KINEMATICS

(i)

Kinematics

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches:

Kinetics

(ii)

KINEMATICS:

The branch of dynamics which deals with geometry of motion of a body without any reference of the force acting on the body is called kinematics.

KINETICS:

The branch of dynamics which deals with geometry of motion of a body with reference to the force causing motion is called kinetics.

POINTS TO BE REMEMBER

- (*i*) The position of a particle can be specified by a vector \vec{r} whose initial point is at the origin of some fixed coordinate system and the terminal point is at the particle. This vector is called **position vector**. If the particle is moving, the vector \vec{r} changes with time, i.e. it is a function of time.
- (*ii*) The curve traced by a moving particle is called the **trajectory** or the path of the particle.
- (*iii*) The path of the particle can be specified by the vector equation

 $\vec{r} = \vec{r} (t) \tag{(i)}$

The path of the particle can also be specified by three scalar equations

 $x = x(t), \quad y = y(t), \quad z = z(t)$ _____ (ii)

These equations are obtained by equating the components of vectors on two sides of the equation (i). Equation gives the coordinates of the points of the path for different value s of t. We call these as **parametric equations of the path.**

CARTESIAN COMPONENTS OF VELOCITY & ACCELERATION

Let AB be a part of the trajectory of the particle as shown in figure. Let the particle at time t be at the point P whose position vector is \vec{r} . After a small time δt , let the particle reach the point Q whose position vector is $\vec{r} + \delta \vec{r}$. The $\overrightarrow{PQ} = \delta \vec{r}$ is the displacement of the particle from the point P in the small time interval δt . The quotient

 $\frac{\delta \vec{r}}{\delta t}$

gives the average rate of change of displacement of the particle in the interval δt . If we start decreasing the time interval δt , the displacement $\delta \vec{r}$ will go on deceasing and the point Q gets nearer and nearer to P. Thus

$$\lim_{\delta t \to 0} \frac{\delta r}{\delta t}$$

can be considered as the instantaneous rate of change of displacement. This is defined as the instantaneous velocity or the simply velocity \vec{v} of the particle at point P. Thus,

$$\vec{\mathbf{v}} = \lim_{\delta t \to 0} \frac{\delta \vec{r}}{\delta t} = \frac{d\vec{r}}{dt}$$

Proceeding in similar way we can see that the acceleration \vec{a} (the instantaneous rate of change of velocity) at time t is given by

$$\vec{a} = \lim_{\delta t \to 0} \frac{\delta \vec{v}}{\delta t} = \frac{d \vec{v}}{dt} = \frac{d}{dt} \left(\frac{d \vec{r}}{dt} \right) = \frac{d^2 \vec{r}}{dt^2}$$

In Cartesian coordinates, we can write

$$\vec{r} = x\hat{i} + y\hat{i}$$

Then

$$\vec{v} = \frac{d}{dt} \left(x\hat{i} + y\hat{i} \right) = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j}$$

Available At: mathcity.org

$$\vec{a} = \frac{d^2}{dt^2} (x\hat{i} + y\hat{i}) = \frac{d^2x}{dt^2} \hat{i} + \frac{d^2y}{dt^2} \hat{j}$$

Thus

$$v_x = x \text{- component of velocity} = \frac{dx}{dt}$$

$$v_y = y \text{- component of velocity} = \frac{dy}{dt}$$

$$a_x = x \text{- component of acceleration} = \frac{d^2x}{dt^2}$$

$$a_y = y \text{- component of acceleration} = \frac{d^2y}{dt^2}$$

QUESTION 1

A particle is moving in such a way that it position at any time t is specified by

$$\vec{\mathbf{r}} = (t^3 + t^2)\hat{\mathbf{i}} + (\cos t + \sin^2 t)\hat{\mathbf{j}} + (e^t + \log t)\hat{\mathbf{k}}$$
cceleration.

Find the velocity and acceleration.

