Exercise \#8.5

Q\#1: Show that the straight line $\frac{x+3}{2}=\frac{y-4}{-7}=\frac{z}{3}$ is parallel to the plane $4 x+2 y+2 z=9$.

Solution:

Given equation of line and plane

$$
\begin{aligned}
& \frac{x+3}{2}=\frac{y-4}{-7}=\frac{z}{3} \quad----(L) \\
\& & 4 x+2 y+2 z=9 \quad----(P)
\end{aligned}
$$

Direction ratios of line L are $\quad a_{1}=2, \quad b_{1}=-7, \quad c_{1}=3$
Now direction ratios of normal vector of plane P are $\quad a_{2}=4, \quad b_{2}=2, \quad c_{2}=2$
We have to prove $\mathrm{P} \| \mathrm{L}$
If P || L then normal vector of plane P is perpendicular to the line L . we have

$$
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
$$

$(2)(4)+(-7)(2)+(3)(2)=0$

$$
8-14+6=0
$$

$$
0=0
$$

Hence proved that the line L and plane P are parallel.
Q\#2: Show that the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ is perpendicular to the plane $4 x+8 y+12 z+19=0$.

Solution:

Given equation of line and plane are

$$
\begin{array}{r}
\frac{x}{1}=\frac{y}{2}=\frac{z}{3}----(L) \\
4 x+8 y+12 z+19=0----(\mathrm{P})
\end{array}
$$

Direction ratios of line L are $a_{1}=1, b_{1}=2, c_{1}=3$
and direction ratios of normal vector of plane P are $a_{2}=4, b_{2}=8, c_{2}=12$

We have to prove $\mathrm{P} \perp \mathrm{L}$
If $P \perp L$ then normal vector of plane P is parallel to the line L. we have

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{1}{4} & =\frac{2}{8}=\frac{3}{12} \\
\Rightarrow \frac{1}{4} & =\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

Hence proved that the line L and plane P are perpendicular.

Q\#3:Find the condition that the straight line $x=m z+a, y=n z+b$ may lie the plane $A x+B y+C z+D=0$.
Solution:Given equations of line and plane are

$$
\begin{aligned}
\quad x=m z+a, \quad y & =n z+b \\
\& \quad A x+B y+C z+D & =0 \quad----(P)
\end{aligned}
$$

From given equation of line is

$$
\begin{align*}
& x=m z+a \quad \Rightarrow z=\frac{x-a}{m} \tag{1}\\
& y=n z+b \quad \Rightarrow z=\frac{y-b}{n} \tag{2}
\end{align*}
$$

$$
\Rightarrow \frac{x-a}{m}=\frac{y-b}{n}=\frac{z}{1}
$$

Let

$$
\frac{x-a}{m}=\frac{y-b}{n}=\frac{z}{1} \quad=\quad t \text { (say) }
$$

Then $\left\{\begin{array}{l}x=a+m t \\ y=b+n t \\ z=t\end{array}\right.$
Given that line L lies on the plane P then each point of line lies on plane. Hence point $(a+m t, b+n t, t)$ lies on plane.So equation (P) becomes

$$
\begin{aligned}
& \Rightarrow(a+m t)+B(b+n t)+C t+D=0 \\
& \Rightarrow A a+A m t+B b+B n t+C t+D=0 \\
& \Rightarrow[A a+B b+D]+t[A m+B n+C]=0
\end{aligned}
$$

This eq. must be satisfied for every value of

$$
\Rightarrow A a+B b+D=0 \quad \& \quad A m+B n+C=0
$$

This is the required condition for which the given line lies on the given plane.
Q\#4: Determine the point, if any, common to the straight line $x=1+t, y=t, z=-1+t$ and the
Plane $x+y+z=3$.

Solution:

Given equation of straight line and plane are

Let a point $(1+t, t,-1+t)$ is common point of line L and plane P .
This point satisfies the equation of the plane then
$\Rightarrow 1+t+t+(-1+t)=3$
$\Rightarrow 1+t+t-1+t=3 \quad \Rightarrow 3 t=3 \quad \Rightarrow \boldsymbol{t}=\mathbf{1}$
Hence the common point of the line L and plane P is $(1+t, t,-1+t)=(1+1,1,-1+1)=,(2,1,0)$.

