō	1
3	3	4	Ō	ī	Ž
4	4	Ō	Ī	2	3
	2 3	3 4		Ō 1	1 2

Identify are = e over s.

whose 0 is identy 0+0=0,0+2=2

i.e. $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$; $\forall a, b, c \in S$ Let $\overline{2}$, $\overline{3}$, $\overline{4} \in S$

 $(\bar{2} + \bar{3}) + \bar{4} = \bar{0} + \bar{4}$

 $\bar{2} + (\bar{3} + \bar{4}) = \bar{2} + \bar{2}$

0+1=1,0+3=3 0+4=4

Similarly by taking any three elements of S we can prove the associative property.

grave ab=be(a) $\bar{0}$ is an identity element of S.

Hence moverse of element (It is clear from the table.)

exist for each obnest!

 $(\bar{0})^{-1} = \bar{0}, \quad (\bar{1})^{-1} = \bar{4}, \quad (\bar{2})^{-1} = \bar{3}, \quad (\bar{3})^{-1} = \bar{2}, \quad (\bar{4})^{-1} = \bar{1}$

Set Sunder addition (It is clear from the table.)

Thus S is a group under the adversarial S

Thus S is a group under the addition modulo 5.

Let $G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ be a set of non-zero residue classes modulation Solution Show that G is a group under the multiplication modulo 5. Solution

Let $\overline{a}, \overline{b} \in G$ then $\overline{a} \circ \overline{b} = \overline{a}$ Let $G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ be a set of non-zero residue classes modulo 5.

remainder obtained after the division of $\bar{a} \cdot \bar{b}$ by 5 when $\bar{a} \cdot \bar{b}$ equals or exceed 5.

e.g.
$$\overline{3} \cdot \overline{1} = \overline{3}$$

& $\overline{3} \cdot \overline{4} = \overline{2}$

.•.	1	2	.3	4
.1	1.	Ž	3	4
2 3	1. 2	4	1	3
3	3	1	4	2
4	4	3	<u>2</u> .	Ī.
4	4	3	۷.	1.

- Multiplication modulo 5 is closed over G (I) i.e. $\bar{a} \cdot \bar{b} \in G$; $\forall a, b \in G$ (It is clear from the table.)
- (II) Multiplication modulo 5 is associative over G.

i.e.
$$(\bar{a} \cdot \bar{b}) \cdot \bar{c} = \bar{a} \cdot (\bar{b} \cdot \bar{c})$$
; $\forall a, b, c \in G$

Let
$$\overline{2}$$
, $\overline{3}$, $\overline{4} \in G$

$$(\overline{2} \bullet \overline{3}) \bullet \overline{4} = \overline{1} \bullet \overline{4}$$
$$= \overline{4}$$

$$\overline{2} \cdot (\overline{3} \cdot \overline{4}) = \overline{2} \cdot \overline{2}$$

Similarly by taking any three elements of G we can prove the associative property.

(III) $\overline{1}$ is an identity element of G. $\therefore \overline{1} \bullet \overline{a} = \overline{a} \bullet \overline{1} = \overline{a}; \forall \overline{a} \in G$

(It is clear from the table.)

(IV) $(\overline{1})^{-1} = \overline{1}$, $(\overline{2})^{-1} = \overline{3}$, $(\overline{3})^{-1} = \overline{2}$, $(\overline{4})^{-1} = \overline{4}$ (It is clear from the table.)

Thus G is a group under the addition modulo 5. multiplication

(The Cancellation Laws) Theorem

For any three elements a, b, c in G

(i)
$$ab = ac \Rightarrow b = c$$
 (Left cancellation Law)

(ii)
$$ba = ca \Rightarrow b = c$$
 (Right cancellation Law)

Proof:

For
$$a, b, c$$
 in G

$$ab = ac$$

$$a^{-1}(ab) = a^{-1}(ac)$$

$$\Rightarrow (a^{-1}a)b = (a^{-1}a)c \text{ (By associative law)}$$

$$\Rightarrow$$
 $eb = ec$

$$\Rightarrow b = c$$

Thus the left cancellation law is satisfied.

Similarly we can prove the right cancellation law.

(Solutions of Linear Equations) Theorem

 \nearrow For any two elements a, b in a group G, the equations

$$ax = b$$
 and $xa = b$

have unique solutions.

Proof: G be a group Somverse of each element of G exist in G For a, b in a group G, let of the mierse.

$$ax = b$$

$$\Rightarrow \quad a^{-1}(ax) = a^{-1}b$$

$$\Rightarrow (a^{-1}a)x = a^{-1}b$$
 (By associative law)

$$\Rightarrow ex = a^{-1}b$$

$$\Rightarrow x = a^{-1}b \text{ is the solution of } ax = b$$

To see that the solution is unique, we suppose that x_1 , x_2 in Gare two solutions of ax = b

Then $ax_1 = b$ and $ax_2 = b$ Thus $ax_1 = ax_2$ $\Rightarrow x_1 = x_2$ (By left cancellation law)

Hence the solution is unique.