SOLUTION

If \vec{v} and \vec{a} are velocity and acceleration of particle respectively. Then

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} \left((t^3 + t^2)\hat{i} + (\cos t + \sin^2 t)\hat{j} + (e^t + \log t)\hat{k} \right)$$

= $(3t^2 + 2t)\hat{i} + (-\sin t + 2\sin t \cos t)\hat{j} + (e^t + \frac{1}{t})\hat{k}$
= $(3t^2 + 2t)\hat{i} + (\sin 2t - \sin t)\hat{j} + (e^t + \frac{1}{t})\hat{k}$
and $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left((3t^2 + 2t)\hat{i} + (\sin 2t - \sin t)\hat{j} + (e^t + \frac{1}{t})\hat{k} \right)$
= $(6t + 2)\hat{i} + (2\cos 2t - \cos t)\hat{j} + (e^t - \frac{1}{t^2})\hat{k}$

QUESTION 2

A particle P start from O at t = 0. Find tits velocity and acceleration of particle at any time t if its position at that time is given by

$$\vec{\mathbf{r}} = \mathbf{at}^2\hat{\mathbf{i}} + 4\mathbf{at}\hat{\mathbf{j}}$$

SOLUTION

If \vec{v} and \vec{a} are velocity and acceleration of particle respectively. Then

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (at^2\hat{i} + 4at\hat{j}) = 2at\hat{i} + 4a\hat{j}$$
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (2at\hat{i} + 4a\hat{j}) = 2a\hat{i}$$

and

QUESTION 3

At any time t, the position of a particle moving in a plane can be specified by (acoswt, asinwt) where a and w are constants. Find the component of its velocity and acceleration along the coordinates axis.

SOLUTION

 $awcoswt \hat{j}$ $\therefore again w.r.t "t", we get$ $\hat{a} = -aw^2 coswt \hat{i} - aw^2 sinwt \hat{j}$ Thus the component of velocity and acceleration are $v_x = -awsinwt \quad , \quad v_y = awcoswt$ $a_x = -aw^2 coswt \quad , \quad a_y = -aw^2 sinwt$ $interval = -aw^2 coswt$ $a_x = -aw^2 coswt \quad , \quad a_y = -aw^2 sinwt$ The position of particle moving along an ellipse is given by $\vec{r} = acost \hat{i} + bsint \hat{j}$ If a > b, find the position of the particle where velocity has maximum and minimum magnitude.

SOLUTION

As
$$\vec{r} = acost \hat{i} + bsint \hat{j}$$

Differentiate w.r.t "t", we get
 $\vec{v} = -asint \hat{i} + bcost \hat{j}$
 $\Rightarrow v = \sqrt{(-asint)^2 + (bcost)^2}$
 $= \sqrt{a^2 sin^2 t + b^2 cos^2 t}$
 $= \sqrt{a^2 sin^2 t + b^2 (1 - sin^2 t)}$
 $= \sqrt{a^2 sin^2 t + b^2 - b^2 sin^2 t}$
 $= \sqrt{sin^2 t (a^2 - b^2) + b^2}$

v is maximum when $\sin^2 t$ is maximum. i.e. $\sin^2 t = 1 \Rightarrow \sin t = \pm 1 \Rightarrow t = 90, 270$ For t = 90

 $\vec{r} = a\cos 90 \hat{i} + b\sin 90 \hat{j} = b\hat{j}$

For t = 270

 $\vec{r} = a\cos 270 \hat{i} + b\sin 270 \hat{j} = -b\hat{j}$

So the position of the particle when velocity has maximum magnitude is $\pm b\hat{j}$. v is minimum when $\sin^2 t$ is minimum. i.e. $\sin^2 t = 0 \implies \sin t = 0 \implies t = 0, 180$ For t = 0

$$\vec{r} = a\cos\theta \hat{i} + b\sin\theta \hat{j} = a\hat{i}$$

For t = 180

 $\vec{r} = a\cos 180 \hat{i} + b\sin 180 \hat{j} = -a\hat{i}$

So the position of the particle when velocity has minimum magnitude is $\pm a\hat{i}$.

RADIAL & TRANSVERSE COMPONENTS OF VELOCITY & ACCELERATION

In polar coordinates, the position of a particle is specified by a radius vector r and the polar angle θ which are related to x and y through the relations

 $x = r \cos \theta$ $y = r \sin \theta$

provided the two coordinates frames have the same origin and the x-axis and the initial line coincide. The direction of radius vector is known as **radial direction** and that perpendicular to it in the direction of increasing θ is called **transverse direction**.