Q\#5: Find an equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ and through the straight line

$$
\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}
$$

Solution:Given equation of straight line

$$
\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}
$$

Let $A, B \& C$ are the direction ratios of normal vector of the plane Then equation of the plane through given line will be written as

$$
\begin{array}{r}
A(x-a)+B(y-b)+C(z-c)=0 \\
A l+B m+C n=0 \tag{2}
\end{array}
$$

Required equation of the plane passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$. then eq. (1) will become

$$
A\left(x_{1}-a\right)+B\left(y_{1}-b\right)+C\left(z_{1}-c\right)=0
$$

Eliminating A,B \& C from eq. (1),(2) \&(3) we have
or

$$
\begin{aligned}
\left|\begin{array}{ccc}
x-a & y-b & z-c \\
l & m & n \\
x_{1}-a & y_{1}-b & z_{1}-c
\end{array}\right| & =0 \\
\sum(x-a)\left|\begin{array}{cc}
m & n \\
y_{1}-b & z_{1}-c
\end{array}\right| & =0 \\
\sum(x-a)\left[m\left(z_{1}-c\right)-n\left(y_{1}-b\right)\right] & =0
\end{aligned}
$$

This is the required equation of plane.
Q\#6: Find an equation of the plane passing through straight line $x+2 z=4, y-z=8$ and parallel to the straight line

$$
\frac{x-3}{2}=\frac{y+4}{3}=\frac{z-7}{4}
$$

Solution: Given equation of straight line

$$
\begin{gathered}
x+2 z=4, y-z=8 \quad----L_{1} \\
\frac{x-3}{2}=\frac{y+4}{3}=\frac{z-7}{4} \quad----L_{2}
\end{gathered}
$$

Consider line $L_{1} \quad x+2 z=4, y-z=8$

$$
\begin{aligned}
\Rightarrow 2 z=4-x, & z=y-8 \\
\Rightarrow z=\frac{x-4}{-2}--(1), & z=\frac{y-8}{1}---(2)
\end{aligned}
$$

Equating (1) \& (2)

$$
\frac{x-4}{-2}=\frac{y-8}{1}=\frac{z}{1} \quad(\text { symmetric } \text { form })
$$

Let $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ are direction ratios of normal vector of the plane
The equation will be written as

$$
A(x-4)+B(y-8)+C(z-0)=0----(1)
$$

Where

$$
\begin{equation*}
A(-2)+B(1)+C(1)=0 \tag{2}
\end{equation*}
$$

As required equation of the plane is parallel to the line L_{2}

$$
\begin{equation*}
A(2)+B(3)+C(4)=0 \tag{3}
\end{equation*}
$$

Mathematics

Eliminating A,B \&C from eq.(1),(2) \&(3) we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
x-4 & y-8 & z \\
-2 & 1 & 1 \\
2 & 3 & 4
\end{array}\right| & =0 \\
(x-4)\left|\begin{array}{cc}
1 & 1 \\
3 & 4
\end{array}\right|-(y-8)\left|\begin{array}{cc}
-2 & 1 \\
2 & 4
\end{array}\right|+z\left|\begin{array}{cc}
-2 & 1 \\
2 & 3
\end{array}\right| & =0 \\
\Rightarrow(x-4)(1)-(y-8)(-10)+z(-8) & =0 \\
\Rightarrow x-4-(y-8)(-10)-8 z & =0 \\
\Rightarrow x-4+10 y-80-8 z & =0 \\
\Rightarrow x+10 y-8 z-84 & =0 \quad \text { is required equation of the plane. }
\end{aligned}
$$

Q\#7: Find an equation of the plane passing through the point (α, β, γ) and parallel to each of the straight lines

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad \text { and } \quad \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}
$$

Solution:

Let equation of the plane passes through the point (α, β, γ) with direction ratios $\mathrm{A}, \mathrm{B} \& \mathrm{C}$

$$
(x-\alpha)+B(y-\beta)+C(z-\gamma)=0 \quad----(1)
$$

Equation of the plane is parallel to the given lines

$$
\begin{aligned}
& \frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad----L_{1} \\
& \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}} \quad----L_{2}
\end{aligned}
$$

We know that normal vectors of the plane is perpendicular to lines $L_{1} \& L_{2}$

Therefore,

$$
\begin{aligned}
& A l_{1}+B m_{1}+C n_{1}=0 \\
& A l_{2}+B m_{2}+C n_{2}=0
\end{aligned}
$$

Now eliminating $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ from eq. (1),(2) $\&(3)$ we have
or

$$
\Rightarrow \sum(x-\alpha)\left(m_{1} n_{2}-m_{2} n_{1}\right)=0
$$

This is the required equation of plane.

