Exercise \#8. 2

In each of Problem 1-4, find parametric equations, direction ratios, direction cosines and measures of the direction angles of the straight line through P and Q :

Q\#1: $P(1,-2,0), Q(5,-10,1)$
Solution:
Given points are $P(1,-2,0)$ and $Q(5,-10,1)$
Let $R(x, y, z)$ is another point on the straight line then equation of straight line will be written as

$$
\frac{x-1}{5-1}=\frac{y+2}{-10+2}=\frac{z-0}{1-0} \Rightarrow \quad \frac{x-1}{4}=\frac{y+2}{-8}=\frac{z}{1}=t
$$

Parametric equations of given straight line can be written as
$\frac{x-1}{4}=t \quad \Rightarrow x=1+4 t$
$\frac{y+2}{-8}=t \quad \Rightarrow y=-2-8 t$
$\frac{z}{1}=t \quad \Rightarrow z=0+1 t$
$\mathrm{P}(1,-2,0) \quad \mathrm{Q}(5,-10,1) \quad \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

Direction ratios of straight line PQ are $4,-8,1$.
Let \vec{d} is the direction vector,$\quad \vec{d}=4 \hat{\imath}-8 \hat{\jmath}+\hat{k} \quad \Rightarrow|\vec{d}|=\sqrt{4^{2}+(-8)^{2}+1^{2}}=\sqrt{81}=9$
Direction cosines of line through $P \& Q$ are
$\cos \alpha=\frac{4}{9}, \cos \beta=\frac{-8}{9}, \cos \gamma=\frac{1}{9}$
Directional angles of line PQ are
$\alpha=\cos ^{-1} \frac{4}{9}, \beta=\cos ^{-1} \frac{-8}{9}, \gamma=\cos ^{-1}$
$\Rightarrow \alpha=63^{\circ} 37^{\prime}, \beta=152^{\circ} 44^{\prime}, k=83^{\circ} 37^{\prime}$

Q\#2: $P(6,5,-3), Q(4,1,1)$

Now do yourself as above
Q\#3: $P(1,-5,1), Q(4,-5,4)$

Do yourself as above

Q\#4: $P(3,5,7), Q(6,-8,10)$

Solution:

Given points are $P(3,5,7) \& Q(6,-8,10)$
Let $R(x, y, z)$ is another point on the straight line then equation of straight line will be written as

$$
\begin{aligned}
& \frac{x-3}{6-3}=\frac{y-5}{-8-5}=\frac{z-7}{10-7} \\
& \Rightarrow \frac{x-3}{3} \\
&=\frac{y-5}{-13}=\frac{z-7}{3}=t
\end{aligned}
$$

Parametric equations of given straight line can be written as
$\frac{x-3}{3}=t \quad \Rightarrow x=3+3 t$
$\frac{y-5}{-13}=t \quad \Rightarrow y=5-13 t$
$\frac{z-7}{3}=t \quad \Rightarrow z=7+3 t$
Direction ratios of straight line PQ are 3, $-13,3$.

Let \vec{d} is the direction vector
$\vec{d}=3 \hat{\imath}-13 \hat{\jmath}+3 \hat{k} \quad \Rightarrow|\vec{d}|=\sqrt{3^{2}+(-13)^{2}+3^{2}}=\sqrt{187}$
Direction cosines of line through P \& Q are
$\cos \alpha=\frac{3}{\sqrt{187}}, \cos \beta=\frac{-13}{\sqrt{187}}, \cos \gamma=\frac{3}{\sqrt{187}}$
Directional angles of line PQ are
$\alpha=\cos ^{-1} \frac{3}{\sqrt{187}}, \beta=\cos ^{-1} \frac{-13}{\sqrt{187}}, \gamma=\cos ^{-1} \frac{3}{\sqrt{187}}$
$\Rightarrow \alpha=77^{\circ} 19^{\prime}, \beta=159^{\circ} 19^{\prime}, \chi=77^{\circ} 19^{\prime}$
Q\#5: Find the direction cosines the coordinate axis.

