Exercise \#8.3

Find an equation of the plane through the three given points:
Q\#1: $(2,1,1),(6,3,1),(-2,1,2)$.

Solution:

Given points are $P(2,1,1), Q(6,3,1) \& R(-2,1,2)$
Let required equation of the plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

Since it passes through the points $P(2,1,1), Q(6,3,1) \& R(-2,1,2)$

$$
\begin{align*}
& \text { So } \quad 2 a+b+c+d=0 \tag{2}\\
& 6 a+3 b+c+d=0 \\
&-2 a+b+2 c+- \tag{3}
\end{align*}
$$

Subtracting eq . (2),(3) \& (3),(4)

$$
\left.\Rightarrow-4 a-2 b+0 c=0 \quad \begin{array}{l}
2 a+b+0 c=0 \\
8 a+2 b-c=0
\end{array}\right]
$$

$$
\frac{a}{\left|\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right|}=\frac{-b}{\left|\begin{array}{cc}
2 & 0 \\
8 & -1
\end{array}\right|}=\frac{c}{\left|\begin{array}{ll}
2 & 1 \\
8 & 2
\end{array}\right|} \Rightarrow \frac{a}{-1-0}=\frac{-b}{-2-0}=\frac{c}{4-8} \quad \Rightarrow \frac{a}{-1}=\frac{b}{2}=\frac{c}{-4} \Rightarrow \boldsymbol{a}=-\mathbf{1}, \quad \boldsymbol{b}=\mathbf{2} \& \quad c=-4
$$

Putting these values in equation (2)
$2(-1)+2+(-4)+d=0 \quad \Rightarrow-2+2-4+d=0 \quad \Rightarrow d=4$
Now putting all values in equation $(1)(-1) x+2 y+(-4) z+4=0 \quad \Rightarrow-x+2 y-4 z-4=0$

$$
x-2 y+4 z-4=0 \quad \text { is required equation of plane }
$$

Method II.

Given points are $P(2,1,1), Q(6,3,1) \& R(-2,1,2)$
Let required equation of the plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

For point $P(2,1,1) \quad \Rightarrow$

$$
2 a+b+c+d=0
$$

\qquad

For point $Q(6,3,1) \quad \Rightarrow$

$$
\begin{equation*}
6 a+3 b+c+d=0 \tag{3}
\end{equation*}
$$

\qquad
For point $R(-2,1,2) \Rightarrow$

$$
\begin{equation*}
-2 a+b+2 c+d=0 \tag{4}
\end{equation*}
$$

Eliminating a, b, c and d from equation (1), (2), (3)\& (4)
we get an equation of the required plane as

$$
\left|\begin{array}{cccc}
x & y & z & 1 \\
2 & 1 & 1 & 1 \\
6 & 3 & 1 & 1 \\
-2 & 1 & 2 & 1
\end{array}\right|=0
$$

By using row operations

$$
\left|\begin{array}{cccc}
x+2 & y-1 & z-2 & 0 \\
4 & 0 & -1 & 0 \\
8 & 2 & -1 & 0 \\
-2 & 1 & 2 & 1
\end{array}\right|=0
$$

by $R_{1}-R_{4}, R_{2}-R_{4}$ and $R_{3}-R_{4}$

Now expanding by C_{4}

$$
\left|\begin{array}{ccc}
x+2 & y-1 & z-2 \\
4 & 0 & -1 \\
8 & 2 & -1
\end{array}\right|=0
$$

$-4\left|\begin{array}{cc}y-1 & z-2 \\ 2 & -1\end{array}\right|+1\left|\begin{array}{cc}x+2 & y-1 \\ 8 & 2\end{array}\right|=0$

\Rightarrow	$-4(-1(y-1)-2(z-2))+1(2(x+2)-8(y-1))=0$
\Rightarrow	$-4(-y+1-2 z+4)+1(2 x+4-8 y+8)=0$
\Rightarrow	$4 y-4+8 z-16+2 x+4-8 y+8=0$
\Rightarrow	$2 x-4 y+8 z-8=0$
\Rightarrow	$x-2 y+4 z-4=0$

Q\#2: $(1,-1,2),(-3,-2,6),(6,0,1)$. DO YOURSELF AS ABOVE

Q\#3: $(-1,1,1),(2,-8,-2),(4,1,0)$. DO YOURSELF AS ABOVE

Q\#4: Find equations of the plane bisecting the angles between the planes
$3 x+2 y-6 z+1=0$ and $2 x+y+2 z-5=0$.
Solution: Given equations of the plane are
$3 x+2 y-6 z+1=0$ $\left(P_{1}\right)$
$2 x+y+2 z-5=0$ \qquad $-\left(P_{2}\right)$

Let a point A on the plane $\left(P_{1}\right)$ and point B on the plane $\left(P_{2}\right)$ and point $P\left(x_{1}, y_{1}, z_{1}\right)$ on the required plane bisecting the angles between given planes.

