Exercise \#8.6

Q\#1: Show that the shortest distance between the lines $x+a=2 y=-12 z$ and $x=y+2 a=6(z-a)$ is $2 a$.

Solution: Given lines are

$$
\begin{gather*}
x+a=2 y=-12 z \\
x=y+2 a=6(z-a) \\
\left.\frac{x+a}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{-\frac{1}{12}}\right] \\
\frac{x+a}{12}=\frac{y}{6}=\frac{z}{-1} \tag{1}\\
x-y-2 a=0=x-6 z+6 a \tag{2}
\end{gather*}
$$

Now equation of a plane through line (2) is
$(x-y-2 a)+k(x-6 z+6 a)=0 \quad \Rightarrow(1+k) x-y-6 k z-2 a+6 k a \doteq 0$
Now direction ratios of normal vector of this plane are $1+k,-1,-6 k$
Then $12(1+k)+6(-1)-1(-6 k)=0 \Rightarrow 12+12 k-6+6 k=0$
$18 k+6=0 \Rightarrow 3 k+1=0 \Rightarrow 3 k=-1 \Rightarrow k=-\frac{1}{3}$
Putting in equation of plane

$$
\begin{array}{r}
(x-y-2 a)-\frac{1}{3}(x-6 z+6 a)=0 \\
3 x-3 y-6 a-x+6 z-6 a=0
\end{array}
$$

$2 x-3 y+6 z-12 a=0$ is required plane through line (2) and parallel to line (1)
Let d be the required shortest distance then

$$
\begin{aligned}
& d=\text { Distance of point }(-a, 0,0) \text { from plane } 2 x-3 y+6 z-12 a=0 \\
& d=\frac{|2(-a)-0+0-12 a|}{\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}} \Rightarrow d=\frac{|-2 a-12 a|}{\sqrt{4+9+36}} \Rightarrow d=\frac{|-14 a|}{\sqrt{49}} \Rightarrow d=\frac{14 a}{7} \Rightarrow d=2 a
\end{aligned}
$$

Q\#2: Find the shortest distance between the x-axis and the straight line

$$
\mathbf{a x}+\mathbf{b y}+\mathbf{c z}+\mathbf{d}=\mathbf{0}=\mathbf{a}^{\prime} \mathbf{x}+\mathbf{b}^{\prime} \mathbf{y}+\mathbf{c}^{\prime} \mathbf{z}+\mathbf{d}^{\prime}
$$

Solution: We know that equation of x-axis in symmetric form is

$$
\frac{x}{1}=\frac{y}{0}=\frac{z}{0} \quad----(1)
$$

Now given line is

$$
\begin{equation*}
a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime} \tag{2}
\end{equation*}
$$

Then equation of a plane containing this line is

$$
(a x+b y+c z+d)+k\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0
$$

$\Rightarrow\left(a+k a^{\prime}\right) x+\left(b+k b^{\prime}\right) y+\left(c+k c^{\prime}\right) z+\left(d+k d^{\prime}\right)=0$

As this plane is parallel to x -axis
So $1\left(a+k a^{\prime}\right)=0 \Longrightarrow a+k a^{\prime}=0 k a^{\prime}=-a k=-\frac{a}{a^{\prime}}$
Putting in equation of plane

$$
(a x+b y+c z+d)-\frac{a}{a^{\prime}}\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0
$$

$a a^{\prime} x+a^{\prime} b y+a^{\prime} c z+a^{\prime} d-a a^{\prime} x-a b^{\prime} y-a c^{\prime} z-a d^{\prime}=0$

$$
\left(a^{\prime} b-a b^{\prime}\right) y+\left(a^{\prime} c-a c^{\prime}\right) z+\left(a^{\prime} d-a d^{\prime}\right)=0 \text { is equation of plane containing line (2) }
$$

Let d^{\prime} be the required shortset distance then
$d^{\prime}=$ Distance of point $(0,0,0)$ from plane
$d^{\prime}=\frac{\left|\left(a^{\prime} b-a b^{\prime}\right)(0)+\left(a^{\prime} c-a c^{\prime}\right)(0)+\left(a^{\prime} d-a d^{\prime}\right)\right|}{\sqrt{\left(a^{\prime} b-a b^{\prime}\right)^{2}+\left(a^{\prime} c-a c^{\prime}\right)^{2}}}$
$\Rightarrow d^{\prime}=\frac{a^{\prime} d-a d^{\prime}}{\sqrt{\left(a^{\prime} b-a b^{\prime}\right)^{2}+\left(a^{\prime} c-a c^{\prime}\right)^{2}}}$ required distance
Q\#3: Show that the shortest distance between the straight lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$
and equations of the straight line perpendicular to both are $11 x+2 y-7 z+6=0=7 x+y-5 z+7$.
Solution: Given lines are

