# SIMPLE HARMONIC MOTION 

## * SIMPLE HARMONIC MOTION

It is the motion of a particle moving in a straight line with an acceleration which is always directed towards a fixed point in the line and is proportional to the distance of the particle from that point.


Let O be a fixed point on the line along the particle is moving. Let the particle be at a point P a distance x from the point O towards its right as shown in figure. Then the acceleration of the particle is

$$
\mathrm{a}=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}
$$

For simple harmonic motion this acceleration is proportional to x and is directed towards O i.e.

$$
a=-\lambda x
$$

Where $\lambda$ is constant of proportionality and negative sign indicates that the acceleration is directed against the direction in which x is increasing. This motion is taking place in such away that when the particle is moving away from the point O , the acceleration is acting against so that as the time progresses, the velocity becomes lesser and lesser.
Since $\quad$ acceleration $=a=v \frac{d v}{d x}$

$$
\begin{array}{ll}
\Rightarrow & v \frac{d v}{d x}=-\lambda x \\
\Rightarrow & v d v=-\lambda x d x \\
\Rightarrow & \int v d v=-\lambda \int x d x
\end{array}
$$


$\Rightarrow \quad \frac{\mathrm{v}^{2}}{2}=-\lambda \frac{\mathrm{x}^{2}}{2}+\mathrm{A}$
Where A is constant of acceleration.
When $\mathrm{x}=\mathrm{a}$ then $\mathrm{v}=0$

$$
\text { (i) } \Rightarrow \quad \mathrm{A}=\lambda \frac{\mathrm{a}^{2}}{2}
$$

Using the value of A in (i), we get

$$
\begin{array}{rlrl} 
& & \frac{\mathrm{v}^{2}}{2} & =-\lambda \frac{\mathrm{x}^{2}}{2}+\lambda \frac{\mathrm{a}^{2}}{2} \\
\Rightarrow & \mathrm{v}^{2} & =\lambda\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right) \\
\Rightarrow & \mathrm{v}= \pm \sqrt{\lambda\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)}
\end{array}
$$

Which gives the velocity for a given displacement. If particle is moving to the right then as t increases, x also increases. So the velocity is positive.

Thus $\quad v=\sqrt{\lambda\left(a^{2}-x^{2}\right)}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{\lambda\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)} \quad \because \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}$
$\Rightarrow \quad \frac{d x}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sqrt{\lambda} \mathrm{dt}$
$\Rightarrow \quad \int \frac{\mathrm{dx}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sqrt{\lambda} \int \mathrm{dt}$
$\Rightarrow \quad \sin ^{-1}\left(\frac{X}{a}\right)=\sqrt{\lambda} t+B$
Where B is constant of integration.
Initially at $\mathrm{t}=0, \mathrm{x}=0$

$$
\Rightarrow \quad B=\sin ^{-1}(0)=\frac{\pi}{2}
$$

Putting value of $B$ in (ii), we get

$$
\begin{array}{ll} 
& \sin ^{-1}\left(\frac{\mathrm{X}}{\mathrm{a}}\right)=\sqrt{\lambda} \mathrm{t}+\frac{\pi}{2} \\
\Rightarrow \quad & \frac{\mathrm{x}}{\mathrm{a}}=\sin \left(\sqrt{\lambda} \mathrm{t}+\frac{\pi}{2}\right) \\
\Rightarrow \quad & \mathrm{x}=\operatorname{acos} \sqrt{\lambda} \mathrm{t}
\end{array}
$$

Which gives the displacement at any time t .

## \& NATURE OF SIMPLE HARMONIC MOTION

As the displacement of a particle performing simple harmonic motion at any time $t$ is:

$$
\begin{equation*}
x=\operatorname{acos} \sqrt{\lambda} t \tag{i}
\end{equation*}
$$

Also $-1 \leq \cos \sqrt{\lambda} \mathrm{t} \leq 1 \Rightarrow-\mathrm{a} \leq \mathrm{a} \cos \sqrt{\lambda} \mathrm{t} \leq \mathrm{a} \Rightarrow-\mathrm{a} \leq \mathrm{x} \leq \mathrm{a}$
Thus the maximum displacement from a fixed point O is $\mathrm{x}=\mathrm{a}$. The fixed point O is called the centre of motion. The maximum displacement from the centre is called the amplitude of the motion.