The case for the solution of xa = b is similar.

Theorem

For a, b in a group G, $(ab)^{-1} = b^{-1}a^{-1}$

Proof:

Since
$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

And $(b^{-1}a^{-1})(ab) = b^{-1}(aa^{-1})b = b^{-1}eb = b^{-1}b = e$
i.e. $(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$
 \Rightarrow Inverse of $(ab) = b^{-1}a^{-1}$
 $\Rightarrow (ab)^{-1} = b^{-1}a^{-1}$ as required.

Note

Also for
$$a_1, a_2, a_3, ..., a_k$$
 in G

$$(a_1 a_2 a_3 ... a_k)^{-1} = a_k^{-1} a_{k-1}^{-1} ... a_2^{-1} a_1^{-1}$$

Order of a Group

The number of elements in a group G is called the *order of group* and is denoted by |G| or O(G).

A group G is said to be finite if G consists of only a finite number of elements. Otherwise G is said to be an infinite group.

Order of an element of a Group

Let a be an element of a group G. A least positive integer n is said to be the order of a if $a^n = e$. The order of an element $a \in G$ is denoted by |a| or O(a).

Theorem P

Let G be a group. Let $a \in G$ have order n. Then, for any integer k,

 $a^k = e$ if and only if k = qn, where q is an integer.

oof: Prove _____suppose

Let G be any group and $a \in G$ such that O(a) = n

We have to prove that $a^k = e, k \in Z \Leftrightarrow k = qn$, where q is an integer. = K = Qn + YSuppose $a^k = e$

Since O(a) = n i.e. n is the smallest positive integer such that $a^n = e$ $\therefore k > n$ Thus by Euclids Theorem there exists unique integers q, r such that $k = qn + n \le r < n$

Now
$$a^k = a^{nq+r}$$

 $e = a^{nq} \cdot a^r$ $(\because a^k = e)$
 $= (a^n)^q \cdot a^r$
 $= (e)^q \cdot a^r$ $(\because a^n = e)$
 $= e \cdot a^r$
 $= a^r$

Thus $a^r = e$ where $0 \le r < n$. which is contradiction unless r = 0

Now
$$k = qn + r$$

 $\Rightarrow k = qn$ Hence the proof.

Conversely suppose that k = qn

Now
$$a^k = a^{qn}$$

 $= (a^n)^q$
 $= e^q$
 $= e$ As required.

Example

Show that the set $S = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under multiplication modulo 8. Find the orders of each element of S.

Solution

Let \overline{a} , $\overline{b} \in S$ then $\overline{a} \cdot \overline{b} = \overline{r}$, where \overline{r} is the remainder obtained after the division of $\bar{a} \cdot \bar{b}$ by 8 when $\bar{a} \cdot \bar{b}$ equals or exceed 8.

e.g.
$$\overline{3} \cdot \overline{1} = \overline{3}$$

& $\overline{3} \cdot \overline{5} = \overline{7}$

Multiplication modulo $\hat{\sigma}$ is closed over S.

i.e. $\bar{a} \cdot \bar{b} \in S$; $\forall a, b \in S$

(It is clear from the table.)

(I) Multiplication modulo 8 is associative over S. i.e. $(\bar{a} \cdot \bar{b}) \cdot \bar{c} = \bar{a} \cdot (\bar{b} \cdot \bar{c})$; $\forall a, b, c \in S$

Let
$$\overline{1}, \overline{3}, \overline{5} \in S$$

 $(\overline{1} \cdot \overline{3}) \cdot \overline{5} = \overline{3} \cdot \overline{5}$

•
$$\overline{5}$$
 $\overline{1} \cdot (\overline{3} \cdot \overline{5}) = \overline{7} \cdot \overline{7}$ $= \overline{7}$

•	Ī	3	5	7
1	1	3	5	7
3	3	1	7.	5
5	5	7	<u>ī</u> .	3
7	7	5	3	1

 $\frac{3}{3}$ $\frac{5}{5}$ $\frac{7}{7}$ $\frac{3}{3}$ $\frac{5}{5}$ $\frac{7}{7}$ $\frac{7}{7}$ $\frac{7}{5}$ $\frac{7}{7}$ $\frac{7}{7}$ $\frac{7}{5}$ $\frac{7}{7}$ $\frac{7}{7}$ $\frac{7}{5}$ $\frac{7}{7}$ $\frac{7}$

Inverse For each element

of s there exist mease element

as 1x1=1

Similarly by taking any three elements of S we can prove the associative property.