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \quad-----(1) \\
& \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}---12
\end{aligned}
$$

A point on line (1) is $A(1,2,3)$
A point on line (2) is $B(2,4,5)$
$\overrightarrow{A B}=(2-1) \hat{\imath}+(4-2) \hat{\jmath}+(5-3) \hat{k} \Longrightarrow \overrightarrow{A B}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$

Here direction ratios of line (1) are 2,3,4 \& direction ratios of line (2) are 3,4,5
Let \vec{u} be a vector perpendicular to both given lines then

$$
\vec{u}=\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right|
$$

Expanding from R_{1}

$$
\begin{aligned}
\vec{u} & =(15-16) \hat{\imath}-(10-12) \hat{\jmath}+(8-9) \hat{k} \\
\Rightarrow \vec{u} & =-\hat{\imath}+2 \hat{\jmath}-\hat{k}
\end{aligned}
$$

Let d be the required shortest distance between lines then
$d=\frac{\overrightarrow{A B} \cdot \vec{u}}{|\vec{u}|} \Rightarrow d=\frac{(\hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \cdot(-\hat{\imath}+2 \hat{\jmath}-\hat{k})}{\sqrt{1+4+1}}=\frac{1(-1)+2(2)+2(-1)}{\sqrt{6}} \Rightarrow d=\frac{-1+4-2}{\sqrt{6}} \Rightarrow d=\frac{1}{\sqrt{6}}$
is required distance

Now equations of line perpendicular to both given lines is

$$
\left|\begin{array}{ccc}
x-1 & y-2 & z-3 \\
2 & 3 & 4 \\
-1 & 2 & -1
\end{array}\right|=0=\left|\begin{array}{ccc}
x-2 & y-4 & z-5 \\
3 & 4 & 5 \\
-1 & 2 & -1
\end{array}\right|
$$

$(x-1)(-3-8)-(y-2)(-2+4)+(z-3)(7)=0=(x-2)(-4-10)-(y-4)(-3+5)+(z-5)(6+4)$
$(x-1)(-11)-(y-2)(2)+(z-3)(7)=0=(x-2)(-14)-(y-4)(2)+(z-5)(10)$
$-11 x-2 y+7 z+11+4-21=0=-14 x-2 y+10 z+28+8-50$
$-11 x-2 y+7 z-6=0=-14 x-2 y+10 z-14$
$11 x+2 y-7 z+6=0=7 x+y-5 z+7$ is required equation.

Q\#4: Find the shortest distance between the lines

$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \quad$ and $\quad \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
Find equations of the straight line perpendicular to both the given straight lines and also its points of intersection with the given straight lines.
Solution: given lines are

$$
\begin{align*}
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \quad-- \tag{1}\\
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \tag{2}
\end{align*}
$$

A point on line (1) is $A(3,5,7)$
A point on line (2) is $B(-1,-1,-1)$

$\overrightarrow{A B}=(-1-3) \hat{\imath}+(-1-5) \hat{\jmath}+(-1-7) \hat{k} \Rightarrow \overrightarrow{A B}=-4 \hat{\imath}-6 \hat{\jmath}-8 \hat{k}$
Here direction ratios of line (1) are $1,-2,1 \quad \&$ direction ratios of line (2) are $7,-6,1$
Let \vec{u} be a vector perpendicular to both lines then

$$
\vec{u}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -2 & 1 \\
7 & -6 & 1
\end{array}\right|
$$