Let \hat{r} and \hat{s} be units vectors in the radial and transverse direction respectively as shown in figure. Then

$$\hat{\mathbf{r}} = \cos\theta\hat{\mathbf{i}} + \sin\theta\hat{\mathbf{j}}$$
(i)
$$\hat{\mathbf{s}} = \cos(90^0 + \theta)\hat{\mathbf{i}} + \sin(90^0 + \theta)\hat{\mathbf{j}} = -\sin\theta\hat{\mathbf{i}} + \cos\theta\hat{\mathbf{j}}$$
(ii)

Differentiating (i) w.r.t "t"

$$\frac{d\hat{\mathbf{r}}}{d\mathbf{t}} = \frac{d}{d\mathbf{t}} \left(\cos\theta \hat{\mathbf{i}} + \sin\theta \hat{\mathbf{j}} \right)$$

$$= \left(-\sin\theta \hat{\mathbf{i}} \left(\frac{d\theta}{d\mathbf{t}} \right) + \cos\theta \hat{\mathbf{j}} \left(\frac{d\theta}{d\mathbf{t}} \right) \right)$$

$$= \frac{d\theta}{d\mathbf{t}} \left(-\sin\theta \hat{\mathbf{i}} + \cos\theta \hat{\mathbf{j}} \right)$$

$$= \frac{d\theta}{d\mathbf{t}} \hat{\mathbf{s}} \qquad \text{By (ii)}$$
Differentiating (ii) w.r.t "t"

$$\frac{d\hat{s}}{dt} = \frac{d}{dt} \left(-\sin\theta \hat{i} + \cos\theta \hat{j} \right)$$

$$= \left(-\cos\theta \hat{i} \left(\frac{d\theta}{dt} \right) - \sin\theta \hat{j} \left(\frac{d\theta}{dt} \right) \right)$$

$$= -\frac{d\theta}{dt} \left(\sin\theta \hat{i} + \cos\theta \hat{j} \right)$$

$$= -\frac{d\theta}{dt} \hat{r}$$
know that
(iv)

We

$$\hat{\mathbf{r}} = \frac{\vec{r}}{\mathbf{r}} \implies \mathbf{p} \vec{r} = \mathbf{r} \,\hat{\mathbf{r}}$$
Now $\vec{\mathbf{v}} = \frac{d\vec{r}}{dt}$

$$= \frac{d}{dt} (\mathbf{r}\hat{\mathbf{r}}) = \frac{d\mathbf{r}}{dt} \cdot \hat{\mathbf{r}} + \mathbf{r}\frac{d\hat{\mathbf{r}}}{dt} = \frac{d\mathbf{r}}{dt} \cdot \hat{\mathbf{r}} + \mathbf{r}\frac{d\theta}{dt} \hat{\mathbf{s}}$$

Thus,

$$v_r = Radial \ component \ of \ velocity = \frac{dr}{dt} = \dot{r}$$

 $v_{\theta} = Transverse \ component \ of \ velocity = r\frac{d\theta}{dt} = \dot{r}\dot{\theta}$

Where dot denotes the differentiation with respect to time "t".

Let \vec{a} be the acceleration Then

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$= \frac{d}{dt} \left(\frac{dr}{dt} \cdot \hat{r} + r \frac{d\theta}{dt} \hat{s} \right)$$

$$= \frac{d}{dt} \left(\frac{dr}{dt} \cdot \hat{r} \right) + \frac{d}{dt} \left(r \frac{d\theta}{dt} \hat{s} \right)$$

$$= \frac{d}{dt} \left(\frac{dr}{dt} \cdot \hat{r} \right) + \frac{d}{dt} \left(r \frac{d\theta}{dt} \hat{s} \right)$$

$$= \frac{d}{dt} \left(\frac{dr}{dt} \right) \hat{r} + \frac{dr}{dt} \frac{d\hat{r}}{dt} + \frac{dr}{dt} \left(\frac{d\theta}{dt} \hat{s} \right) + \frac{d}{dt} \left(\frac{d\theta}{dt} \right) r \hat{s} + \frac{d\hat{s}}{dt} \left(r \frac{d\theta}{dt} \right)$$