(II) $\overline{1}$ is an identity element of S.

$$\because \overline{1} \bullet \overline{a} = \overline{a} \bullet \overline{1} = \overline{a} ; \forall \ \overline{a} \in S$$

(It is clear from the table.)

(III)
$$(\overline{1})^{-1} = \overline{1}$$
, $(\overline{3})^{-1} = \overline{3}$, $(\overline{5})^{-1} = \overline{5}$, $(\overline{7})^{-1} = \overline{7}$

(It is clear from the table.)

Thus S is a group under the addition modulo 8.

From the table it is clear that

$$\overline{3} \cdot \overline{3} = \overline{1} \implies (\overline{3})^2 = \overline{1} \implies O(\overline{3}) = 2$$
&
$$\overline{5} \cdot \overline{5} = \overline{1} \implies (\overline{5})^2 = \overline{1} \implies O(\overline{5}) = 2$$
Also
$$\overline{7} \cdot \overline{7} = \overline{1} \implies (\overline{7})^2 = \overline{1} \implies O(\overline{7}) = 2$$
But
$$O(\overline{1}) = 1$$

Example

Let G be a group, and $a, b \in G$. Show that

- The orders of a and a^{-1} are equal. Show that $o(a) = o(a^{-1})$
 - (ii) The orders of ab and ba are equal.
 - (iii) The orders of a and bab^{-1} are equal.

= e

But $O(bab^{-1}) = n$

Solution

```
(i) Let O(a) = m and O(a^{-1}) = n
    We shall prove that m = n
              O(a) = m
    Since
                a^m = e
          a^{-m}. a^m = a^{-m}e
                 e=(a^{-1})^m
       i.e. (a^{-1})^m = e
                             \therefore n|m \dots (1)
       But O(a^{-1}) = n
    [By the theorem if O(a) = m, and a^n = e then m|n]
     Since O(a^{-1}) = n
             (a^{-1})^n = e
     ⇒
                 a^{-n} = e
     ⇒
             a^{-n}. a^n = e. a^n
     \Rightarrow
                   e = a^n
                 a^n = e
          i.e.
          But O(a) = m \therefore m|n ..... (2)
     From (1) and (2) we get m = n i.e. O(a) = O(a^{-1})
 (ii) Let O(ab) = m
           (ab)^m = e
     ⇒
           ab.ab.ab...ab...ab (m-times)= e
     ⇒
           b. ab. ab ... ... ab = a^{-1}. e
           ba.ba.ba .....b = a^{-1}
           ba.ba.ba......ba = a^{-1}a
     \Rightarrow
           ba.ba.ba......ba (m-times)= e
           (ba)^m = e
     \Rightarrow
           O(ba) = m
      ⇒
                                            O(bab^{-1}) = n
          Let O(a) = m
                              and
  (iii)
                                            (bab^{-1})^n = e
           i.e. (a)^m = e
                                &
        (bab^{-1})^m = (bab^{-1})(bab^{-1})(bab^{-1})\dots\dots(bab^{-1}) (m-times)
                    = ba(b^{-1}b)a(b^{-1}b)a \dots \dots ab^{-1}
                                                           an = a.a. a.a... mtie=e
                    = baeaea ... ... ab^{-1}
                                                               = (a) (D. a. e. a. ea (mtie)
                    = baaa ... ... ab^{-1}
                                                              = a(5'b)a(5b)a(5b)...a(b.b) mt...
                     =ba^mb^{-1}
                                                              -(66) (bab') (bab') - - (166)
                     = beb^{-1}
                     =bb^{-1}
```

 $\therefore n|m \dots (1)$

Since
$$(bab^{-1})^n = e$$

 $\Rightarrow (bab^{-1})(bab^{-1})(bab^{-1}) \dots \dots (bab^{-1})$ $(n\text{-times}) = e$
 $\Rightarrow ba(b^{-1}b)a(b^{-1}b)a \dots \dots ab^{-1} = e$
 $\Rightarrow baeaea \dots \dots ab^{-1} = e$
 $\Rightarrow baaa \dots \dots ab^{-1} = e$
 $\Rightarrow ba^nb^{-1} = e$
 $\Rightarrow (ba^nb^{-1})b = eb$
 $\Rightarrow ba^n(b^{-1}b) = b$
 $\Rightarrow ba^ne = b$
 $\Rightarrow b^{-1}(ba^n) = b^{-1}b$
 $\Rightarrow (b^{-1}b)a^n = e$
 $\Rightarrow ea^n = e$
But $O(a) = m \therefore m|n \dots (2)$
From (1) and (2) we get $m = n$ i.e. $O(a) = O(bab^{-1})$

Example

In a group of even order, prove that there is at least one element of order 2.