Expanding from R_{1}

$$
\vec{u}=(-2+6) \hat{\imath}-(1-7) \hat{\jmath}+(-6+14) \hat{k}
$$

$$
\Rightarrow \vec{u}=4 \hat{\imath}+6 \hat{\jmath}+8 \hat{k}
$$

Let d be the required distance between lines then
$d=\frac{\overrightarrow{A B} \cdot \vec{u}}{|\vec{u}|} \Rightarrow d=\frac{(-4 \hat{\imath}-6 \hat{\jmath}-8 \hat{k}) \cdot(4 \hat{\imath}+6 \hat{\jmath}+8 \hat{k})}{\sqrt{(4)^{2}+(6)^{2}+(8)^{2}}} \Rightarrow d=\frac{-16-36-64}{\sqrt{16+36+64}} \Rightarrow d=\frac{-116}{\sqrt{116}}$
$d=-\sqrt{116} \Rightarrow d=-\sqrt{4 \times 29} \Rightarrow d=-2 \sqrt{29} \quad \Rightarrow d=2 \sqrt{29} \quad$ (In magnitude)
Now given lines are

$$
\begin{align*}
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}=t \tag{1}\\
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}=s \tag{2}
\end{align*}
$$

Parametric equations of given lines are

$$
\left.\left.\begin{array}{c}
x=3+t \\
y=5-2 t \\
z=7+t
\end{array}\right]----(1) \quad \& \quad \begin{array}{c}
x=-1+7 s \\
y=-1-6 s \\
z=-1+s \tag{2}
\end{array}\right]
$$

Any point on line (1) is $P(3+t, 5-2 t,+t)$
Any point on line (2) is $Q(-1+7 s,-1-6 s,-1+s)$
Direction ratios of line PQ are

$$
\begin{aligned}
& 3+t+1-7 s, 5-2 t+1+6 s, 7+t+1-s \\
& =t-7 s+4,-2 t+6 s+6, t-s+8
\end{aligned}
$$

If PQ is the line of shortest then PQ is perpendicular to both lines

So

$$
\left.\left.\left.\begin{array}{r}
1(t-7 s+4)-2(-2 t+6 s+6)+1(t-s+8)=0 \\
7(t-7 s+4)-6(-2 t+6 s+6)+1(t-s+8)=0
\end{array}\right] \quad \begin{array}{r}
t-7 s+4+4 t-12 s-12+t-s+8=0 \\
7 t-49 s+28+12 t-36 s-36+t-s+8=0
\end{array}\right] \Rightarrow \begin{array}{c}
6 t-20 s=0 \\
20 t-86 s=0
\end{array}\right]
$$

Hence coordinates of points $\mathrm{P} \& \mathrm{Q}$ are $\quad P(3,5,7) \& Q(-1,-1,-1)$
Now equation of line of shortest distance is

$$
\frac{x-3}{3+1}=\frac{y-5}{5+1}=\frac{z-7}{7+1} \Rightarrow \frac{x-3}{4}=\frac{y-5}{6}=\frac{z-7}{8} \Rightarrow \frac{x-3}{2}=\frac{y-5}{3}=\frac{z-7}{4} \text { is required line. }
$$

Q\#5: Find the coordinates of the point on the join of $(-3,7,-13) \&(-6,1,-10)$ which is nearest to the
intersection of the planes $\quad 2 x-y-3 z+32=0$ and $3 x+2 y-15 z-8=0$.
Solution: Equation of the line through $(-3,7,-13) \&(-6,1,-10)$ is

$$
\left.\begin{array}{c}
\frac{x+3}{-3+6}=\frac{y-7}{7-1}=\frac{z+13}{-13+10} \quad \Rightarrow \frac{x+3}{3}=\frac{y-7}{6}=\frac{z+13}{-3} \\
\text { Let } \quad \frac{x+3}{1}=\frac{y-7}{2}=\frac{z+13}{-1}=t \\
x=-3+t \\
y=7+2 t \tag{1}\\
z=-13-t
\end{array}\right]-\begin{aligned}
& x--(1)
\end{aligned}
$$

Any point on line (1) is $P(-3+t, 7+2 t,-13-t)$
Also given equation of line is

$$
2 x-y-3 z+32=0=3 x+2 y-15 z-8
$$

Let l, m, n be the direction cosines of this line
Since it lies on both planes, so by condition of perpendicularity

$$
\left.\begin{array}{c}
2 l-m-3 n=0 \\
3 l+2 m-15 n=0
\end{array}\right]=\frac{l}{15+6}=\frac{-m}{-30+9}=\frac{n}{4+3}=\frac{m}{3}=\frac{n}{1}
$$