Now

$$
\begin{aligned}
\mathrm{x} & =\operatorname{acos} \sqrt{\lambda} \mathrm{t} \\
& =\operatorname{acos}(\sqrt{\lambda} \mathrm{t}+2 \pi) \quad \because \cos (2 \pi+\theta)=\cos \theta \\
& =\operatorname{acos} \sqrt{\lambda}\left(\mathrm{t}+\frac{2 \pi}{\sqrt{\lambda}}\right)
\end{aligned}
$$

Which shows that the distance at time $t$ and $t+\frac{2 \pi}{\sqrt{\lambda}}$ is same.
Differentiate (i) w.r.t ' $t$ '

$$
\begin{aligned}
\mathrm{v} & =-\mathrm{a} \sqrt{\lambda} \sin \sqrt{\lambda} \mathrm{t} \\
& =-\mathrm{a} \sqrt{\lambda} \cos (\sqrt{\lambda} \mathrm{t}+2 \pi) \\
& =-\mathrm{a} \sqrt{\lambda} \cos \sqrt{\lambda}\left(t+\frac{2 \pi}{\sqrt{\lambda}}\right)
\end{aligned}
$$

Which shows that the velocity at time t and $\mathrm{t}+\frac{2 \pi}{\sqrt{\lambda}}$ is same.
Thus we can say that the motion is repeated after time $t=2 \pi / \sqrt{\lambda}$ and the particle oscillate between $\mathrm{x}=-\mathrm{a}$ and $\mathrm{x}=\mathrm{a}$.

At point $A, x=a$

$$
\text { velocity }=\mathrm{v}=\sqrt{\lambda\left(\mathrm{a}^{2}-\mathrm{a}^{2}\right)}=0 \quad \text { and } \quad \text { acceleration }=\mathrm{a}=-\lambda \mathrm{x}=-\lambda \mathrm{a}
$$

Thus at point $\mathrm{A},(\mathrm{x}=\mathrm{a})$, its velocity is zero but acceleration is maximum and is directed towards O and due to maximum acceleration it moves toward O .

## At point $\mathrm{O}, \mathrm{x}=0$

$$
\text { velocity }=\mathrm{v}=\sqrt{\lambda\left(\mathrm{a}^{2}-0\right)}=\sqrt{\lambda} \mathrm{a}
$$



And acceleration $=\mathrm{a}=-\lambda \mathrm{x}=0$
Thus at point $\mathrm{O},(\mathrm{x}=0)$, its velocity is maximum but acceleration is zero and due to maximum velocity it moves toward $B$.

At point $B, x=-\mathbf{a}$

$$
\text { velocity }=\mathrm{v}=\sqrt{\lambda\left(\mathrm{a}^{2}-\mathrm{a}^{2}\right)}=0
$$

And $\quad$ acceleration $=\mathrm{a}=-\lambda \mathrm{x}=\lambda \mathrm{a}$
Thus at point $B,(x=-a)$, its velocity is zero but acceleration is maximum and due to maximum acceleration it moves toward O and finally comes to rest at A .

The motion is repeated after time $t=2 \pi / \sqrt{\lambda}$. The time taken by a particle to complete one oscillation is called time period and it is usually denoted by T .

$$
\text { i.e. } \quad T=\frac{2 \pi}{\sqrt{\lambda}}
$$

The number of vibration or oscillation completed in unit time is called frequency and it is denoted by $v$.

$$
\text { i.e. } \quad v=\frac{1}{\mathrm{~T}}=\frac{\sqrt{\lambda}}{2 \pi}
$$

## Summary

Maximum velocity $=\sqrt{\lambda} a$
Maximum acceleration $=\lambda a$
Time Period $=\frac{2 \pi}{\sqrt{\lambda}}$
Frequency $=\frac{\sqrt{\lambda}}{2 \pi}$

## * QUESTION 1

A particle describes simple harmonic motion with frequency N . If the greatest velocity is V , find the amplitude and maximum value of the acceleration of the particle. Also show that the velocity v at a distance x from the centre of motion is given by

$$
v=2 \pi N \sqrt{a^{2}-x^{2}}, \text { where } a \text { is the amplitude. }
$$

## SOLUTION

Given that
Frequency $=\mathrm{N}$
But Frequency $=\frac{\sqrt{\lambda}}{2 \pi}$

$\Rightarrow \quad \mathrm{N}=\frac{\sqrt{\lambda}}{2 \pi}$
$\Rightarrow \quad \sqrt{\lambda}=2 \pi \mathrm{~N}$
Given that

$$
\text { Maximum velocity }=\mathrm{V}
$$

But $\quad$ Maximum velocity $=\sqrt{\lambda} \mathrm{a}$
$\Rightarrow \quad \mathrm{V}=\sqrt{\lambda} \mathrm{a}$
Where a is the amplitude
From (i) and (ii), we get

$$
\begin{aligned}
\mathrm{V} & =2 \pi \mathrm{aN} \\
\Rightarrow \quad \mathrm{a} & =\frac{\mathrm{V}}{2 \pi \mathrm{~N}}
\end{aligned}
$$