Q\#8: Find an equation of the plane through the straight line $a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}$ and parallel to the straight line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$.
Solution: Given equations of the straight lines are
\&

$$
a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}----L_{1}
$$

$$
\frac{x}{l}=\frac{y}{m}=\frac{z}{n}----------L_{2}
$$

Let equation of the plane through the straight line $a x+b y+c z+d=0=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}$ can be written as

$$
\begin{aligned}
& (a x+b y+c z+d)+k\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0 \quad----(P) \\
& a x+b y+c z+d+a^{\prime} k x+b^{\prime} k y+c^{\prime} k z+d^{\prime} k=0
\end{aligned}
$$

$\left(a+a^{\prime} k\right) x+\left(b+b^{\prime} k\right) y+\left(c+c^{\prime} k\right) z+\left(d+d^{\prime} k\right)=0$
Here $A=\left(a+a^{\prime} k\right) \quad, \quad B=\left(b+b^{\prime} k\right) \quad, \quad C=\left(c+c^{\prime} k\right)$
are the direction ratios of the normal vector of the plane.
This plane is parallel to the line L_{2}
Then normal vector of the plane is perpendicular to the line L_{2}

$$
\begin{aligned}
\Rightarrow\left(a+a^{\prime} k\right) l+\left(b+b^{\prime} k\right) m+\left(c+c^{\prime} k\right) n & =0 \\
\Rightarrow a l+a^{\prime} k l+b m+b^{\prime} k m+c n+c^{\prime} k n & =0 \\
\Rightarrow a^{\prime} k l+b^{\prime} k m+c^{\prime} k n+a l+b \text { 菤 }+c n & =0 \\
\Rightarrow k\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right)+a l+b m+c n & =0 \\
\Rightarrow k\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right) & =-(a l+b m+c n) \\
\Rightarrow k & =\frac{-(a l+b m+c n)}{\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right)}
\end{aligned}
$$

Using value of k in equation P

$$
(a x+b y+c z+d)-\frac{(a l+b m+c n)}{\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right)}\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0
$$

$\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right)(a x+b y+c z+d)-(a l+b m+c n)\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)=0$

$$
\left(a^{\prime} l+b^{\prime} m+c^{\prime} n\right)(a x+b y+c z+d)=(a l+b m+c n)\left(a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}\right)
$$

This is the required equation of the plane.
Q\#9: Prove that the straight lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ are coplanar.

Solution:

Given equations of straight lines are

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}----L_{1} \\
& \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}----L_{2}
\end{aligned}
$$

We have to prove that these straight lines are coplanar.

As we know that the straight lines $\frac{x-a_{1}}{l_{1}}=\frac{y-b_{1}}{m_{1}}=\frac{z-c_{1}}{n_{1}} \& \frac{x-a_{2}}{l_{2}}=\frac{y-b_{2}}{m_{2}}=\frac{z-c_{2}}{n_{2}}$ are coplanar if

$$
\left|\begin{array}{ccc}
a_{2}-a_{1} & b_{2}-b_{1} & c_{2}-c_{1} \\
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2}
\end{array}\right|=0
$$

From $L_{1} \& L_{2} \quad$ we have $\quad\left(a_{1}, b_{1}, c_{1}\right)=(1,2,3) \quad \& \quad\left(a_{2}, b_{2}, c_{2}\right)=(2,3,4)$
$l_{1}=2, \quad m_{1}=3 \quad \& \quad n_{1}=4 \quad$ for line L_{1}

$$
l_{2}=3, \quad m_{2}=4 \quad \& \quad n_{2}=5 \quad \text { for line } L_{2}
$$