$$= \frac{d^2 r}{dt^2} \hat{r} + \frac{dr}{dt} \frac{d\hat{r}}{dt} + \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) \hat{s} + \frac{d^2 \theta}{dt^2} r \hat{s} + \frac{d\hat{s}}{dt} \left(\frac{d\theta}{dt} \right) r$$

$$= \frac{d^2 r}{dt^2} \hat{r} + \frac{dr}{dt} \left(\frac{d\theta}{dt} \hat{s} \right) + \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) \hat{s} + \frac{d^2 \theta}{dt^2} r \hat{s} + \left(- \frac{d\theta}{dt} \hat{r} \right) \left(\frac{d\theta}{dt} \right) r$$

$$= \frac{d^2 r}{dt^2} \hat{r} - r \left(\frac{d\theta}{dt} \right)^2 \hat{r} + 2 \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) \hat{s} + \frac{d^2 \theta}{dt^2} r \hat{s}$$

$$= \left[\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right] \hat{r} + \left[2 \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) + \frac{d^2 \theta}{dt^2} r \right] \hat{s}$$

Thus,

$$a_{r} = Radial \ component \ of \ acceleration} = \frac{d^{2}r}{dt^{2}} - r\left(\frac{d\theta}{dt}\right)^{2} = \ddot{r} - r\left(\dot{\theta}\right)^{2}$$
$$a_{\theta} = Transverse \ component \ of \ acceleration} = 2\frac{dr}{dt}\left(\frac{d\theta}{dt}\right) + r\frac{d^{2}\theta}{dt^{2}} = 2\dot{r}\dot{\theta} + r\ddot{\theta}$$

QUESTION 5

A particle P moves in a plane in such away that at any time t, its distance from point O is $r = at + bt^2$ and the line connecting O and P makes an angle $\theta = ct^{3/2}$ with a fixed line OA. Find the radial and transverse components of velocity and acceleration of particle at t = 1

SOLUTION

Given that

 $r = at + bt^2$ and $\theta = ct^{3/2}$

Differentiate w.r.t "t", we get

$$\frac{dr}{dt} = a + 2bt$$
 and $\frac{d\theta}{dt} = \frac{3}{2}ct^{1/2}$

Differentiate again w.r.t "t", we get

$$\frac{d^2r}{dt^2} = 2b \text{ and } \frac{d^2\theta}{dt^2} = \frac{3}{4} \operatorname{ct}^{-1/2}$$

At t = 1

$$r = a + b \text{ and } \theta = c$$

$$\frac{dr}{dt} = a + 2b \text{ , } \frac{d\theta}{dt} = \frac{3}{2}c \text{ , } \frac{d^{2}r}{dt^{2}} = 2b \text{ and } \frac{d^{2}\theta}{dt^{2}} = \frac{3}{4}c$$
Radial component of velocity = $v_{r} = \frac{dr}{dt} = a + 2b$
Transverse component of velocity = $v_{\theta} = r\frac{d\theta}{dt} = \frac{3}{2}c(a + b)$
Radial component of acceleration = $a_{r} = \frac{d^{2}r}{dt^{2}} - r\left(\frac{d\theta}{dt}\right)^{2}$

$$= 2b - (a + b)\left(\frac{3}{2}c\right)^{2}$$

$$= 2b - \frac{9}{4}c^{2}(a + b)$$

$$= \frac{1}{4}\left(8b - 9c^{2}(a + b)\right)$$
Transverse component of acceleration = $a_{\theta} = 2\frac{dr}{dt}\left(\frac{d\theta}{dt}\right) + r\frac{d^{2}\theta}{dt^{2}}$

$$= 2(a + 2b)\left(\frac{3}{2}c\right) + (a + b)\left(\frac{3}{4}c\right)$$

$$= \frac{3}{4}c(5a + 9b)$$

QUESTION 6

Find the radial and transverse components of velocity of a particle moving along the curve

$$ax^2 + by^2 = 1$$

at any time t if the polar angle is $\theta = ct^2$

SOLUTION

Given that

 $\boldsymbol{\theta}=ct^2$

Differentiate w.r.t "t", we get

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 2\mathrm{c}t$$

Also given that

$$ax^2 + by^2 = 1$$

First we change this into polar form by putting $x = rcos\theta$ and $y = rsin\theta$