So $\quad$ Amplitude $=\frac{\mathrm{V}}{2 \pi \mathrm{~N}}$
Now
Maximum acceleration $=\lambda a$

$$
\begin{aligned}
& =(2 \pi \mathrm{~N})^{2} \frac{\mathrm{~V}}{2 \pi \mathrm{~N}} \\
& =2 \pi \mathrm{NV}
\end{aligned}
$$

Velocity at distance x is given by

$$
\begin{aligned}
v & =\sqrt{\lambda\left(a^{2}-x^{2}\right)} \\
& =\sqrt{(2 \pi N)^{2}\left(a^{2}-x^{2}\right)} \\
& =2 \pi N \sqrt{\left(a^{2}-x^{2}\right)}
\end{aligned}
$$

## * QUESTION 2

A particle describing simple harmonic motion has velocities $5 \mathrm{ft} / \mathrm{sec}$. and $4 \mathrm{ft} / \mathrm{sec}$. when its distances from the centre are 12 ft . and 13 ft . respectively. Find the time-period of motion.

## SOLUTION

The time-period of a particle describing simple harmonic motion is given by

$$
\text { Time Period }=\frac{2 \pi}{\sqrt{\lambda}}
$$

We know that

$$
\mathrm{v}^{2}=\lambda\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)
$$

When $\mathrm{x}=12 \mathrm{ft}$ then $\mathrm{v}=5 \mathrm{ft} / \mathrm{sec}$ and when $\mathrm{x}=13 \mathrm{ft}$ then $\mathrm{v}=4 \mathrm{ft} / \mathrm{sec}$
So $\quad 25=\lambda\left(a^{2}-144\right)$
and $\quad 16=\lambda\left(\mathrm{a}^{2}-169\right)$
Subtracting (iii) from (ii), we get

$$
\begin{aligned}
& 9=\lambda 25 \\
& \Rightarrow \quad \sqrt{\lambda}=\frac{3}{5}
\end{aligned}
$$

Using value of $\sqrt{\lambda}$ in (i), we get
Time Period $=\frac{10 \pi}{3}$

## * QUESTION 3

The maximum velocity that a particle executing simple harmonic motion of amplitude a attains, is $v$. If it is disturbed in such a way that its maximum velocity becomes nv, find the change in the amplitude and the time period of motion.

## SOLUTION

Given that
Maximum velocity = v

But $\quad$ Maximum velocity $=\sqrt{\lambda} \mathrm{a}$
$\Rightarrow \quad \mathrm{v}=\sqrt{\lambda} \mathrm{a}$
$\Rightarrow \quad \mathrm{a}=\frac{\mathrm{v}}{\sqrt{\lambda}}$
Where a is the amplitude. Suppose that A is the new amplitude when the velocity is nv. Then from (i), we get

$$
\mathrm{A}=\frac{\mathrm{nv}}{\sqrt{\lambda}}
$$

Change in amplitude $=\mathrm{A}-\mathrm{a}$

$$
=\frac{\mathrm{nv}}{\sqrt{\lambda}}-\frac{\mathrm{v}}{\sqrt{\lambda}}=\frac{\mathrm{v}}{\sqrt{\lambda}}(\mathrm{n}-1)=\mathrm{a}(\mathrm{n}-1)
$$

The time period in both cases is $\frac{2 \pi}{\sqrt{\lambda}}$

## \& QUESTION 4

A point describes simple harmonic motion in such a way that its velocity and acceleration at a point P are u and f respectively and the corresponding quantities at another point Q are v and g . Find the distance PQ .

## SOLUTION



Let O be the centre of motion and $\mathrm{OP}=\mathrm{x}_{1}$ and $\mathrm{PQ}=\mathrm{x}_{2}$ as shown in figure.


Let $x_{2}>x_{1}$ Then

$$
\begin{equation*}
\mathrm{PQ}=\mathrm{x}_{2}-\mathrm{x}_{1} \tag{i}
\end{equation*}
$$

We know that

$$
\mathrm{v}^{2}=\lambda\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right) \text { and } \mathrm{a}=-\lambda \mathrm{x}
$$

At point P

$$
\mathrm{u}^{2}=\lambda\left(\mathrm{a}^{2}-\mathrm{x}_{1}{ }^{2}\right)
$$

and $\mathrm{f}=-\lambda \mathrm{x}_{1}$
At point Q

$$
\mathrm{v}^{2}=\lambda\left(\mathrm{a}^{2}-\mathrm{x}_{2}^{2}\right)
$$

and

$$
\mathrm{g}=-\lambda \mathrm{x}_{2}
$$

Now

$$
\begin{aligned}
\mathrm{u}^{2}-\mathrm{v}^{2} & =\lambda\left(\mathrm{a}^{2}-\mathrm{x}_{1}^{2}\right)-\lambda\left(\mathrm{a}^{2}-\mathrm{x}_{2}^{2}\right) \\
& =\lambda\left(\mathrm{x}_{2}^{2}-\mathrm{x}_{1}^{2}\right) \\
& =\lambda\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{1}\right)
\end{aligned}
$$