Then the distance of point $P\left(x_{1}, y_{1}, z_{1}\right)$ from both planes should be equal.
From the figure $\quad|\overrightarrow{A P}|=|\overrightarrow{B P}|$
$\frac{\left|3 x_{1}+2 y_{1}-6 z_{1}+1\right|}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{\left|2 x_{1}+y_{1}+2 z_{1}-5\right|}{\sqrt{2^{2}+1^{2}+2^{2}}}$
$\frac{3 x_{1}+2 y_{1}-6 z_{1}+1}{7}= \pm \frac{2 x_{1}+y_{1}+2 z_{1}-5}{3}$

$$
\Rightarrow 3\left(3 x_{1}+2 y_{1}-6 z_{1}+1\right)=7\left(2 x_{1}+y_{1}+2 z_{1}-5\right)
$$

$\Rightarrow 9 x_{1}+6 y_{1}-18 z_{1}+3=14 x_{1}+7 y_{1}+14 z_{1}-35$
$9 x_{1}+6 y_{1}-18 z_{1}+3-14 x_{1}-7 y_{1}-14 z_{1}+35=0$
$\Rightarrow-5 x_{1}-y_{1}-32 z_{1}+38=0$
$5 x_{1}+y_{1}+32 z_{1}-38=0$

$$
\begin{aligned}
& \frac{3 x_{1}+2 y_{1}-6 z_{1}+1}{7}=-\frac{2 x_{1}+y_{1}+2 z_{1}-5}{3} \\
& \Rightarrow 3\left(3 x_{1}+2 y_{1}-6 z_{1}+1\right)=-7\left(2 x_{1}+y_{1}+2 z_{1}-5\right) \\
& \Rightarrow 9 x_{1}+6 y_{1}-18 z_{1}+3=-14 x_{1}-7 y_{1}-14 z_{1}+35 \\
& 9 x_{1}+6 y_{1}-18 z_{1}+3+14 x_{1}+7 y_{1}+14 z_{1}-35=0
\end{aligned}
$$

$$
23 x_{1}+13 y_{1}-4 z_{1}-32=0
$$

Q\#5: Transform the equations of the planes $3 x-4 y+5 z=0$ and $2 x-y-2 z=5$ to normal form and hence find measure of the angle between them.
Solution: Given equations of the plane are
$3 x-4 y+5 z=0 \quad$------------ $\left(P_{1}\right) \quad \& \quad 2 x-y-2 z=5$
Let $\overrightarrow{n_{1}}=3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ is a normal vector of plane $\left(P_{1}\right)$
$\& \overrightarrow{n_{2}}=2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$ is a normal vector of plane $\left(P_{2}\right)$
$\left|\overrightarrow{n_{1}}\right|=\sqrt{3^{2}+4^{2}+5^{2}}=\sqrt{50}$
$\left(P_{1}\right) \Rightarrow \quad \frac{3}{\sqrt{50}} x-\frac{4}{\sqrt{50}} y+\frac{5}{\sqrt{50}} z=0$
$\left|\overrightarrow{n_{2}}\right|=\sqrt{2^{2}+1^{2}+2^{2}}=\sqrt{9}=3$
$\left(P_{2}\right) \Rightarrow \quad \frac{2}{3} x-\frac{1}{3} y-\frac{2}{3} z=\frac{5}{3}$

Let θ be the angle between $\left(P_{1}\right) \&\left(P_{2}\right)$ then by
$\cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}=\frac{(3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}) \cdot(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})}{(3) \sqrt{50}}=\frac{6+4-10}{3 \sqrt{50}}=\frac{10-10}{3 \sqrt{50}}=0 \quad \Rightarrow \quad \theta=\cos ^{-1}(0)$
Q\#6: Find equations to the plane through the points $(4,-5,3),(2,3,1)$ and parallel to the coordinate axis.
Solution: Let required equation of the plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

Since it passes through the points $(4,-5,3),(2,3,1)$
So

$$
\begin{array}{r}
4 a-5 b+3 c+d=0 \\
2 a+3 b+c+d=0 \tag{3}
\end{array}
$$

\qquad
Subtracting eq. (2) \& (3)

$$
\begin{equation*}
2 a-8 b+2 c=0 \tag{4}
\end{equation*}
$$

\qquad
Case (I): Since required plane is parallel to x-axis whose direction ratios are $1,0,0$
So $(1) \Rightarrow a+0 b+0 c=0$ \qquad
Now using eq. (4) \& (5)
$\frac{a}{\left|\begin{array}{cc}-8 & 2 \\ 0 & 0\end{array}\right|}=\frac{-b}{\left|\begin{array}{ll}2 & 2 \\ 1 & 0\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}2 & -8 \\ 1 & 0\end{array}\right|} \Rightarrow \frac{a}{0-0}=\frac{-b}{0-2}=\frac{c}{0+8} \quad \Longrightarrow \frac{a}{0}=\frac{b}{2}=\frac{c}{8} \quad \Longrightarrow \frac{a}{0}=\frac{b}{1}=\frac{c}{4}$
Putting these values in eq. (3)
$0+3+4+d=0 \Rightarrow \boldsymbol{d}=-7$
Putt all values in eq. (1)

$$
\begin{aligned}
0 x+y+4 z-7 & =0 \\
\Rightarrow y+4 z-7 & =0 \quad \text { is required equation of plane }
\end{aligned}
$$