$$ar^{2}\cos^{2}\theta + br^{2}\sin^{2}\theta = 1$$

$$\Rightarrow r^{2}(a\cos^{2}\theta + b\sin^{2}\theta) = 1$$

$$\Rightarrow r\sqrt{a\cos^{2}\theta + b\sin^{2}\theta} = 1$$

$$\Rightarrow r = (a\cos^{2}\theta + b\sin^{2}\theta)^{-\frac{1}{2}}$$

Differentiate w.r.t "t", we get

$$\frac{d\mathbf{r}}{d\mathbf{t}} = -\frac{1}{2}(a\cos^2\theta + b\sin^2\theta)^{-\frac{3}{2}}\left(-a2\cos\theta\sin\theta\frac{d\theta}{d\mathbf{t}} + b2\sin\theta\cos\theta\frac{d\theta}{d\mathbf{t}}\right)$$
$$= \frac{1}{2}(a\cos^2\theta + b\sin^2\theta)^{-\frac{3}{2}}(a - b)\sin2\theta\frac{d\theta}{d\mathbf{t}}$$
$$= \frac{1}{2}(a\cos^2\theta + b\sin^2\theta)^{-\frac{3}{2}}(a - b)\sin2\theta.2c\mathbf{t}$$
$$= \frac{c\mathbf{t}(a - b)\sin2\theta}{(a\cos^2\theta + b\sin^2\theta)^{\frac{3}{2}}}$$
component of velocity = $\frac{d\mathbf{r}}{d\mathbf{t}} = \frac{c\mathbf{t}(a - b)\sin2\theta}{abb}$

Radial component of velocity = $\frac{dt}{dt} = \frac{ct(d - \theta)\sin^2\theta}{(a\cos^2\theta + b\sin^2\theta)^{\frac{3}{2}}}$ Transverse component of velocity = $r\frac{d\theta}{dt} = \frac{2ct}{(a\cos^2\theta + b\sin^2\theta)^{\frac{1}{2}}}$

QUESTION 7

Find the radial and transverse components of acceleration of a particle moving along the circle $x^2 + y^2 = a^2$ with constant velocity c.

SOLUTION

Given that

 $\frac{\mathrm{d}\theta}{\mathrm{d}t} = \mathrm{c}$

Differentiate w.r.t "t", we get

MAHM

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = 0$$

Also given that

 $x^2 + y^2 = a^2$

First we change this into polar form by putting $x = r\cos\theta$ and $y = r\sin\theta$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta = a^{2}$$

$$\Rightarrow r^{2}(\cos^{2}\theta + \sin^{2}\theta) = a^{2}$$

$$\Rightarrow r^{2} = a^{2}$$

 \Rightarrow r = a

$$\Rightarrow \quad \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{t}} = 0 \quad \Rightarrow \quad \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}\mathbf{t}^2} = 0$$

Radial component of acceleration = $a_r = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$ = 0 - ac² = - ac²

Transverse component of acceleration = $a_{\theta} = 2 \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) + r \frac{d^2 \theta}{dt^2}$ = 0

TANGENTIAL & NORMAL COMPONENTS OF VELOCITY & ACCELERATION

Let AB be a part of the trajectory of the particle as shown in figure. Let the particle at time t be at the point P whose position vector is \vec{r} . After a small time δt , let the particle reach the point Q whose position vector is $\vec{r} + \delta \vec{r}$. Then $\overrightarrow{PQ} = \delta \vec{r}$ and $\operatorname{arcPQ} = \delta s$

Now
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \cdot \frac{ds}{dt} = v \cdot \frac{d\vec{r}}{ds}$$
 (i)

Here $\frac{d\vec{r}}{ds}$ is a unit tangent at point P.

Let \hat{t} be a unit vector along the tangent at P and \hat{n} unit vector along normal at the point P. Then

$$\frac{d\vec{r}}{ds} = \hat{t}$$

Using this in (i), we get

Available At: mathcity.org

$$\vec{\mathbf{v}} = \mathbf{v} \, \hat{\mathbf{t}} + 0. \hat{\mathbf{n}}$$

Thus,

 v_t = Tangential component of velocity = v

 v_n = Normal component of velocity = 0

Hence the velocity is along the tangent to the path.