So direcion ratios of given line are 3,3,1

To find a point on line, put $z=0$ in above equations

$$
\left.\begin{array}{l}
2 x-y+32=0 \\
3 x+2 y-8=0
\end{array}\right]
$$

$\frac{x}{8-64}=\frac{-y}{-16-96}=\frac{1}{4+3} \Rightarrow \frac{x}{-56}=\frac{-y}{-112}=\frac{1}{7} \Rightarrow x=-\frac{56}{7}=-8 \quad \Rightarrow y=\frac{112}{7}=16$
So $(-8,16,0)$ is a point on given line
Now equation of given line through $(-8,16,0) \&$ with direction ratios $3,3,1$ is

$$
\left.\begin{array}{c}
\frac{x+8}{3}=\frac{y-16}{3}=\frac{z}{1}=s \\
x=-8+3 s \\
y=16+3 s \tag{2}\\
z=s
\end{array}\right]
$$

Any poit on line (2) is $Q(-8+3 s, 16+3 s, s)$
Now direction ratios of line PQ are $-3+t+8-3 s, 7+2 t-16-3 s,-13-t-s$

$$
=t-3 s+5,2 t-3 s-9,-t-s-13
$$

If PQ is perpendicular to both lines (1) \& (2)
Then by condition of perpendicularity
$1(t-3 s+5)+2(2 t-3 s-9)-1(-t-s-13)=0] \Rightarrow t-3 s+5+4 t-6 s-18+t+s+13=0$
$3(t-3 s+5)+3(2 t-3 s-9)+1(-t-s-13)=0] \Rightarrow 3 t-9 s+15+6 t-9 s-27-t-s-13]$
$6 t-8 s=0$ \qquad
$8 t-19 s-25=0$ \qquad
Multiplying (I) by $4 \&$ (II) by 3 and subtracting (II) from (I)
$25 s=-75 \Rightarrow s=-3$
Put in (I)

$$
6 t-8(-3)=0 \Rightarrow 6 t+24=0 \Rightarrow t+4=0 \Rightarrow t=-4
$$

Put $\boldsymbol{t}=\mathbf{- 4}$ in coordinates of

$$
P(-3-4,7-8,-13+4) \Longrightarrow P(-7,-1,-9)
$$

Q\#6: Find the length and equations of the common perpendicular of the lines
$L: 6 x+8 y+3 z-13=0, \quad x+2 y+z-3=0$

$$
M: 3 x-9 y+5 z=0, \quad x+y-z=0
$$

Solution: given lines are
$L: 6 x+8 y+3 z-13=0, \quad x+2 y+z-3=0$
$M: 3 x-9 y+5 z=0, x+y-z=0$
We will write both equations in symmetric form.
Let l_{1}, m_{1}, n_{1} be direction cosines of line L.Since it lies on both planes.Hence by condition of perpendicularity

$$
\left.\begin{array}{r}
6 l_{1}+8 m_{1}+3 n_{1}=0 \\
l_{1}+2 m_{1}+n_{1}=0
\end{array}\right] \quad \begin{aligned}
& l_{1} \\
& 8-6 \\
& \frac{-m_{1}}{6-3}=\frac{n_{1}}{12-8} \quad \Rightarrow \frac{l_{1}}{2}=\frac{m_{1}}{-3}=\frac{n_{1}}{4}
\end{aligned}
$$

So direction ratios of line L are 2,-3,4
To find a point on line L , put $z=0$

$$
\left.\begin{array}{c}
6 x+8 y-13=0 \\
x+2 y-3=0
\end{array}\right]
$$

$\frac{x}{-24+26}=\frac{-y}{-18+13}=\frac{1}{12-8} \Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{1}{4} \Rightarrow x=\frac{1}{2}, \quad y=\frac{5}{4}$
So a point on line L is $\left(\frac{1}{2}, \frac{5}{4}, 0\right)$
Now eqaution of line L through $\left(\frac{1}{2}, \frac{5}{4}, 0\right) \&$ having direction ratios $2,-3,4$ is

$$
\frac{x-1 / 2}{2}=\frac{y-5 / 4}{-3}=\frac{z}{4} \quad----(1)
$$

Next suppose l_{2}, m_{2}, n_{2} be the direction cosines of line M. Since it lies on both planes, so by condition of perpendicularity

$$
\left.\begin{array}{r}
3 l_{2}-9 m_{2}+5 n_{2}=0 \\
l_{2}+m_{2}-n_{2}=0
\end{array}\right]
$$