Case (II): Since required plane is parallel to y - axis whose direction ratios are $0,1,0$
So $(1) \Rightarrow \quad 0 a+b+0 c=0$ \qquad
Now using eq. (4) \& (6)
$\frac{a}{\left|\begin{array}{cc}-8 & 2 \\ 1 & 0\end{array}\right|}=\frac{-b}{\left|\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}2 & -8 \\ 0 & 1\end{array}\right|} \Longrightarrow \frac{a}{0-2}=\frac{-b}{0-0}=\frac{c}{2-0} \Longrightarrow \frac{a}{-2}=\frac{b}{0}=\frac{c}{2} \Rightarrow \frac{a}{1}=\frac{b}{0}=\frac{c}{-1}$

Putting these values in eq. (3)

$$
2(1)+0-1+d=0 \quad \Rightarrow \boldsymbol{d}=-\mathbf{1}
$$

Putt all values in eq. (1)
$x+0 y-z-1=0 \quad \Rightarrow x-z-1=0 \quad$ is required equation of plane
Case (III): Since required plane is parallel to z - axis whose direction ratios are $0,0,1$
So $(1) \Rightarrow \quad 0 a+0 b+c=0$ \qquad
Now using eq. (4) \& (7)
$\frac{a}{\left|\begin{array}{cc}-8 & 2 \\ 0 & 1\end{array}\right|}=\frac{-b}{\left\lvert\, \begin{array}{c}2 \\ 0\end{array}\right.} \begin{aligned} & 1\end{aligned} \left\lvert\,=\frac{c}{\left|\begin{array}{cc}2 & -8 \\ 0 & 0\end{array}\right|} \quad \Rightarrow \frac{a}{-8-0}=\frac{-b}{2-0}=\frac{c}{0-0} \quad \Rightarrow \frac{a}{-8}=\frac{-b}{2}=\frac{c}{0} \quad \Rightarrow \frac{a}{4}=\frac{b}{1}=\frac{c}{0}\right.$
Putting these values in eq. (3)

$$
2(4)+3+0+d=0 \quad \Rightarrow \boldsymbol{d}=\mathbf{- 1 1}
$$

Putt all values in eq. (1)
$4 x+y-0 z-11=0 \quad \Rightarrow 4 x+y-11=0 \quad$ is required equation of plane.
Q\#7: Find an equation of the plane through the points $(1,0,1)$ and $(2,2,1)$ and perpendicular to the plane $x-y-z+4=0$.
Solution: Let required equation of the plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

It passes through the points $(1,0,1)$ and $(2,2,1)$
$(1,0,1) \Rightarrow \quad a+0 b+c+d=0$ \qquad
$(2,2,1) \Rightarrow \quad 2 a+2 b+c+d=0$ \qquad

Subtracting eq. (2) \& (3)

$$
\begin{equation*}
-a-2 b+0 c=0 \tag{4}
\end{equation*}
$$

Given equation of the plane is

$$
\begin{equation*}
x-y-z+4=0 \tag{5}
\end{equation*}
$$

Let for plane (1)

$$
\overrightarrow{n_{1}}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}
$$

Let for plane (5)

$$
\overrightarrow{n_{2}}=\hat{\imath}-\hat{\jmath}-\hat{k}
$$

As plane (1) is perpendicular to given plane . So by condition of perpendicularity
$\overrightarrow{n_{1}} \perp \overrightarrow{n_{2}} \Rightarrow \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=0$
$(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(\hat{\imath}-\hat{\jmath}-\hat{k})=0$

$$
\begin{equation*}
a-b-c=0 \tag{6}
\end{equation*}
$$

Using eq. (4) \& (6)
$\frac{a}{\left|\begin{array}{cc}-2 & 0 \\ -1 & -1\end{array}\right|}=\frac{-b}{\left|\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}-1 & -2 \\ 1 & -1\end{array}\right|} \quad \Rightarrow \frac{a}{2+0}=\frac{-b}{1-0}=\frac{c}{1+2} \quad \Rightarrow \frac{a}{2}=\frac{b}{-1}=\frac{c}{3}$
Putting these proportional values of $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ in eq. (2)

$$
2+0+3+d=0 \quad \Rightarrow \boldsymbol{d}=-\mathbf{5}
$$

Now putting all values in equation (1)
$2 x-y+3 z-5=0 \quad$ required equation of plane.