Solution:

We want to find the direction cosine of x -axis , y -axis and z - axis.
(I) Let x -axis makes angles $0^{\circ}, 90^{\circ}, 90^{\circ}$ with x -axis , y -axis and z - axis So direction cosines of x -axis are $\cos 0^{\circ}=1, \cos 90^{\circ}=0, \cos 90^{\circ}=0$
(II) Let y-axis makes angles $90^{\circ}, 0^{\circ}, 90^{\circ}$ with x -axis, y -axis and z - axis So direction cosines of y-axis are
$\cos 90^{\circ}=0, \cos 0^{\circ}=1, \cos 90^{\circ}=0$
(III) Let z -axis makes angles $90^{\circ}, 90^{\circ}, 0^{\circ}$ with x -axis , y -axis and z - axis So direction cosines of z -axis are

$\cos 90^{\circ}=0, \cos 90^{\circ}=0, \cos 0^{\circ}=1$

Q\#6: Prove that if measures of the direction angles of a straight line are α, β and γ, then

$$
\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2
$$

Solution: Let α, β and γ be the directional angles of a straight line then direction cosines of line are $\cos \alpha, \cos \beta \& \cos \gamma$.

As we know that

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma & =1 \\
1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma & =1 \\
3-\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right) & =1 \\
3-1 & =\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)
\end{aligned}
$$

$$
\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2 \quad \text { Hence proved. }
$$

Q\#7: If measures of two of the direction angles of a straight line are 45° and 60°, find measure of the third direction angle.
Solution: Let α, β and γ be the directional angles of a straight line

$$
\alpha=45^{\circ}, \beta=60^{\circ}, \gamma=?
$$

As we know that

$$
\begin{aligned}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma & =1 \\
\cos ^{2} 45^{o}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma & =1
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \gamma=1 \\
& \cos ^{2} \gamma=1-\frac{3}{4} \Rightarrow \frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1 \\
& \Rightarrow \cos ^{2} \gamma=\frac{1}{4} \Rightarrow \cos \gamma=\frac{1}{\sqrt{4}} \Rightarrow \cos \gamma=\frac{1}{2} \Rightarrow \gamma=\cos ^{-1}\left(\frac{1}{2}\right) \\
& \Rightarrow \gamma=60^{\circ} \text { is required direction angle. }
\end{aligned}
$$

Q\#8: The direction cosines $\boldsymbol{l}, \boldsymbol{m}, \boldsymbol{n}$ of two straight lines are given by the equations $\boldsymbol{l}+\boldsymbol{m}+\boldsymbol{n}=\mathbf{0}$ and $l^{2}+m^{2}-n^{2}=0$. Find measure of the angle between them.
Solution: We have to find the angle between two straight lines.
Let l_{1}, m_{1}, n_{1} be the direction cosines of line L and l_{2}, m_{2}, n_{2} be the direction cosines of line M .
Let θ be the angle between line L and M then it is described as

$$
\begin{align*}
& \text { - } \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \text {------- (A) } \tag{A}\\
& l+m+n=0 \tag{1}\\
& l^{2}+m^{2}-n^{2}=0 \tag{2}\\
& (1) \Rightarrow \quad n=-(l+m) \tag{3}\\
& (1) \Rightarrow \quad n=-(l+m)
\end{align*}
$$

Putting in eq.(2)

$$
\begin{aligned}
l^{2}+m^{2}-[-(l+m)]^{2} & =0 \\
l^{2}+m^{2}-\left[l^{2}+m^{2}+2 l m\right] & =0 \\
l^{2}+m^{2}-l^{2}-m^{2}-2 l m & =0 \\
-2 l m & =0 \quad \Rightarrow l m=0
\end{aligned}
$$

Either $l=0$ or $m=0$

Put $l=0$ in eq. (3)
$\Rightarrow n=-m$
$\Rightarrow \frac{n}{1}=\frac{m}{-1}$
$\frac{l}{0}=\frac{n}{1}=\frac{m}{-1} \quad \Rightarrow \frac{l^{2}+m^{2}+n^{2}}{\sqrt{0^{2}+1^{2}+(-1)^{2}}}=\frac{1}{\sqrt{2}}$
So direction cosines of line L are
$l_{1}=0, \quad m_{1}=\frac{-1}{\sqrt{2}}, \quad n_{1}=\frac{1}{\sqrt{2}}$

