THE DIRECTION OF QIBLA:

Latitude= ϕ (N,S) in Degree

Longitude = λ (E, W) in Degree

 $\phi_0 = 21^{\circ}25.2'$ (N) Latitude of Qibla:

Longitude of Qibla: $\lambda_0 = 39^{\circ}49.2'$ (E)

Classical longitude = $\mathcal{U} = \lambda - \lambda_0$ (Central East) 1.

2.
$$p = \frac{\sin \phi}{\tan \theta}$$

3.
$$q = \frac{\cos \phi \tan \phi_0}{\sin l}$$

• $\tan i = p - q$

where *i* is Direction of Qibla

Remarks:

- 1. The Direction of Qibla \mathbf{i} will be South of West and South of East if \mathbf{i} is +ve
- 2. The Direction of Qibla \dot{i} will be North of West and North of East if \dot{i} is -ve

Condition for longitude:-

Given λ In East (E)	if	$\lambda_0 < \lambda$	then	$\mathcal{U} = \lambda - \lambda_0$ (CE)
	if	$0 < \lambda < \lambda_0$	then	$\mathcal{L} = \lambda_0 - \lambda$ (CW)

Given $\pmb{\lambda}$ In West (W)	if	$0 < \lambda < 180^{o} - \lambda_0$	then	$\mathcal{L}=\lambda+\lambda_0$ (CW)
	If	180°- $\lambda_0 < \lambda < 180^o$	then	$\mathcal{U}=360-(\lambda+\lambda_0)$ (CE)