Q\#8: Find an equation of the plane which is perpendicular bisector of the line segment joining the points $(3,4,-1)$ and $(5,2,7)$.
Solution: Let AB is a line segment.
Coordinates of given points are $A(3,4,-1) \& B(5,2,7)$.
Now direction ratios of line AB are $\overrightarrow{A B}=B(5,2,7)-A(3,4,-1)$
$\overrightarrow{A B}=2 \hat{\imath}-2 \hat{\jmath}+8 \hat{k} \quad$ it is also normal vector of the required plane.
As line $\overrightarrow{A B}$ is perpendicular to required plane so midpoint M of line $\overrightarrow{A B}$ is

$$
M=\left(\frac{3+5}{2}, \frac{4+2}{2}, \frac{-1+7}{2}\right)=(4,3,3)
$$

As plane is perpendicular bisector of line $\overrightarrow{A B}$ so point $M=(4,3,3)$ lies on required plane
Hence required equation of the
plane through the point $M=(4,3,3)$
having normal vector $\overrightarrow{A B}=2 \hat{\imath}-2 \hat{\jmath}+8 \hat{k}$.

$$
\begin{array}{r}
2(x-4)-2(y-3)+8(z-3)=0 \\
2 x-2 y+8 z-8+6-24=0 \\
2 x-2 y+8 z-26=0 \\
x-y+4 z-13=0
\end{array}
$$

required plàne.

Q\#9: Show that the join of $(0,-1,0)$ and $(2,4,-1)$ intersects the join of $(1,1,1)$ and $(3,3,9)$.
Solution: First we will show that the four given points are coplanar.
Now we find equation of the plane through three points.
Let the equation of required plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

\qquad
As it passes through $(0,-1,0),(2,4,-1) \&(1,1,1)$
So

$$
\begin{align*}
& 0 a-b+0 c+d=0 \tag{2}\\
& 2 a+4 b-c+d=0
\end{align*}
$$

Subtracting eq. (3) from (2) \& eq. (4) from (3)
$\left.\Rightarrow \begin{array}{r}-2 a-5 b+c=0 \\ a+3 b-2 c=0\end{array}\right]$
$\frac{a}{\left|\begin{array}{cc}-5 & 1 \\ 3 & -2\end{array}\right|}=\frac{-b}{\left|\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}-2 & -5 \\ 1 & 3\end{array}\right|} \Rightarrow \frac{a}{10-3}=\frac{-b}{4-1}=\frac{c}{-6+5} \Rightarrow \frac{a}{7}=\frac{b}{-3}=\frac{c}{-1}$
Now putting these proportional values of $a, b \& c$ in eq. (2)

$$
0+3+0+d=0 \quad \Rightarrow \boldsymbol{d}=-\mathbf{3}
$$

Put all values in eq. (1)

$$
7 x-3 y-z-3=0
$$

Put the fourth point $(3,3,9)$ in above equation.

$$
\begin{aligned}
7(3)-3(3)-9-3 & =0 \\
21-9-9-3 & =0 \\
21-21 & =0 \quad \Rightarrow 0=0
\end{aligned}
$$

As the equation of plane is satisfied, hence the four points are coplanar. Hence the two joins are coplanar.
Now direction ratios of join of $(0,-1,0)$ and $(2,4,-1)$ are $2-0,4+1,-1-0 \quad \Longrightarrow 2,5,-1$
$\&$ direction ratios of join of $(1,1,1)$ and $(3,3,9)$ are

$$
3-1,3-1,9-1 \quad \Rightarrow 2,2,8
$$

As direction ratios of both joins are not proportional so the two joins are not parallel \& so being coplanar they intersect each other.

Q\#10: The vertices of tetrahedron are $(0,0,0),(3,0,0),(0,-4,0)$ and $(0,0,5)$. Find equations of planes of its faces.
Solution: Let the vertices of given tetrahedron are $A(0,0,0), B(3,0,0), C(0,-4,0)$ and $D(0,0,5)$
Then we want to find the equations of the plane faces $A B C, A B D, A C D \& B C D$.