Now $\mathrm{f}+\mathrm{g}=-\lambda \mathrm{x}_{1}-\lambda \mathrm{x}_{2}$

$$
\begin{aligned}
& =-\lambda\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \\
\Rightarrow \quad \lambda= & -\frac{\mathrm{f}+\mathrm{g}}{\mathrm{x}_{1}+\mathrm{x}_{2}}
\end{aligned}
$$

Using value of $\lambda$ in (ii), we get

$$
\begin{align*}
& u^{2}-v^{2}-\left(-\frac{f+g}{x_{1}+x_{2}}\right)\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right) \\
\Rightarrow & x_{2}-x_{1}=-\frac{u^{2}-v^{2}}{\mathrm{f}+\mathrm{g}} \\
\Rightarrow & \mathrm{x}_{2}-\mathrm{x}_{1}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{\mathrm{f}+\mathrm{g}} \\
\Rightarrow & \mathrm{PQ}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{\mathrm{f}+\mathrm{g}} \quad \text { By(i) } \tag{i}
\end{align*}
$$

## * QUESTION 5

If a point P moves with a velocity v given by

$$
v^{2}=n^{2}\left(a x^{2}+2 b x+c\right)
$$

Show that P executes a simple harmonic motion. Find the centre, the amplitude and the timeperiod of the motion.

## SOLUTION

Given that

$$
v^{2}=n^{2}\left(a x^{2}+2 b x+c\right)
$$

Diff. w.r.t ' $x$ ', we get

$$
\begin{aligned}
& 2 \mathrm{v} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{n}^{2}(2 \mathrm{ax}+2 \mathrm{~b}) \\
\Rightarrow \quad & \mathrm{v} \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{n}^{2} \mathrm{a}\left(\mathrm{x}+\frac{\mathrm{b}}{\mathrm{a}}\right) \\
\Rightarrow \quad & \text { acceleration }=\mathrm{n}^{2} \mathrm{a}\left(\mathrm{x}+\frac{\mathrm{b}}{\mathrm{a}}\right) \quad \because \mathrm{v} \frac{\mathrm{dv}}{\mathrm{dx}}=\text { acceleration } \\
\Rightarrow \quad & \text { acceleration }=-\mathrm{n}^{2} \mathrm{a}\left[-\left(\mathrm{x}+\frac{\mathrm{b}}{\mathrm{a}}\right)\right]
\end{aligned}
$$

Put $\quad X=-\left(x+\frac{b}{a}\right)$
$\Rightarrow \quad$ acceleration $=-\mathrm{n}^{2} \mathrm{aX}$
$\Rightarrow \quad$ acceleration $\propto-X$
Which shows that P executes the simple harmonic motion.
To find centre put $\mathrm{X}=0$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{x}+\frac{\mathrm{b}}{\mathrm{a}}=0 \\
& \Rightarrow \quad \mathrm{x}=-\frac{\mathrm{b}}{\mathrm{a}}
\end{aligned}
$$

To find amplitude put $\mathrm{v}=0$

$$
\begin{gathered}
\Rightarrow \quad \mathrm{n}^{2}\left(\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}\right)=0 \\
\Rightarrow \quad \\
\mathrm{ax}^{2}+2 \mathrm{bx}+\mathrm{c}=0 \\
\Rightarrow \quad \mathrm{x}=\frac{-2 \mathrm{~b} \pm \sqrt{4 \mathrm{~b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
\quad=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-\mathrm{ac}}}{\mathrm{a}}
\end{gathered}
$$



Let $O$ be the origin, then

$$
\mathrm{OA}=\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-\mathrm{ac}}}{\mathrm{a}} \text { and } \mathrm{OB}=\frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-\mathrm{ac}}}{\mathrm{a}}
$$

Let C be the centre then

$$
\text { Time Period }=\frac{2 \pi}{\sqrt{\lambda}}
$$

Here $\lambda=n^{2} \mathrm{a}$
$\Rightarrow \quad$ Time Period $=\frac{2 \pi}{\mathrm{n} \sqrt{\mathrm{a}}}$


End of The Chapter \# 6.

$$
\begin{aligned}
& \mathrm{OC}=-\frac{\mathrm{b}}{\mathrm{a}} \\
& \text { Amplitude }=\mathrm{CA} \\
& =\mathrm{OA}-\mathrm{OC} \\
& =\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-\mathrm{ac}}}{\mathrm{a}}+\frac{\mathrm{b}}{\mathrm{a}} \\
& =\frac{\sqrt{b^{2}-\mathrm{ac}}}{\mathrm{a}}
\end{aligned}
$$