11

Now

$$= (-\sin\psi \,\hat{i} + \cos\psi \,\hat{j})$$

 $= \hat{n}$ $\vec{a} = \frac{dv}{dt} \hat{t} + \frac{v^2}{\rho} \hat{n}$ So

Thus,

Tangential component of acceleration =
$$a_t = \frac{dv}{dt}$$

Normal component of acceleration = $a_n = \frac{v^2}{\rho}$

Where

$$\rho = \frac{\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{3/2}}{\left|\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right|}$$

QUESTION 8 \propto

A particle is moving along the parabola $x^2 = 4ay$ with constant speed. Determine tangential and normal components of its acceleration when it reaches the point whose abscissa is $\sqrt{5a}$. RI M.SC MATHE

0-

SOLUTION

Given that

 $x^2 = 4ay$

Differentiate w.r.t "x", we get

 $2x = 4a \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{x}{2a}$ Differentiate again w.r.t "x", we get

$$\frac{d^2y}{dx^2} = \frac{1}{2a}$$

Given that $x = \sqrt{5}a$ therefore

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{5}a}{2a} = \frac{\sqrt{5}}{2}$$

We know that

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|} = \frac{\left[1 + \left(\frac{\sqrt{5}}{2}\right)^2\right]^{3/2}}{\frac{1}{2a}} = 2a\left[1 + \frac{5}{4}\right]^{3/2} = 2a\left[\frac{9}{4}\right]^{3/2} = 2a\left[\frac{3}{2}\right]^3 = \frac{27a}{4}$$

Since the particle is moving with constant speed therefore

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = 0$$

Available At: mathcity.org

13 > Tangential component of acceleration = $a_t = \frac{dv}{dt} = 0$ Normal component of acceleration = $a_n = \frac{v^2}{\rho} = \frac{v^2}{\frac{27a}{4}} = \frac{4v^2}{27a}$

QUESTION 9 $\dot{\mathbf{x}}$

Find the tangential and normal component of acceleration of a point describing ellipse

$$\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$2b^2x + 2a^2y\frac{dy}{dx} = 0$$

$$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{\mathrm{b}^2 x}{\mathrm{a}^2 y}$$

$$\overline{a^2 + b^2} = 1$$
With uniform speed v when the particle is at (0, b).
SOLUTION
Given that

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\Rightarrow x^2b^2 + y^2a^2 = a^2b^2$$
Differentiate w.r.t "x", we get

$$2b^2x + 2a^2y\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{b^2x}{a^2y}$$
Differentiate again w.r.t "x", we get

$$\frac{d^2y}{dx^2} = -\frac{b^2}{a^2}\left(\frac{y - x\frac{dy}{dx}}{y^2}\right)$$

$$= -\frac{b^2}{a^2}\left(\frac{y - x\left(-\frac{b^2x}{a^2y}\right)}{y^2}\right)$$

$$= -\frac{b^2}{a^2}\left(\frac{1}{y} + \frac{x^2b^2}{a^2y^3}\right)$$

At (0, b)

$$\frac{dy}{dx} = -\frac{b^2 0}{a^2 b} = 0$$

and $\frac{d^2 y}{dx^2} = -\frac{b^2}{a^2} \left(\frac{1}{b} + \frac{0.b^2}{a^2 b^3}\right) = -\frac{b}{a^2}$

ć

We know that

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|} = \frac{\left[1 + (0)^2\right]^{3/2}}{\left|-\frac{b}{a^2}\right|} = \frac{a^2}{b}$$

Since the particle is moving with uniform speed therefore

$$\frac{\mathrm{dv}}{\mathrm{dt}} = 0$$

Thus, Tangential component of acceleration = $a_t = \frac{dv}{dt} = 0$

Normal component of acceleration = $a_n = \frac{v^2}{\rho} = \frac{v^2}{\frac{a^2}{b}} = \frac{bv^2}{a^2}$

QUESTION 10

A particle is moving with uniform speed along the curve

$$\mathbf{x}^2 \mathbf{y} = \mathbf{a} \left(\mathbf{x}^2 + \frac{\mathbf{a}^2}{\sqrt{5}} \right)$$