Then

$$
\begin{aligned}
\left|\begin{array}{ccc}
2-1 & 3-2 & 4-3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right| & =0 \\
\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{array}\right| & =0
\end{aligned}
$$

Expanding by R_{1}

$$
\left.\begin{array}{lr}
\Rightarrow & 1(15-16)-1(10-12)+1(8-9)=0 \\
\Rightarrow & 1(-1)-1(-2)+1(-1)=0 \\
\Rightarrow & -1+2-1=0 \\
\Rightarrow & 0
\end{array}\right)=0
$$

Hence given straight lines are coplanar.
Q\#10: prove that the straight lines $\frac{x-h}{2}=\frac{y+1}{-3}=\frac{z+10}{8} \quad$ and $\quad \frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ intersect.Also find the point of intersection and the plane through them.
Solution:Given equations of straight lines

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}----L_{1} \\
& \frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7} \quad----L_{2}
\end{aligned}
$$

Let

$$
\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}=t \quad(\text { say })
$$

\&

$$
\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}=s(s a y)
$$

Now parametric equations of given straight lines are

\&

$$
\left.\begin{array}{l}
x=4+s \\
y=-3-4 \\
z=-1+7 s
\end{array}\right\} \quad---\left(L_{2}\right)
$$

Any point on line L_{1} is $(1+2 t,-1-3 t,-10+8 t)$
Any point on line L_{2} is $(4+s,-3-4 s,-1+7 s)$
Let a point $P\left(x_{o}, y_{o}, z_{o}\right)$ is a point of intersection of lines $L_{1} \& L_{2}$.So this point will satisfy equations (1) \&(2).
$x_{o}=1+2 t$

$$
y_{o}=-1-3 t
$$

$$
\begin{aligned}
x_{o} & =4+s \\
y_{o} & =-3-4 s \\
z_{o} & =-1+7 s
\end{aligned}
$$

Equating above

$$
\begin{array}{clr}
1+2 t=4+s & \Rightarrow & 2 t-s=3 \\
-1-3 t=-3-4 s & \Rightarrow & 3 t-4 s=2 \\
-10+8 t=-1+7 s & \Rightarrow & 8 t-7 s=9
\end{array}
$$

Now solving eq.(3) $\&(4)$
Multiplying eq.(3) by 4 and subtracting eq.(3) $\&(4)$

$$
8 t-4 s-3 t+4 s=12-2 \quad \Rightarrow 5 t=10 \quad \Rightarrow \boldsymbol{t}=\mathbf{2}
$$

Putting value of \boldsymbol{t} in eq.(3)

$$
2(2)-s=3 \quad \Rightarrow 4-s=3 \quad \Rightarrow s=1
$$

we see that these values of $\mathbf{t} \& \mathbf{s}$ satisfies eq.(5)
hence given lines intersect each other and their point of intersection is $\left(x_{o}, y_{o}, z_{o}\right)=(5,-7,6)$
Now we have to find the equation of plane through these lines.
A plane through these lines must be contain the point of intersection of these lines.
If $A, B \& C$ are direction ratios of normal vector of the plane then equation of plane through $(5,-7,6)$ is
$A(x-5)+B(y+7)+C(z-6)=0----(I)$
As this plane contain both lines, so

$$
\begin{aligned}
& 2 A-3 B+8 C=0 \\
& A----(I I) \\
& A B+7 C=0
\end{aligned}----(I I I)
$$

Eliminating A,B \&C from eq.(I) (II) \& (III) we have
$\Rightarrow(x-5)(-21+32)-(y+7)(14-8)+(z-6)(-8+3)=0$
$\Rightarrow \quad(x-5)(11)-(y+7)(6)+(z-6)(-5)=0$
\Rightarrow
$\Rightarrow \quad 11 x-55-6 y-42-5 z+30-6$
\Rightarrow

Checked by: Sir Hameed ullah (hameedmath2017 @ gmail.com)

Specially thanks to my Respected Teachers

Prof. Muhammad Ali Malik (M.phill physics and Publisher of www.Houseofphy.blogspot.com) Muhammad Umar Asghar sb (MSc Mathematics)

Hameed Ullah sb (MSc Mathematics)