Put $m=0$ in eq. (3)
$\Rightarrow n=-l$
$\Rightarrow \frac{n}{1}=\frac{l}{-1}$
$\frac{l}{-1}=\frac{n}{1}=\frac{m}{0} \quad \Rightarrow \frac{l^{2}+m^{2}+n^{2}}{\sqrt{(-1)^{2}+1^{2}+0^{2}}}=\frac{1}{\sqrt{2}}$
So direction cosines of line M are
$l_{2}=\frac{-1}{\sqrt{2}}, \quad m_{2}=0, \quad n_{2}=\frac{1}{\sqrt{2}}$

Using in equation (A)
$\cos \theta=(0)\left(\frac{-1}{\sqrt{2}}\right)+\left(\frac{-1}{\sqrt{2}}\right)(0)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right) \Rightarrow \cos \theta=0+0+\frac{1}{2} \quad \Rightarrow \cos \theta=\frac{1}{2} \quad \Rightarrow \theta=\cos ^{-1 \frac{1}{2}} \Rightarrow \theta=\frac{\pi}{3}$

Q\#9: The direction cosines l, m, n of two straight lines are given by the equations $\boldsymbol{l}+\boldsymbol{m}+\boldsymbol{n}=\mathbf{0}$ and

$2 l m+2 l n-m n=0$. Find measure of the angle between them.
Solution: We have to find the angle between two straight lines.
Let l_{1}, m_{1}, n_{1} be the direction cosines of line L and l_{2}, m_{2}, n_{2} be the direction cosines of line M .
Let θ be the angle between line L and M then it is described as $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

$$
\begin{align*}
& l+m+n=0 \tag{1}\\
& 2 l m+2 l n-m n=0 \\
& (1) \Rightarrow n=-(l+m) \tag{3}
\end{align*}
$$

Putting in eq. (2)

$$
2 l m+2 l[-(l+m)]-m[-(l+m)]=0
$$

$$
\begin{aligned}
2 l m-2 l(l+m)+m(l+m) & =0 \\
2 l m-2 l^{2}-2 l m+l m+m^{2} & =0 \\
-2 l^{2}+l m+m^{2} & =0 \\
2 l^{2}-l m-m^{2} & =0 \\
2 l^{2}-2 l m+l m-m^{2} & =0 \\
2 l(l-m)+m(l-m) & =0
\end{aligned} \quad \Rightarrow(l-m)(2 l+m)=0
$$

$$
\begin{gathered}
l-m=0 \\
\text { or } l=m \Rightarrow \frac{l}{1}=\frac{m}{1}
\end{gathered}
$$

Putting in eq. (3)

$$
\text { So } \frac{l}{1}=\frac{m}{1}=\frac{n}{-2} \quad \begin{gathered}
n=-2 l \\
\frac{n}{-2}=\frac{l}{1} \\
\Rightarrow \frac{l^{2}+m^{2}+n^{2}}{\sqrt{1^{2}+1^{2}+(-2)^{2}}}=\frac{1}{\sqrt{6}}
\end{gathered}
$$

So direction cosines of line L are

$$
l_{1}=\frac{1}{\sqrt{6}}, m_{1}=\frac{1}{\sqrt{6}}, n_{1}=\frac{-2}{\sqrt{6}}
$$

$$
2 l+m=0
$$

$$
\text { or } m=-2 l \quad \Rightarrow \frac{l}{1}=\frac{m}{-2}
$$

Putting in eq. (3)

$$
\begin{aligned}
n & =l \\
\frac{l}{1} & =\frac{n}{1}
\end{aligned}
$$

$$
\text { So } \frac{l}{1}=\frac{m}{-2}=\frac{n}{1} \Rightarrow \frac{l^{2}+m^{2}+n^{2}}{\sqrt{1^{2}+1^{2}+(-2)^{2}}}=\frac{1}{\sqrt{6}}
$$

So direction cosines of line M are

$$
l_{2}=\frac{1}{\sqrt{6}}, m_{2}=\frac{-2}{\sqrt{6}}, n_{2}=\frac{1}{\sqrt{6}}
$$

Using in equation (A)

$$
\cos \theta=\left(\frac{1}{\sqrt{6}}\right)\left(\frac{1}{\sqrt{6}}\right)+\left(\frac{1}{\sqrt{6}}\right)\left(\frac{-2}{\sqrt{6}}\right)+\left(\frac{-2}{\sqrt{6}}\right)\left(\frac{1}{\sqrt{6}}\right)=\frac{1}{6}-\frac{2}{6}-\frac{2}{6}=\frac{1-2-2}{6}=-\frac{3}{6} \Rightarrow \cos \theta=-\frac{1}{2}
$$