(I) Equation of plane for face $\boldsymbol{A B C}$

Let the equation of required plane is
$a x+b y+c z+d=0$
As it passes through $A(0,0,0), B(3,0,0) \& C(0,-4,0)$
So $0 a+0 b+0 c+d=0$ \qquad
$3 a+0 b+0 c+d=0$ \qquad
$0 a-4 b+0 c+d=0$
Subtracting eq. (3) from (2) and (4) from (3)
$-3 a+0 b+0 c=0]$
$3 a+4 b+0 c=0]$
$\frac{a}{0-0}=\frac{-b}{0-0}=\frac{}{-12-0} \Leftrightarrow \frac{a}{0}=\frac{b}{0}=\frac{c}{-12} \quad \Rightarrow \frac{a}{0}=\frac{b}{0}=\frac{c}{1}$
Putting these proportional values of $a, b \& c$ in eq. (2)
$0+0+0+d=0 \quad \Rightarrow d=0$
Put all values in eq. (1)
$0 x+0 y+z+0=0 \quad \Rightarrow z=0$

(II) Equation of plane for face $\boldsymbol{A B D}$

Let the equation of required plane is
$a x+b y+c z+d=0$
As it passes through $A(0,0,0), B(3,0,0) \& D(0,0,5)$
So $0 a+0 b+0 c+d=0$
$3 a+0 b+0 c+d=0$
$0 a-0 b+5 c+d=0$

Subtracting eq. (3) from (2) and (4) from (3)
$-3 a+0 b+0 c=0]$
$3 a+0 b-5 c=0]$
$\frac{a}{0-0}=\frac{-b}{15-0}=\frac{c}{0-0} \quad \Rightarrow \frac{a}{0}=\frac{b}{-15}=\frac{c}{0} \quad \Rightarrow \frac{a}{0}=\frac{b}{1}=\frac{c}{0}$
Putting these proportional values of $a, b \& c$ in eq. (2)
$0+0+0+d=0 \quad \Rightarrow d=0$
Put all values in eq. (1)
$0 x+y+0 z+0=0$
$y=0$
(III) Equation of plane face $A C D \& B C D$ DO YOURSELF AS ABOVE

Q\#11: Find an equation of the plane through $(5,-1,4)$ and perpendicular to each of the planes $x+y-2 z-3=0$ and $2 x-3 y+z=0$.

Solution:

Let the equation of required plane is

$$
\begin{equation*}
a x+b y+c z+d=0 \tag{1}
\end{equation*}
$$

\qquad
The normal vector of required plane is $\vec{n}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$
As plane (1) passes through $(5,-1,4)$, so

$$
\begin{equation*}
5 a-b+4 c+d=0 \tag{2}
\end{equation*}
$$

\qquad
As plane (1) is perpendicular to given
planes a $x+y-2 z-3=0$ and $2 x-3 y+z=0$

Normal vector of given plane (1) is $\overrightarrow{n_{1}}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$
Normal vector of given plane (2) is $\overrightarrow{n_{2}} \neq 2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$
By using given condition
$\vec{n} \perp \overrightarrow{n_{1}} \quad$ Then $\quad \vec{n} \cdot \overrightarrow{n_{1}}=0$
$(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(\hat{\imath}+\hat{\jmath}-2 \hat{k})=0$
$a+b-2 c=0$

$$
\begin{align*}
& \vec{n} \perp \overrightarrow{n_{2}} \quad \text { Then } \quad \overrightarrow{n_{2}} \cdot \overrightarrow{n_{2}}=0 \\
& (a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(2 \hat{\imath}-3 \hat{\jmath}+\hat{k})=0 \tag{4}\\
& 2 a-3 b+c=0-----------(4)
\end{align*}
$$

Now using eq. (3) \& (4)

$$
\frac{a}{\left|\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right|}=\frac{-b}{\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|}=\frac{c}{\left|\begin{array}{cc}
1 & 1 \\
2 & -3
\end{array}\right|} \quad \Rightarrow \frac{a}{1-6}=\frac{-b}{1+4}=\frac{c}{-3-2} \Rightarrow \frac{a}{-5}=\frac{-b}{5}=\frac{c}{-5} \quad \Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{1}
$$

Using these proportional values of $a, b \& c$ in eq. (2)

$$
5-1+4+d=0 \quad \Rightarrow d=-8
$$

Put all values in eq. (1) we get

$$
x+y+z-8=0 \quad \text { is required equation of plane. }
$$

Q\#12: Find an equation of the plane each of whose point is equidistant from the points
$A(2,-1,1)$ and $B(3,1,5)$.

Solution:

As the required plane is equidistant from the points $A(2,-1,1)$ and $B(3,1,5)$,
so it should be a perpendicular bisector of the line $A B \&$ line $A B$
will be a normal vector of the required plane.
Now direction ratios of line $A B$ are
$\overrightarrow{\mathrm{AB}}=B(3,1,5)-A(2,-1,1) \Longrightarrow \hat{\imath}+2 \hat{\jmath}+4 \hat{k} \quad$ it is also normal vector of the required plane
midpoint of AB is $M=\left(\frac{2+3}{2}, \frac{1-1}{2}, \frac{1+5}{2}\right)=\left(\frac{5}{2}, 0,3\right)$
Now equation of plane through the point $M\left(\frac{5}{2}, 0,3\right)$
having normal with direction ratios $1,2,4$

$$
\begin{aligned}
1\left(x-\frac{5}{2}\right)+2(y-0)+4(z-3) & =0 \\
x+2 y+4 z-\frac{5}{2}-12 & =0 \\
2 x+4 y+8 z-5-24 & =0 \\
2 x+4 y+8 z-29 & =0 \text { is required equation of plane) }
\end{aligned}
$$

$$
x=2+3 t, y=1-6 t, z=-2+2 t
$$

Q\#13: Find an equation of the plane through the point $(3,-2,5)$ and perpendicular to the line