$\frac{l_{2}}{9-5}=\frac{-m_{2}}{-3-5}=\frac{n_{2}}{3+9} \Rightarrow \frac{l_{2}}{4}=\frac{m_{2}}{8}=\frac{n_{2}}{12} \Rightarrow \frac{l_{2}}{1}=\frac{m_{2}}{2}=\frac{n_{2}}{3}$
So direction ratios of line M are $1,2,3$
To find a point on line M, put $z=0$

$$
\left.\begin{array}{c}
3 x-9 y=0 \\
x+y=0
\end{array}\right] \Rightarrow \begin{gathered}
x-3 y=0---(I) \\
-x+y=0
\end{gathered}---(I I)
$$

Subtracting we have

$$
-4 y=0 \Rightarrow \boldsymbol{y}=\mathbf{0}
$$

Put in (I)

$$
x-0=0 \Rightarrow x=0
$$

Now a point on line M is $(0,0,0)$
Hence equation of line M through $(0,0,0)$ having direction ratios 1,2,3
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
Now we want to find shortest distance between lines (1) \& (2)
A point on line (1) is $A\left(\frac{1}{2}, \frac{5}{4}, 0\right)$
A point on line (2) is $B(0,0,0)$

$$
\overrightarrow{A B}=-\frac{1}{2} \hat{\imath}-\frac{5}{4} \hat{\jmath}+0 \hat{k}
$$

Let \vec{u} be a vector perpendicular to both lines then

$$
\vec{u}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & -3 & 4 \\
1 & 2 & 3
\end{array}\right|
$$

Expanding from R_{1}
$\vec{u}=(-9-8) \hat{\imath}-(6-4) \hat{\jmath}+(4+3) \hat{k} \Rightarrow \vec{u}=-17 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}$

Suppose d be the required shortset distance between lines then
$d=\frac{\overrightarrow{A B} \cdot \vec{u}}{|\vec{u}|}=\frac{\left(-\frac{1}{2} \hat{\imath}-\frac{5}{4} \hat{\jmath}+0 \hat{k}\right) \cdot(-17 \hat{\imath}-2 \hat{\jmath}+7 \hat{k})}{\sqrt{(-17)^{2}+(-2)^{2}+(7)^{2}}} \Rightarrow d=\frac{\frac{17}{2}+\frac{5}{2}+0}{\sqrt{289+4+49}} \Rightarrow d=\frac{22 / 2}{\sqrt{342}} \Rightarrow d=\frac{11}{\sqrt{342}} \mathrm{~m}$
Now equation of common perpendicular is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-\frac{1}{2} & y-\frac{5}{4} & z \\
2 & -3 & 4 \\
-17 & -2 & 7
\end{array}\right|=0=\left|\begin{array}{ccc}
x & y & z \\
1 & 2 & 3 \\
-17 & -2 & 7
\end{array}\right| \\
& \left(x-\frac{1}{2}\right)(-21+8)-\left(y-\frac{5}{4}\right)(14+68)+z(-4-51)=0=x(14+6)-y(7+51)+z(-2+34) \\
& \left(x-\frac{1}{2}\right)(-13)-\left(y-\frac{5}{4}\right)(82)+z(-55)=0=20 x-58 y+32 z \\
& -13 x-82 y-55 z+\frac{13}{2}+\frac{205}{2}=0=20 x-58 y+32 z \\
& -13 x-82 y-55 z+\frac{218}{2}=0=10 x-29 y+16 z \\
& -13 x-82 y-55 z+109=0=10 x-29 y+16 z \\
& 13 x+82 y+55 z-109=0=10 x-29 y+16 z \text { is required line }
\end{aligned}
$$

Q\#7: Show that the shortest distance between ant two opposite edges of the tetrahedron formed by the planes $y+z=0, z+x=0, x+y=0, x+y+z=a$ is $\frac{2 a}{\sqrt{6}}$ and that the three straight lines of the shortest distances intersect at the point $(-\mathbf{a},-\mathbf{a},-\mathbf{a})$.
Solution: Suppose the planes $\quad y+z=0, z+x=0, x+y=0 \& x+y+z=a$ be represented by ABC, $A C D, A B D \& B C D$ respectively.