Solution

Let G be a group of even order. Then non-identity elements in G are odd in number. Also the inverse of each element of G belongs to G and that $e^{-1}=e$

There occur pairs each consisting of some non-identity element x and x^{-1} in G such that $x^{-1} \neq x$, as there are odd number of non-identity elements in G, after pairing off such non-identity elements for which $x^{-1} \neq x$, we must have at least one element $a \neq a$ such that

$$a = a^{-1}$$

 $\Rightarrow aa = aa^{-1}$
 $\Rightarrow a^2 = e$
 $\Rightarrow 0(a) = 2$ As required.

Example

Let G be a group and x be an element of odd order in G. Then there exist an element y in G such that $y^2 = x$

Solution

For some non-negative integer m, let for $x \in G$, O(x) = 2m + 1Then $x^{2m+1} = e$ Clearly $x, x^2, x^m, x^{m+1}, \dots x^{2m} \in G$ Let $y = x^{m+1}$ Then $y^2 = x^{2m+2}$ $= x^{2m+1}.x$ = e.x ($x^{2m+1} = e$) = x

EXERCISE 2.1

Q. No.1

Which of the following sets are groups and why?

(i) The set of all positive rational numbers under multiplication. Solution

Let Q^+ be the set of all positive rational numbers.

- (I) Since a b ∈ Q⁺, ∀ a, b ∈ Q⁺
 (∵ product of two positive rational numbers is a rational number.)
 ∴ " " is closed over Q⁺
- (II) Since $(a \cdot b) \cdot c = a \cdot (b \cdot c)$; $\forall a, b, c \in \mathbb{Q}^+$ (: Associative law w.r.t. " • " holds in the set of rational numbers.) : " • " is associative over \mathbb{Q}^+ .
- (III) "1" is the identity element in \mathbf{Q}^+ w.r.t. " \bullet ". \therefore $1 \cdot a = a \cdot 1 = a, \forall a \in \mathbf{Q}^+$
- (IV) If $a \in \mathbb{Q}^+$, then $\frac{1}{a} \in \mathbb{Q}^+$ Further $a \cdot \frac{1}{a} = 1 \implies a^{-1} = \frac{1}{a} \in \mathbb{Q}^+$ Hence (\mathbb{Q}^+, \bullet) is a group.
- (ii) The set of all complex numbers z such that |z| = 1, under multiplication.

Solution

Let C be the set of all complex numbers z such that |z| = 1

- (I) If $z_1, z_2 \in \mathcal{C}$ then $|z_1| = 1$ and $|z_2| = 1$ Now $|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1.1 = 1$ $\therefore z_1 \cdot z_2 \in \mathcal{C}$ Hence " \cdot " is closed over \mathcal{C}
- (II) Let $z_1, z_2, z_3 \in C'$ Then $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$ (: Associative law w.r.t. " • " holds in the set of complex numbers.) : " • " is associative over C'
- (III) Since 1 = 1 + 0i and $|1| = |1 + 0i| = \sqrt{1^2 + 0^2} = 1$ Thus $1 \in C'$ further $1 \cdot z = z \cdot 1 = z$, $\forall z \in C'$ Hence 1 is the identity element of C'
- (IV) Let $z \in C'$ then |z| = 1Since z is a complex number, $\therefore \frac{1}{z}$ is also a complex number. And $\left|\frac{1}{z}\right| = \frac{|1|}{|z|} = \frac{1}{1} = 1$ $\therefore \frac{1}{z} \in C'$ Further $z \cdot \frac{1}{z} = 1 \Rightarrow z^{-1} = \frac{1}{z} \in C'$ Hence (C', \bullet) is a group.
- (iii) The set Z of integers under binary operation " \circ " defined by $a \circ b = a b \ \forall a, b \in Z$

Solution

 (Z, \circ) is not a group.

∵ "o" is not associative over Z

For example,
$$2,3,4 \in \mathbb{Z}$$

 $(2 \circ 3) \circ 4 = (2 - 3) - 4$
 $= -1 - 4$
 $= -5$
 $2 \circ (3 \circ 4) = 2 - (3 - 4)$
 $= 2 + 1$
 $= 3$

Thus $(2 \circ 3) \circ 4 \neq 2 \circ (3 \circ 4)$

(iv) The set Q' of all irrational numbers under multiplication.

Solution

 (Q', \bullet) is not a group.

∵ "•" is not closed over Q'

For example $\sqrt{2} \in \mathbf{Q}'$ But $\sqrt{2} \cdot \sqrt{2} = 2 \notin \mathbf{Q}'$

. No.2

Let G be a group such that $(ab)^n = a^n b^n$ for three consecutive natural numbers n and all a, b in G. Show that G is abelian.