Solution:

given that the required plane passes through the point $(3,-2,5) \&$ it is perpendicular to the given line
$x=2+3 t, \quad y=1-6 t, \quad z=-2+2 t$,
Here direction ratios of given line are $3,-6,2$
Normal vector of the plane is parallel to the given line,
therefore direction ratios of the normal vector of the plane are
$a=3, \quad b=-6, \quad c=2$
Hence required equation of the plane through $(3,-2,5)$.

$3(x-3)-6(y+2)+2(z-5)=0$
$3 x-9-6 y-12+2 z-10=0$
$3 x-6 y+2 z-31=0 \quad$ required equation of plane
Q\#14: Find parametric equations of the line containing the point $(2,4,-3)$ and perpendicular to the plane $3 x+3 y-7 z=9$.

Solution:

As given that required line is perpendicular to the given plane $3 x+3 y-7 z=9$
we see that the direction ratios of given planes are $3,3,-7$.
As required line is parallel to the normal vector
of the plane so direction ratios of required line will $3,3,-7$.

Now equation of required line through $(2,4,-3)$ having
direction ratios 3,3,-7.
$\frac{x-2}{3}=\frac{y-4}{3}=\frac{z+3}{-7}=t(s a y)$
Now parametric equations of the above line are

$$
\left.\Rightarrow \begin{array}{c}
x=2+3 t \\
y=4+3 t \\
z=-3-7 t
\end{array}\right\}
$$

Q\#15: Write equation of the family of all planes whose distance from the origin is 7. Find those members of the family which are parallel to the plane $x+y+z+5=0$.

Solution:

The equation of family of all planes in normal form is

$$
\begin{equation*}
l x+m y+n z=p \tag{1}
\end{equation*}
$$

As given $\quad p=7 \quad \mathrm{p}$ is the distance between plane and origin
Then above equation becomes $l x+m y+n z=7$
Here $l, m \& n$ are the direction cosines of normal vector of the plane.
Equation of given plane is

$$
\begin{aligned}
& x+y+z+5=0 \\
& \text { or } x+y+z=-5
\end{aligned}
$$

Dividing both sides by $\sqrt{1^{1}+1^{1}+1^{1}}= \pm \sqrt{3}$

$$
\begin{align*}
& \pm \frac{x}{\sqrt{3}} \pm \frac{y}{\sqrt{3}} \pm \frac{z}{\sqrt{3}}= \pm\left(-\frac{5}{\sqrt{3}}\right) \\
& \frac{x}{\sqrt{3}}+\frac{y}{\sqrt{3}}+\frac{z}{\sqrt{3}}=-\frac{5}{\sqrt{3}} \text { and }-\frac{x}{\sqrt{3}}-\frac{y}{\sqrt{3}}-\frac{z}{\sqrt{3}}=\frac{5}{\sqrt{3}} \tag{2}
\end{align*}
$$

A plane parallel to (1) has normal vector with direction cosines $-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$ or $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
Here two sets of family of plane parallel to plane (1) so these members are
$-\frac{1}{\sqrt{3}} x-\frac{1}{\sqrt{3}} y-\frac{1}{\sqrt{3}} z=7 \& \frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=7$

Q\#16: Find an equation of the plane which passes through the point $(3,4,5)$ has an x-intercept equal to -5 and is perpendicular to the plane $2 x+3 y-z=8$.

Solution:

Equation of a plane in intercept form is

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

As given x -intercept $a=-5$
Putting in above equation

$$
\begin{equation*}
\frac{x}{-5}+\frac{y}{b}+\frac{z}{c}=1 \tag{1}
\end{equation*}
$$

As this plane is perpendicular to $2 x+3 y-z=8$
So by condition of perpendicularity.
$-\frac{1}{5}(2)+\frac{1}{b}(3)+\frac{1}{c}(-1)=0 \quad \Rightarrow-\frac{2}{5}+\frac{3}{b}-\frac{1}{c}=0 \quad \Rightarrow \frac{3}{b}-\frac{1}{c}=\frac{2}{5}$
Also since plane (1) passes through point $(3,4,5)$
so $\frac{3}{-5}+\frac{4}{b}+\frac{5}{c}=1 \Longrightarrow \frac{4}{b}+\frac{5}{c}=1+\frac{3}{5}$
$\frac{4}{b}+\frac{5}{c}=\frac{8}{5}$
$\frac{15}{b}-\frac{5}{c}=2$
mutiplying eq. (2) by 5