$\Rightarrow \theta=\cos ^{-1}\left(-\frac{1}{2}\right) \quad \Rightarrow \theta=60^{\circ}$

Find equations of the straight line L and M in symmetric forms. Determine whether the pairs of lines intersect.
Find the point of intersection if it exists.
Q\#10: $L \quad: \quad$ through $A(2,1,3), B(-1,2,-4)$
M : through $P(5,1,-2), Q(0,4,3)$

Solution:

The equation of the straight line L through $A(2,1,3) \& B(-1,2,-4)$

$$
\frac{x-2}{2+1}=\frac{y-1}{1-2}=\frac{z-3}{3+4} \quad \Rightarrow \quad \frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{7}
$$

The equation of the straight line M through $P(5,1,-2) \& Q(0,4,3)$

$$
\frac{x-5}{5-0}=\frac{y-1}{1-4}=\frac{z+2}{-2-3} \quad \Rightarrow \quad \frac{x-5}{5}=\frac{y-1}{-3}=\frac{z+2}{-5}
$$

Which are the required equations in symmetric form of $L \& M$.
Now we write the equations of $L \& M$ in parametric forms.
Let $\frac{x-2}{3}=\frac{y-1}{-1}=\frac{z-3}{7}=t$

let $\frac{x-5}{5}=\frac{y-1}{-3}=\frac{z+2}{-5}=s$
Now parametric equations of lines $L \& M$ are
$\frac{x-2}{3}=t$
$\frac{y-1}{-1}=t \quad L:\left\{\begin{array}{l}x=2+3 t \\ y=1-1 t \\ z=3+7 t\end{array}\right.$
$\frac{x-5}{5}=s$
$\frac{y-1}{-3}=s \quad \Rightarrow \quad M:\left\{\begin{array}{c}x=5+5 s \\ y=1-3 s \\ z=-2-5 s\end{array}\right.$
$\frac{z-3}{7}=t$
Let the lines $\mathrm{L} \& \mathrm{M}$ intersect at $\mathrm{P}(x, y, z)$ so this point will lie on both lines $\mathrm{L} \& \mathrm{M}$.
Comparing above equations
$\Rightarrow 2+3 t=5+5 s \quad \Rightarrow 3 t-5 s=3$
$1-t=1-3 s$

$3+7 t=-2-5 s \quad \Rightarrow 7 t+5 s=-5$
Now multiply eq. (2) by 3 and subtracting
$4 s=3$

Put in eq. (2)
$t-3\left(\frac{3}{4}\right)=0 \quad \Rightarrow t=\frac{\mathbf{9}}{\mathbf{4}}$
Now putting these values in equation (3) we have
$7\left(\frac{9}{4}\right)+5\left(\frac{3}{4}\right)=-5 \quad \Rightarrow \frac{63}{4}+\frac{15}{4}=-5 \quad \Rightarrow \frac{78}{4} \neq-5$
We see that these values of $t \& s$ do not satisfy equation (3)
Hence, given straight lines L \& M do not intersect. So point of intersection doesn't exist.

Q\#11: $\quad \mathbf{L}: \quad \overrightarrow{\mathbf{r}}=(3 \hat{i}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})+\mathbf{t}(6 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$
$\mathbf{M}: \overrightarrow{\mathbf{r}}=(5 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})+\mathbf{s}(14 \hat{\mathbf{i}}-6 \mathbf{j}+2 \hat{\mathbf{k}})$

Solution:

For given straight line L
$\vec{r}=(3+6 t) \hat{\imath}+(2-4 t) \hat{\jmath}+(-1-3 t) \hat{k}$
For given straight line M
$\vec{r}=(5+14 s) \hat{\imath}+(4-6 s) \hat{\jmath}+(-7+2 s) \hat{k}$
Now parametric equations for line L are

$$
\left.\begin{array}{l}
x=3+6 t \tag{A}\\
y=2-4 t \\
z=-1-3 t
\end{array}\right]
$$

Parametric equations for given line M are

$$
\begin{gather*}
x=5+14 s \\
y=4-6 s \tag{B}\\
z=7+2 s
\end{gather*}
$$

Now equations of straight lines L \& M are in symmetric form

$$
\begin{aligned}
& \frac{x-3}{6}=\frac{y-2}{-4}=\frac{z+1}{-3} \quad----(L) \\
& \frac{x-5}{14}=\frac{y-4}{-6}=\frac{z-7}{2}----(M)
\end{aligned}
$$