Solution Let $a, b \in G$

Let n, n + 1, n + 2 be three consecutive integers

Such that
$$(ab)^n = a^n b^n$$
(1)
 $(ab)^{n+1} = a^{n+1} b^{n+1}$ (2)
 $(ab)^{n+2} = a^{n+2} b^{n+2}$ (3)

We are to show that G is abelian. i.e. ab = ba $\infty = ac$

ba = ab

From (2)
$$(ab)^n(ab) = a^n a b^n b$$

 $\Rightarrow a^n b^n ab = a^n a b^n b$ [By (1)]
 $\Rightarrow b^n a = a b^n \dots$ (4) [By left and right cancellation laws]
From (3) $(ab)^n(ab)^2 = a^n a^2 b^n b^2$
 $\Rightarrow a^n b^n abab = a^n a^2 b^n b^2$ [By (1)]
 $\Rightarrow b^n abab = a^2 b^n b^2$ [By left cancellation law]
 $\Rightarrow ab^n bab = aab^n bb$ [By (4)]
 $\Rightarrow b^n ba = b^n ab$ [By left and right cancellation laws]

Hence G is an abelian group.

Q. No. 3

Show that the set $\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ under multiplication modulo 9 is a group.

Solution Let $S = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$

Let \overline{a} , $\overline{b} \in S$ then $\overline{a} \cdot \overline{b} = \overline{r}$, where \overline{r} is the remainder obtained after the division of $\overline{a} \cdot \overline{b}$ by 9 when $\overline{a} \cdot \overline{b}$ equals or exceed 9.

e.g.
$$\overline{2} \cdot \overline{4} = \overline{8}$$
 & $\overline{5} \cdot \overline{7} = \overline{8}$

(I) Multiplication modulo 9 is closed over S. i.e. $\bar{a} \cdot \bar{b} \in S$; $\forall a, b \in S$ (It is clear from the table.)

•	1	2	4	5.	7.	8.
1	1	2	4	5	7	8
2 4	2	4	8	1	5	7.
4.	4	8	7	2.	1	5 4
5	5		2	7	8	4
7.	7	<u>1</u> <u>5</u>	<u>1</u> 5	8	4	2
8.	8	7	5	4	2	Ī

(II) Multiplication modulo 9 is associative over S.

$$(\overline{4} \bullet \overline{5}) \bullet \overline{7} = \overline{2} \bullet \overline{7}$$
$$= \overline{5}$$

Similarly by taking any three elements of S we can prove the associative property.

- (III) $\bar{1}$ is an identity element of *S*. $\vec{a} \cdot \vec{a} = \vec{a} \cdot \vec{1} = \vec{a} ; \forall \vec{a} \in S$ (It is clear from the table.)
- (IV) $(\bar{1})^{-1} = \bar{1}$, $(\bar{2})^{-1} = \bar{5}$, $(\bar{4})^{-1} = \bar{7}$, $(\bar{5})^{-1} = \bar{2}$, $(\bar{7})^{-1} = \bar{4}$, $(\bar{8})^{-1} = \bar{8}$ (It is clear from the table.)

muliplication Thus *S* is a group under the addition modulo 9.

Q. No. 4

Is (Z, \circ) a group? Where \circ is defined by $a \circ b = 0$, $\forall a, b \in G$ Solution

 (Z,\circ) is not a group, because (Z,\circ) has no identity element. If possible then suppose that e is the identity of (Z, \circ) .

$$\therefore \quad a \circ e = a \ \forall \ a \in Z$$

But
$$a \circ e = 0$$

Thus a = 0, $\forall a \in \mathbb{Z}$. This is wrong.

Hence (Z, \circ) is not a group.

Q. No. 5

Show that if a group G is such that x. x = e, for all $x \in G$, where e is the identity element of G, then G is an abelian group.

Solution

Since
$$x. x = e$$
, $\forall x \in G$
 $\Rightarrow (x.x). x^{-1} = e. x^{-1}$

$$\Rightarrow \quad \chi.\left(x.\,x^{-1}\right) = x^{-1}$$

$$\Rightarrow \qquad x. e = x^{-1}$$

$$\Rightarrow \qquad \qquad x = x^{-1} \quad \forall \ x \in G \ \dots \dots \ (1)$$

Let $a, b \in G$: $ab \in G$

Using (1) on $a, b, ab \in G$ we get

$$a = a^{-1}$$
 (1)

$$b = b^{-1}$$
(2)

$$ab = (ab)^{-1} \dots (3)$$

Available at www.mathcity.org

We Know that $(ab)^{-1} = b^{-1}a^{-1}$

$$\Rightarrow$$
 $ab = ba$ [By (1), (2), (3)]

Hence G is an abelian group.

If a group G has three elements, show that it is abelian.