The equation of line AC is

$$
\left.\begin{array}{l}
y+z=0 \\
z+x=0
\end{array}\right] \text { or } y=-z \quad \& \quad x=-z
$$

or $\frac{x}{1}=\frac{y}{1}=\frac{z}{-1} \quad-----(1)$ is symmetric form of $A C$.
Now the equation of opposite edges BDis

$$
\left.\begin{array}{r}
x+y=0 \\
x+y+z=a
\end{array}\right]
$$

Let l, m, n be the direction cosines of this line.
Since it llies on both planes.So by condition of perpendicularity

$$
\left.\begin{array}{r}
l+m+0 n=0 \\
l+m+n=0
\end{array}\right] \quad \begin{array}{r}
\frac{l}{1-0}=\frac{-m}{1-0}=\frac{n}{1-1} \Rightarrow \frac{l}{1}=\frac{m}{-1}=\frac{n}{0}
\end{array}
$$

So direction ratios of line is $1,-1,0$

To find a point on this line, put $x=0$ in above equations

$$
\left.\begin{array}{r}
0+y=0 \\
0+y+z=a
\end{array}\right] \text { or } y=0 \quad \& y+z=a \quad \Rightarrow z=a
$$

So a point on this line BD is $(0,0, a)$, Hence equation of this line is

$$
\begin{equation*}
\frac{x}{1}=\frac{y}{-1}=\frac{z-a}{0} \tag{2}
\end{equation*}
$$

Now we will find shortest distance between line (1) \& (2)
A point on line (1) is $A(0,0,0)$
A point on line (2) is $B(0,0, a)$
Now

$$
\overrightarrow{A B}=0 \hat{\imath}+0 \hat{\jmath}+a \hat{k}
$$

Let \vec{u} be a vector perpendicular to both lines then

$$
\vec{u}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right|
$$

Expanding from R_{1}

$$
\vec{u}=(0-1) \hat{\imath}-(0+1) \hat{\jmath}+(-1-1) \widehat{k} \Rightarrow \vec{u}=-\hat{\imath}-\hat{\jmath}-2 \hat{k}
$$

Let d be the shortest distance between lines then

$$
d=\frac{\overrightarrow{A B} \cdot \vec{u}}{|\vec{u}|}=\frac{(0 \hat{\imath}+0 \hat{\jmath}+a \hat{k}) \cdot(-\hat{\imath}-\hat{\jmath}-2 \hat{k})}{\sqrt{1+1+4}} \Rightarrow d=\frac{0+0-2 a}{\sqrt{6}} \Rightarrow d=\frac{2 a}{\sqrt{6}} \quad \text { is required distance } .
$$

Similarly we can show that the shortest distance between opposite edges $\mathrm{AB}, \mathrm{CD} \& \mathrm{BC}, \mathrm{AD}$ is also $\frac{2 a}{\sqrt{6}}$
Now equation of line of shortest distance between opposite edges AC \& BD is

$$
\left|\begin{array}{ccc}
x & y & z \\
1 & 1 & -1 \\
-1 & -1 & -2
\end{array}\right|=0=\left|\begin{array}{ccc}
x & y & z-a \\
0 & -1 & 0 \\
-1 & -1 & -2
\end{array}\right|
$$

$x(-2-1)-y(-2-1)+z(-1+1)=0=x(2-0)-y(-2+0)+(z-a)(-1-1)$

$$
\begin{aligned}
& x(-3)-y(-3)+z(0)=0=x(2)-y(-2)+(z-a)(-2) \\
& -3 x+3 y+0 z=0=2 x+2 y-2 z+2 a \\
& x-y=0=x+y-z+a
\end{aligned}
$$

We see that the point $(-a,-a,-a)$ satisfies this equation, So this point lies on the line of shortest distance between AC \& BD. Similarly $(-a,-a,-a)$ also lies on the other two lines of shortest distance.