Let the lines $\mathrm{L} \& \mathrm{M}$ intersect at (x, y, z) so this point will lie on both lines $\mathrm{L} \& \mathrm{M}$.
Comparing equations $(\mathrm{A}) \&(\mathrm{~B})$
$\Rightarrow 3+6 t=5+14 s \quad \Rightarrow 6 t-14 s=2 \Rightarrow 3 t-7 s=1$
$2-4 t=4-6 s$

$$
\begin{equation*}
\Rightarrow 4 t-6 s=-2 \tag{1}
\end{equation*}
$$

$-1-3 t=7+2 s$

$$
\begin{equation*}
\Rightarrow 3 t+2 s=-8 \tag{2}
\end{equation*}
$$

Subtracting eq. (1) \& (3)

$$
-9 s=9 \Rightarrow s=-\mathbf{1}
$$

Putting value of s in equation (1)

$$
3 t-7(-1)=1 \quad \Rightarrow 3 t=1-7 \quad \Rightarrow 3 t=-6 \quad \Rightarrow t=-2
$$

Now putting values of $s \& t$ in equation (2)

$$
4(-2)-6(-1)=-2 \quad \Rightarrow-8+6=-2 \quad \Rightarrow-2=-2
$$

We see that these values of $s \& t$ satisfy equation (2)
Hence given straight lines L \& M intersect.
For point of intersection we put $s=-1$ in equation (B)
Hence point of intersection of given straight line is $(x, y, z)=(-9,10,5)$.

Q\#12: $\quad L \quad: \quad$ through $A(2,-1,0)$ and parallel tob $=[4,3,2]$
M : through $P(-1,3,5)$ and parallel to $\vec{c}=[1,7,3]$

Solution:

Symmetric form of given straight line L through the point $A(2,-1,0)$ and parallel to $\vec{b}=[4,3,-2]$
let

$$
\frac{x-2}{4}=\frac{y+1}{3}=\frac{z-0}{2}
$$

$$
\frac{x-2}{4}=\frac{y+1}{3}=\frac{z}{-2}=t
$$

Symmetric form of given straight line M through
the point $P(-1,3,5)$ and parallel to $\vec{c}=[1,7,3]$.
$\frac{x+1}{1}=\frac{y-3}{7}=\frac{z-5}{3}$

let $\frac{x+1}{1}=\frac{y-3}{7}=\frac{z-5}{3}=s$
Now parametric equations of lines L \& M are
for line $L \quad \frac{x-2}{4}=t \quad \Rightarrow x=2+4 t$

$$
\begin{aligned}
& \frac{y+1}{3}=t \quad \Rightarrow y=-1+3 t \\
& \frac{z}{-2}=t \quad \Rightarrow z=0-2 t
\end{aligned}
$$

for line M

$$
\begin{array}{ll}
\frac{x+1}{1}=s & \Rightarrow x=-1+1 s \\
\frac{1}{y}-3 \\
\frac{7}{2}=s & \Rightarrow y=3+7 s \\
\frac{z-5}{3}=s & \Rightarrow z=5+3 s
\end{array}
$$

NOW DO YOURSELF AS ABOVE

- Find the distance of the given point P from thegiven line L.

Q\#13: $P=(3,-2,1), \quad L \quad:\left\{\begin{array}{c}x=1+t \\ y=3-2 t \\ z=-2+2 t\end{array}\right.$
Solution: Given point and given line are
$P=(3,-2,1), \quad L:\left\{\begin{array}{c}x=1+t \\ y=3-2 t \\ z=-3+2 t\end{array}\right.$
A point on the line L is $A=(1,3,-2)$
Now

$$
\overrightarrow{A P}=P(3,-2,1)-A(1,3,-2)=[3-1,-2-3,1+2]
$$

$$
\overrightarrow{A P}=2 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}
$$

Now direction vector of the given line L is $\quad \vec{b}=1 \hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
Let d be the required distance of a point from a line L then by using formula

$$
\begin{equation*}
d=\frac{|\overrightarrow{A P} \times \vec{b}|}{|\vec{b}|} \tag{A}
\end{equation*}
$$