Solution

Let $G = \{e, a, b\}$ be a group with identity element "e".

Since
$$a, b \in G :: ab \in G$$

4 Then ab = a or ab = b or ab = e

Now $ab \neq a$: $b \neq e$ and $ab \neq b$: $a \neq e$

$$ab = e \qquad \Rightarrow \qquad a = b^{-1} \qquad \text{or} \qquad b = a^{-1}$$

 $ab = aa^{-1} = e = a^{-1}a = ba$

ab = ba \therefore G is an abelian group.

No. 7

If every element of a group G is its own inverse, show that G is \star abelian.

Solution

It is given that $x^{-1} = x \quad \forall x \in G \dots (1)$

Let $a, b \in G : ab \in G$

Using (1) on $a, b, ab \in G$

We get $a^{-1} = a$ (2)

$$b^{-1} = b$$
 (3)

$$(ab)^{-1} = ab \dots (4)$$

 $(ab)^{-1} = b^{-1}a^{-1}$ We know that

ab = ba

Available at www.mathcity.org

Hence G is an abelian group.

O. No. 8

Prove that if every non-identity element of group G is of order 2, For all non-identity elevent xeG=x=e

then G is abelian.

Solution

For all non identity elements $x \in G \implies x^2 = e \dots (1)$ For all $a_3 b \in G$ Let $a(\neq e), b(\neq e) \in G \Rightarrow ab, ba \in G$ [By closure property in G] $a = e \Rightarrow a = a = e$

Thus
$$a^2 = e$$
, $b^2 = e$, $(ab)^2 = e$, etc. [By (1)]

 $(ab)^2 = e$ Since

abababi = 1

ab. ab = e \Rightarrow (By associative law) a(ba)b = e

aa(ba)b = ae (By pre-multiplication with a) \Rightarrow

G is glo so for all abe G

 $a^2(ba)b=a$

 $a^2 = e$ e(ba)b = a(ba)bb = ab

(By post-multiplication with b)

So (ab) = e

 $(ba) b^2 = ab$

 $b^2 = e$ (ba) e = ab

ba = ab

Thus G is an abelian group.

Answer true or false. Justify your answer.

(i) A group can have more than one identity element.

Answer

<u>False</u> The identity element in a group is unique.

(ii) The null set can be considered a group.

Answer

通過學過過過過過過過過過

<u>False</u> The identity element must belong to the set but there is no element belonging to null set.

(iii) There may e groups in which cancellation law fails.

Answer

<u>False</u> On contrary if there exist a group in which cancellation law fails then existence of inverses and identity play no role. Hence there does not exist a group in which cancellation law fails.

(iv) Every set of numbers which is group under addition is also a group under multiplication and vice versa.

Answer

<u>False</u> The inverse of additive identity element "0" in the groups of real numbers or complex numbers under addition does not exist under multiplication.

 $R - \{0\}$ and $C - \{0\}$ are groups under multiplication but they are not groups under addition since additive identity element "0" does not exist in each case.

(v) The set R of all real numbers is a group w.r.t subtraction.

Answer

<u>False</u> The associative law with respect to subtraction does not hold in R.

(vi) The set of all nea-zero integers is a group w.r.t division.

Answer

False The inverses of all non-zero integers, except 11 does not exist. Associative law wert division does not hold in Z

(vii)To each element of a group, there does not correspond an inverse element.

Answer

<u>False</u> The inverse of each element must exist and is to be unique.

(viii)To each element of a group, there corresponds only one inverse element.

<u>True</u> The inverse of each element of a group is unique.

(ix) To each element of a group, there corresponds more then one inverse element.

Answer

<u>False</u> The inverse of each element of a group is unique.

Shahzad Ahmad Khan Lecturer (Mathematics) ovt.College Kot Suitan

Show that the matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ form a group under matrix multiplication.

Solution

Let
$$G = \{I, A, B, C\}$$

Where
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
Here $IA = AI = A$, $IB = BI = B$, $IC = CI = C$
Thus I is the identity element of G .

$$AA = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$AB = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = C$$

$$AC = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = B$$

1 - 1	- * 1	44		
I	1	A	В	C
A	A	\overline{I}	С	В
В	В	С	\overline{I}	A
·C	С	В	Α	I

• I A B C

$$BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = C$$

$$BB = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$BC = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = A$$

$$CA = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = B$$

$$CB = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = A$$

$$CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Associative
$$(A \cdot B) (= A \cdot (B \cdot C) *$$

$$C \cdot e = A \cdot A$$

$$I = I$$

 $CB = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ $CC = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = I$ (I) (It is clear from the table.)