Show that acceleration has maximum value 9a HOOD GADRI

SOLUTION

Given that

$$x^2 y = a \left(x^2 + \frac{a^2}{\sqrt{5}} \right)$$

y = a +

Differentiate w.r.t "x", we get

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\mathrm{a}^3}{\sqrt{5}}\,\mathrm{x}^{-3}$$

Differentiate again w.r.t "x", we get

$$\frac{d^2 y}{dx^2} = \frac{6a^3}{\sqrt{5}} x^{-4}$$

We know that

×0313-456017

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|}$$
$$= \frac{\left[1 + \left(-\frac{2a^3}{\sqrt{5}}x^{-3}\right)^2\right]^{3/2}}{\frac{6a^3}{\sqrt{5}}x^{-4}} = \frac{\left[1 + \frac{4a^6}{5x^6}\right]^{3/2}}{\frac{6a^3}{\sqrt{5}x^4}} = \frac{\sqrt{5}x^4}{6a^3} \left[\frac{5x^6 + 4a^6}{5x^6}\right]^{3/2}}{\frac{5x^6 + 4a^6}{30a^3x^5}}$$
(i)

We know that

$$\vec{a} = \frac{\mathrm{d}v}{\mathrm{d}t}\hat{t} + \frac{v^2}{\rho}\hat{n}$$

Since the particle is moving with constant speed therefore

$$\frac{dv}{dt} = 0$$

$$\Rightarrow \quad \vec{a} = \frac{v^2}{\rho} \hat{n}$$

$$\Rightarrow \quad |\vec{a}| = \frac{v^2}{\rho} |\hat{n}|$$

$$|\vec{a}| = \frac{v^2}{\rho} |\hat{n}| = \frac{v^2}{\rho}$$
 \therefore $|\hat{n}| = 1$

 $|\vec{a}|$ will maximum when ρ is minimum.

Differentiate (i) w.r.t "x", we get

by that

$$\vec{a} = \frac{dv}{dt}\hat{t} + \frac{v^2}{\rho}\hat{n}$$
the particle is moving with constant speed therefore

$$\frac{dv}{dt} = 0$$

$$\vec{a} = \frac{v^2}{\rho}\hat{n}$$

$$|\vec{a}| = \frac{v^2}{\rho}|\hat{n}| = \frac{v^2}{\rho} \quad \because |\hat{n}| = 1$$
It maximum when ρ is minimum.
entiate (i) w.r.t "x", we get

$$\frac{d\rho}{dx} = \frac{30a^3x^5 \left[\frac{3}{2}(5x^6 + 4a^6)^{1/2}30x^5\right] - [5x^6 + 4a^6]^{3/2}(150a^3x^4)}{(30a^3x^5)^2}$$

$$= \frac{(5x^6 + 4a^6)^{1/2}}{(30)^2a^6x^{10}} [30a^3x^5[45x^5] - [5x^6 + 4a^6](150a^3x^4)]$$

$$= \frac{(5x^6 + 4a^6)^{1/2}}{30a^3x^6} [45x^6 - 5(5x^6 + 4a^6)]$$

$$= \frac{(5x^6 + 4a^6)^{1/2}}{30a^3x^6} [20x^6 - 20a^6]$$

$$= \frac{20(5x^6 + 4a^6)^{1/2}}{30a^3x^6} [x^6 - a^6]$$

$$= \frac{20(5x^6 + 4a^6)^{1/2}}{30a^3x^6} (x^2 - a^2)(x^4 + x^2a^2 + a^4)$$

Putting $\frac{d\rho}{dx} = 0$, we get $x = \pm a$

Since

16 $\frac{d\rho}{dx} < 0$ before x = a and $\frac{d\rho}{dx} > 0$ after x = aTherefore ρ is minimum when x = a

Therefore is minimum when
$$x = a$$

Thus

$$\rho_{\min} = \frac{[5a^6 + 4a^6]^{3/2}}{30a^3a^5} = \frac{[9a^6]^{3/2}}{30a^8} = \frac{27a}{30} = \frac{9}{10}a$$
Maximum value of acceleration $= \frac{v^2}{\rho_{\min}} = \frac{v^2}{\frac{9}{10}a} = \frac{10v^2}{9a}$
%%%%% End of The Chapter #4%%%%%%