Adding eq. (3) \& (5)
$\frac{4}{b}+\frac{15}{b}=\frac{8}{5}+2 \quad \Rightarrow \frac{19}{b}=\frac{18}{5} \quad \Rightarrow 18 b=95 \quad \Rightarrow \mathbf{b}=\frac{\mathbf{9 5}}{\mathbf{1 8}}$
Putting in eq. (2)
$\frac{3}{95 / 18}-\frac{1}{c}=\frac{2}{5} \quad \Rightarrow \frac{54}{95}-\frac{1}{c}=\frac{2}{5} \quad \Rightarrow \frac{54}{95}-\frac{2}{5}=\frac{1}{c} \quad \Rightarrow \frac{1}{c}=\frac{16}{95} \quad \Rightarrow \mathbf{c}=\frac{\mathbf{9 5}}{16}$
Putting values in eq.(1)
$\frac{x}{-5}+\frac{y}{95 / 18}+\frac{z}{95 / 16}=1$
$\frac{x}{-5}+\frac{18 y}{95}+\frac{16 z}{95}=1$
Multiplying both sides by 95
$-19 x+8 y+16 z=95$
$19 x-8 y-16 z=-95$
$19 x-8 y-16 z+95=0$

Q\#17: Show that the distance of the point $P(3,-4,5)$ from the plane $2 x+5 y-6 z=16$ measured parallel to the line

$$
\frac{x}{2}=\frac{y}{1}=\frac{z}{-2} \quad \text { is } \frac{60}{7}
$$

Solution:

As the line through $P(3,-4,5)$ is parallel to given line.
So direction ratios of the line through P are $2,1,-2$.
Hence equation of line through $P(3,-4,5) \&$ parallel to given line is $\frac{x-3}{2}=\frac{y+4}{1}=\frac{z-5}{-2}=t$ (say)

$$
\left.\begin{array}{c}
x=3+2 t \\
\Rightarrow y=-4+t \\
z=5-2 t
\end{array}\right]
$$

Any point on this line is $Q(3+2 t,-4+t, 5-2 t)$.
If $Q(3+2 t,-4+t, 5-2 t)$ lies on plane $2 x+5 y-6 z=16$,Then it satisfied the eq. of plane.

$$
\begin{aligned}
& 2(3+2 t)+5(-4+t)-6(5-2 t)=16 \\
& \quad \Rightarrow 6+4 t-20+5 t-30+12 t=16 \quad \Rightarrow 21 t-44=16 \quad t=\frac{20}{7}
\end{aligned}
$$

So coordinates of point are $Q\left(3+2\left(\frac{20}{7}\right),-4+\frac{20}{7}, 5-2\left(\frac{20}{7}\right)\right)$

$$
\begin{aligned}
& =Q\left(\frac{21+40}{7}, \frac{-28+20}{7}, \frac{35-40}{7}\right) \\
& =Q\left(\frac{61}{7}, \frac{-8}{7}, \frac{-5}{7}\right)
\end{aligned}
$$

Now the required distance

$$
\begin{aligned}
& =|P Q|=\sqrt{\left(\frac{61}{7}-3\right)^{2}+\left(\frac{-8}{7}+4\right)^{2}+\left(\frac{-5}{7}-5\right)^{2}} \\
&
\end{aligned} \begin{aligned}
& =\sqrt{\left(\frac{61-21}{7}\right)^{2}+\left(\frac{-8+28}{7}\right)^{2}+\left(\frac{-5-35}{7}\right)^{2}} \\
& =\sqrt{\left(\frac{40}{7}\right)^{2}+\left(\frac{20}{7}\right)^{2}+\left(\frac{-40}{7}\right)^{2}} \\
& =\sqrt{\frac{1600}{49}+\frac{400}{49}+\frac{1600}{49}} \\
& =\sqrt{\frac{3600}{49}} \\
\text { distance } & =\frac{60}{7}
\end{aligned}
$$

Q\#18: Show that the lines

$L: x=3+2 t, \quad y=2+t, \quad z=-2-3 t$
$M: x=-3+4 s, y=5-4 s, \quad z=6-5 s$ intersect. Find an equation of the plane containing these lines.

Solution:

Given equations of lines are

$$
\begin{aligned}
& L: \quad x=3+2 t, \quad y=2+t, \quad z=-2-3 t \\
& M: \quad x=-3+4 s, \quad y=5-4 s, \quad z=6-5 s
\end{aligned}
$$

Let a point $P\left(x_{0}, y_{o}, z_{o}\right)$ is a point of intersection of lines $\mathrm{L} \& \mathrm{M}$. So this point will lie on both lines
$L=\left\{\begin{array}{l}x_{o}=3+2 t \\ y_{o}=2+t \\ z_{o}=-2-3 t\end{array}\right.$
\&
$M=\left\{\begin{array}{l}x_{o}=-3+4 s \\ y_{o}=5-4 s \\ z_{o}=6-5 s\end{array}\right.$