- (II) $: (XY)Z = X(YZ); \forall X,Y,Z \in G$ [: Associative Law w.r.t multiplication holds in matrices] ∴ "." is associative over G
- (III) I is the identity element of G : IX = XI = X, $\forall X \in G$. (It is clear from the table.)
- (IV) Here $(I)^{-1} = I$, $(A)^{-1} = A$, $(B)^{-1} = B$, $(C)^{-1} = C$ II=I, A.A=I, B.B=I, CC=I (It is clear from the table.)

Thus G is a group under multiplication of matrices.

Q. No. 11

Prove that the set of complex valued functions I, f, g and h defined on the set $C - \{0\}$ of non-zero complex numbers by I(z) = z, f(z) = -z, $g(z) = \frac{1}{z}$, $h(z) = -\frac{1}{z}$, $z \in C - \{0\}$ form a group under composition of functions defined by

$$(g \circ f)(z) = g(f(z))$$

Solution

Let
$$G = \{I, f, g, h\}$$

Then,
$$(f \circ f)(z) = f(f(z)) = f(-z) = z = I(z)$$

 $(f \circ g)(z) = f(g(z)) = f(\frac{1}{z}) = -\frac{1}{z} = h(z)$
 $(f \circ h)(z) = f(h(z)) = f(-\frac{1}{z}) = \frac{1}{z} = g(z)$
 $(g \circ f)(z) = g(f(z)) = g(-z) = -\frac{1}{z} = h(z)$
 $(g \circ g)(z) = g(g(z)) = g(\frac{1}{z}) = z = I(z)$
 $(g \circ h)(z) = g(h(z)) = g(-\frac{1}{z}) = -z = f(z)$
 $(h \circ f)(z) = h(f(z)) = h(-z) = \frac{1}{z} = g(z)$
 $(h \circ g)(z) = h(g(z)) = h(\frac{1}{z}) = -z = f(z)$
 $(h \circ h)(z) = h(h(z)) = h(-\frac{1}{z}) = z = I(z)$

Available at www.mathcity.org

h

g

- (I) "o" is closed over G.(It is clear from the table.)
- (II) " \circ " is associative over G.

For example if we take $f, g, h \in G$

$$(f \circ g) \circ h(z) = (f \circ g)(h(z)) \qquad f \circ (g \circ h)(z) = f((g \circ h)(z))$$

$$= (f \circ g)(-\frac{1}{z}) \qquad = f(g(h(z))$$

$$= f(g(-\frac{1}{z})) \qquad = f(g(-\frac{1}{z}))$$

$$= f(z) \qquad = f(z)$$

$$= +z \qquad = +z$$

Clearly $(f \circ g) \circ h = f \circ (g \circ h)$

Similarly by taking any three elements of G we can prove the associative property.

- (III) "I" is the identity element of G $\therefore I \circ \alpha = \alpha \circ I = \alpha; \quad \forall \ \alpha \in G$ (It is clear from the table.)
- (IV) Here $(I)^{-1} = I$, $(f)^{-1} = f$, $(g)^{-1} = g$, $(h)^{-1} = h$ (It is clear from the table.)

Hence (G, \circ) is a group.

Show that the set $G = \{2^k : k = 0, \pm 1, \pm 2, \dots \}$ is a group under multiplication.

Solution

- (I) Let $2^m, 2^n \in G$, where $m, n \in Z = \{0, \pm 1, \pm 2, \dots \}$ Then $2^m \cdot 2^n = 2^{m+n} \in G : m+n \in Z$ Thus " \cdot " is closed over G
- (II) Let $2^{l}, 2^{m}, 2^{n} \in G$, where $l, m, n \in Z$ Then $2^{l} \cdot (2^{m} \cdot 2^{n}) = 2^{l} \cdot 2^{m+n}$ $(2^{l} \cdot 2^{m}) \cdot 2^{n} = 2^{l+m} \cdot 2^{n}$ $= 2^{l+m+n}$ $= 2^{l+m+n}$

Clearly $2^l \cdot (2^m \cdot 2^n) = (2^l \cdot 2^m) \cdot 2^n$ Thus " \cdot " is associative over G

- (III) $2^0 = 1$ is the identity element in G $2^0 \cdot 2^k = 2^k \cdot 2^0 = 2^k \quad \forall \ 2^k \in G$.
- (IV) Let $2^k \in G$ Then $2^{-k} \in G$ Further $2^k \cdot 2^{-k} = 2^0$ and $2^{-k} \cdot 2^k = 2^0$ i.e. $2^k \cdot 2^{-k} = 2^{-k} \cdot 2^k = 2^0$ Thus $(2^k)^{-1} = 2^{-k}$ Hence (G, \bullet) is a group.