Hence it lies on the intersection of all three lines of shortest distance.
Q\#8: Find the shortest distance between the straight line joining the points $A(3,2,-4) \& B(1,6,-6)$ and the straight line joining the points $C(-1,1,-2) \& D(-3,1,-6)$.Also find equation of the line of shortest distance and coordinates of the feet of the common perpendicular.
Solution: Equation of line passing through $A(3,2,-4) \& B(1,6,-6)$ is
$\frac{x-3}{1-3}=\frac{y-2}{6-2}=\frac{z+4}{-6+4} \Rightarrow \frac{x-3}{-2}=\frac{y-2}{4}=\frac{z+4}{-2} \Rightarrow \frac{x-3}{1}=\frac{y-2}{-2}=\frac{z+4}{1}----(1)$
\& equation of line through $C(-1,1,-2) \& D(-3,1,-6)$ is
$\frac{x+1}{-3+1}=\frac{y-1}{1-1}=\frac{z+2}{-6+2} \Rightarrow \frac{x+1}{-2}=\frac{y-1}{0}=\frac{z+2}{-4} \quad \Rightarrow \frac{x+1}{1}=\frac{y-1}{0}=\frac{z+2}{2}$
A point on line (1) is $A_{1}(3,2,-4)$
A point on line (2) is $B_{1}(-1,1,-2)$
$\overrightarrow{A_{1} B_{1}}=(-1-3) \hat{\imath}+(1-2) \hat{\jmath}+(-2+4) \hat{k} \Rightarrow \overrightarrow{A_{1} B_{1}}=-4 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
Let \vec{u} be a vector perpendicular to both lines (1) \& (2) then
$\vec{u}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -2 & 1 \\ 1 & 0 & 2\end{array}\right|$

Expanding by R_{1}
$\vec{u}=(-4-0) \hat{\imath}-(2-1) \hat{\jmath}+(0+2) \hat{k} \Rightarrow \vec{u}=-4 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
Let d be the required shortest distance between lines (1) \& (2) then
$d=\frac{\overrightarrow{A_{1} B_{1}} \cdot \vec{u}}{|\vec{u}|}=\frac{(-4 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \cdot(-4 \hat{\imath}-\hat{\jmath}+2 \hat{k})}{\sqrt{16+1+4}} \Rightarrow d=\frac{16+1+4}{\sqrt{21}} \Rightarrow d=\frac{21}{\sqrt{21}} \Rightarrow \boldsymbol{d}=\sqrt{\mathbf{2 1}}$
As lines are

$$
\begin{align*}
\frac{x-3}{1} & =\frac{y-2}{-2}=\frac{z+4}{1}=t \tag{1}\\
\& \quad \frac{x+1}{1} & =\frac{y-1}{0}=\frac{z+2}{2}=s \tag{2}
\end{align*}
$$

Any point on line (1) is $P(3+t, 2-2 t,-4+t)$
Any point on line (2) is $Q(-1+s, 1,-2+2 s)$
Direction ratios of PQ are $3+t+1-s, 2-2 t-1,-4+t+2-2 s$
Direction ratios of line PQ are $t-s+4,-2 t+1, t-2 s-2$
Suppose PQ is line of shortest distance then PQ is perpendicular to both lines (1) \& (2)
So by condition of perpendicularity
$1(t-s+4)-2(-2 t+1)+1(t-2 s-2)=0]$
$1(t-s+4)+0(-2 t+1)+2(t-2 s-2)=0]$
$\left.\left.\begin{array}{l}t-s+4+4 t-2+t-2 s-2=0 \\ t-s+4+2 t-4 s-4=0\end{array}\right] \Rightarrow \begin{array}{l}6 t-5 s=0 \\ 3 t-5 s=0\end{array}\right] \Rightarrow \boldsymbol{t}=\mathbf{0} \quad \& \quad s=0$
So coordinates of feet of perpendicular $\mathrm{P} \& \mathrm{Q}$ are $P(3,2,-4) \& Q(-1,1,-2)$.
Now equation of common perpendicular PQ is
$\frac{x-3}{-1-3}=\frac{y-2}{1-2}=\frac{z+4}{-2+4} \quad \Rightarrow \frac{x-3}{-4}=\frac{y-2}{-1}=\frac{z+4}{2} \quad$ or $\quad \frac{x-3}{4}=\frac{y-2}{1}=\frac{z+4}{-2}$

Checked by: Sir Hameed ullah (hameedmath2017 @ gmail.com)

Specially thanks to my Respected Teachers

Prof. Muhammad Ali Malik (M.phill physics and Publisher of www.Houseofphy.blogspot.com)
Muhammad Umar Asghar sb (M.Sc Mathematics)
Hameed Ullah sb (M.Sc Mathematics)