Comparing L \& M

$$
\begin{array}{rlr}
3+2 t=-3+4 s & \Rightarrow & 2 t-4 s=-6 \\
2+t=5-4 s & \Rightarrow & t+4 s=3 \\
-2-3 t=6-5 s & \Rightarrow & -3 t+5 s=8 \tag{3}
\end{array}
$$

Adding eq. (1) \& (2) $\quad 3 t=-3 \quad \Rightarrow \boldsymbol{t}=\mathbf{- 1}$
Putting in eq. (1)
$2(-1)-4 s=-6$ $\Rightarrow-2-4 s=-6 \quad \Rightarrow-4 s=-4$

Using value of $t \& s$ in eq. (3)

$$
-3(-1)+5(1)=8 \quad \Rightarrow 8=8
$$

We see that these values of $t \& s$ satisfy eq. (3) So given lines intersect.
Now we find eq. of plane containing given lines $L \& M$
Equations of lines $L \& M$ in symmetric form are

$$
L: \frac{x-3}{2}=\frac{y-2}{1}=\frac{z+2}{-3}
$$

As the required plane contains both lines, ,So it could contain every point of both lines.
A point on the line L is $(3,2,-2)$
If a, b, c are direction ratios of required plane then eq. of plane through $(3,2,-2)$ is

$$
a(x-3)+b(y-2)+c(z+2)=0
$$

\qquad
As this plane contain both lines, So the normal vector of the plane is perpendicular to both the lines

$$
\text { Hence } \left.\begin{array}{r}
2 a+\text { 韵 }-3 c=0 \\
4 a-4 b-5 c=0
\end{array}\right]
$$

$\frac{a}{-5-12}=\frac{-b}{-10+12}=\frac{c}{-8-4} \quad \Rightarrow \quad \frac{a}{-17}=\frac{-b}{-2}=\frac{c}{-12} \quad \Rightarrow \frac{a}{17}=\frac{b}{2}=\frac{c}{12}$
Putting these values of a, b, c in eq. (A)

$$
\begin{aligned}
17(x-3)+2(y-2)+12(z+2) & =0 \\
17 x-51+2 y-4+12 z+24 & =0 \\
17 x+2 y+12 z-31 & =0 \text { is required equation of plane. }
\end{aligned}
$$

Q\#19: If a, b, c are the intercepts of a plane on the coordinate axes and r is the distance of the origin from the plane, prove that $\frac{1}{r^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$.
Solution: Let equation of plane in slope intercept form is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \quad \Rightarrow \frac{1}{a} x+\frac{1}{b} y+\frac{1}{c} z-1=0 \tag{A}
\end{equation*}
$$

Now r is the distance between Origin and plane then By using formula, we get
$r=\frac{\left|\frac{1}{a}(0)+\frac{1}{b}(0)+\frac{1}{c}(0)-1\right|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}=\frac{|-1|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} \Rightarrow r=\frac{1}{\sqrt{\frac{1}{a^{2}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}}$

Inverting on both sides

$$
\Rightarrow \frac{1}{r}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}
$$

Now squaring on both sides

$$
\frac{1}{r^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \quad \text { hence proved } .
$$

Q\#20: Find equations of two planes whose distances from the origin are 3 units each and which are perpendicular to the line through the point $A(7,3,1)$ and $B(6,4,-1)$.
Solution: Let equation of set of planes in normal form is
$l x+m y+n z=p$
As given $p=3$ units (Distance betweeen plane \& Origin)

$$
\begin{equation*}
l x+m y+n z= \pm 3 \tag{1}
\end{equation*}
$$

Given points are $A(7,3,1)$ and $B(6,4,-1)$.
$\vec{u}=\overrightarrow{A B}=B(6,4,-1)-A(7,3,1)=-\hat{\imath}+\hat{\jmath}-2 \hat{k}$
Here $\overrightarrow{A B}$ is also normal vector of both required planes
$|\vec{u}|=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}=\sqrt{6}$
Now we can find direction cosines of $\overrightarrow{A B}$
$l=-\frac{1}{\sqrt{6}}, m=\frac{1}{\sqrt{6}}, n=-\frac{2}{\sqrt{6}}$
Now using values of l, m, n in eq. (1)
$-\frac{1}{\sqrt{6}} x+\frac{1}{\sqrt{6}} y-\frac{2}{\sqrt{6}} z= \pm 3 \quad \Longrightarrow-x+y-2 z= \pm 3 \sqrt{6} \quad$ are required planes.

Checked by: Sir Hameed ullah (hameedmath2017 @ gmail.com)

Specially thanks to my Respected Teachers

Prof. Muhammad Ali Malik (M.phill physics and Publisher of www.Houseofphy.blogspot.com)
Muhammad Umar Asghar sb (MSc Mathematics)
Hameed Ullah sb (MSc Mathematics)