Available at www.mathcity.org

Q. No. 13

In a group G, let a, b and ab all have order 2, then ab = ba

Solution

Since
$$O(a) = 2$$

$$\therefore a^2 = e$$

$$\Rightarrow a. a = e$$

$$\Rightarrow (a)^{-1} = a....(1)$$
Since $O(b) = 2$

$$\therefore b^2 = e$$

$$\Rightarrow b. b = e$$

$$\Rightarrow (b)^{-1} = b....(2)$$

$$\Rightarrow (ab)^{-1} = ab....(3)$$
We know that
$$(ab)^{-1} = b^{-1} a^{-1}$$

$$\Rightarrow ab = ba$$
[By (1), (2) and (3)]

Q. No. 14

Show that in a group G

- (i) The identity element is unique.
- (ii) The inverse of each element is unique.

Solution

(i) Suppose e_1, e_2 are two identities in G (Group) Since e_1 is identity element in G and $e_2 \in G$

$$e_1.e_2 = e_2, e_1 = e_2 \dots (1)$$

Since e_2 is identity element in G and $e_1 \in G$

$$\therefore e_2.e_1 = e_1.e_2 = e_1.....(2)$$

From (1) and (2), we get $e_1 = e_2$ Hence identity element in a group G is unique.

Hence inverse of each element in a group G is unique.

Q. No. 15

Let G be a group, show that G is abelian if and only if $(ab)^2 = a^2b^2 \quad \forall \ a,b \in G$

Solution

Suppose G is an abelian group.

⇒ Then
$$ab = ba \quad \forall \ a, b \in G$$

⇒ $aab = aba$ [By pre-multiplication with a]
⇒ $aabb = abab$ [By post-multiplication with b]
⇒ $a^2b^2 = (ab)^2$
Or $(ab)^2 = a^2b^2 \quad \forall \ a, b \in G$

Conversely let
$$(ab)^2 = a^2b^2 \quad \forall a, b \in G$$

$$\Rightarrow abab = aabb$$

$$\Rightarrow ba = ab$$

Hence G is an abelian group.

Q. No. 16 / X

If G is an abelian group, show that $(ab)^n = a^nb^n \quad \forall \ a, b \in G$ Solution

We have to prove that $(ab)^n = a^n b^n \ \forall a, b \in G \text{ and } n \in Z \dots (1)$

We shall prove (1) by principle of mathematical induction.

Case-I When n is positive integer.

Put
$$n = 1$$
 in (1)

L.H.S =
$$(ab)^n = (ab)^1 = a^1b^1 = a^nb^n = R.H.S$$

Suppose (1) is true for n = k

i.e.
$$(ab)^k = a^k b^k \quad \forall \ a, b \in G \text{ and } k \in Z \dots$$
 (2)

We shall prove that (1) is true for n = k + 1

i.e.
$$(ab)^{k+1} = a^{k+1}b^{k+1} \quad \forall a, b \in G \text{ and } k \in Z$$

L.H.S =
$$(ab)^{k+1}$$

= $(ab)^k (ab)$
= $(\underline{a}^k \underline{b}^k) (\underline{ab})$ [By (2)]
= $a^k (b^k (ab))$ [By associative Law]

$$= a^{k} \left((b^{k}a)b \right) \qquad [\text{By associative Law}]$$

$$= a^{k} \left((ab^{k})b \right) \qquad [\text{S is an abelian group}]$$

$$= a^{k} \left(a(b^{k}b) \right) \qquad [\text{By associative Law}]$$

$$= a^{k} (ab^{k+1}) \qquad [\text{By associative Law}]$$

$$= a^{k+1}b^{k+1} \qquad [\text{By associative Law}]$$

$$= a^{k}(ab^{k}b) \qquad [\text{By associative Law}]$$

$$= a^{k}(ab^{k+1}) \qquad [\text{By associative Law}]$$

$$= a^{k+1}b^{k+1} \qquad [\text{By$$

Q. No. 17

Let G be a group. Suppose that G has only one element of order 2. Show that ax = xa for all $x \in G$

Solution

Let G be a group. Suppose
$$a \in G$$
 such that $O(a) = 2 \Rightarrow a^2 = 2$
Now $(xax^{-1})^2 = xax^{-1} . xax^{-1}$

$$= xa(xx^{-1})ax^{-1}$$

$$= xaeax^{-1}$$

$$= xex^{-1}$$

$$= e$$

$$\Rightarrow O(xax^{-1}) = 2$$
But a is the only element of G of order 2
$$\therefore xax^{-1} = a$$

$$\Rightarrow (xax^{-1})x = ax$$

$$\Rightarrow (xax^{-1})x = ax$$
[By post-multiplication with x]
$$\Rightarrow xa(x^{-1}x) = ax$$
[By associative Law]
$$\Rightarrow xae = ax$$

$$\Rightarrow xa = ax$$
Hence the proof.