$\therefore \overrightarrow{A P} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -5 & 3 \\ 1 & -2 & 2\end{array}\right|=(-10+6) \hat{\imath}-(4-3) \hat{\jmath}+(-4+5) \hat{k} \quad \Rightarrow \overrightarrow{A P} \times \vec{b}=-4 \hat{\imath}-\hat{\jmath}+\hat{k}$
$|\overrightarrow{A P} \times \vec{b}|=\sqrt{(-4)^{2}+(-1)^{2}+1^{2}}=\sqrt{16+1+1}=\sqrt{18} \quad \& \quad|\vec{b}|=\sqrt{1^{2}+(-2)^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3$
Putting in equation (A) $d=\frac{\sqrt{18}}{3}$ is required distance

Q\#14: $P=(0,-2,1), \quad L: \frac{x-1}{4}=\frac{y+3}{-2}=\frac{\mathrm{z}+1}{5}$
Solution: A point on the line L is $A=(1,-3,-1)$

$$
\overrightarrow{A P}=P(0,-2,1)-A(1,-3,-1)=[0-1,-2+3,1+1]
$$

$$
\overrightarrow{A P}=-\hat{\imath}+\hat{\jmath}+2 \hat{k}
$$

Now direction vector of the given line L is $\vec{b}=4 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}$

DO YOURSELF AS ABOVE

Q\#15: If the edges of a rectangular parallelepiped are a, b, c; show that the angles between the four diagonals are given by

$$
\arccos \left(\frac{ \pm \mathbf{a}^{2} \pm \mathbf{b}^{2} \pm \mathbf{c}^{2}}{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}}\right)
$$

Solution:

Consider a parallelepiped as shown in the figure.
Here the lengths of the edges $O A, O B \& O C$ are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively.
The coordinates of the vertices of parallelepiped are
$O=(0,0,0), O^{\prime}=(a, b, c), A=(a, 0,0), A^{\prime}=(0, b, c)$
$B=(0, b, 0), B^{\prime}=(a, 0, c), C=(0,0, c), C^{\prime}=(a, b, 0)$
The four diagonals of given parallelepiped are
$\overrightarrow{O O}, \overrightarrow{A A}, \overrightarrow{B B}, \overrightarrow{C C}$
Now
$\overrightarrow{O O}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$
$\overrightarrow{A A}=-a \hat{\imath}+b \hat{\jmath}+c \hat{k}$
$\overrightarrow{B B}=a \hat{\imath}-b \hat{\jmath}+c \hat{k}$
$\overrightarrow{C C}=a \hat{\imath}+b \hat{\jmath}-c \hat{k}$

So direction cosines of
$\overrightarrow{O O} \quad \Rightarrow l_{1}=\frac{a y}{\sqrt{a^{2}+b^{2}+c^{2}}}, m_{1}=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n_{1}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\overrightarrow{A A} \Rightarrow l_{2}=\frac{-a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m_{2}=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n_{2}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\overrightarrow{B B} \Rightarrow l_{3}=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m_{3}=\frac{-b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n_{3}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\overrightarrow{C C} \quad \Rightarrow l_{4}=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m_{4}=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n_{4}=\frac{-c}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Let α be the angle between $\overrightarrow{O O}$ and $\overrightarrow{A A}$
$\cos \alpha=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

$$
\begin{equation*}
=\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)\left(\frac{-a}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)+\left(\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)\left(\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)+\left(\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)\left(\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right) \tag{1}
\end{equation*}
$$

$\cos \alpha=\frac{-a^{2}+b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}}$
Let β be the angle between $\overrightarrow{A A}$ and $\overrightarrow{B B}$
$\cos \beta=l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}$
$\cos \beta=\frac{-a^{2}-b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}}$
Let γ be the angle between $\overrightarrow{B B}$ and $\overrightarrow{C C}$
$\cos \gamma=l_{3} l_{4}+m_{3} m_{4}+n_{3} n_{4}$
$\cos \gamma=\frac{a^{2}-b^{2}-c^{2}}{a^{2}+b^{2}+c^{2}}$
Let θ be the angle between $\overrightarrow{O O}$ and $\overrightarrow{C C}$
$\cos \theta=l_{1} l_{4}+m_{1} m_{4}+n_{1} n_{4}$
$\cos \theta=\frac{a^{2}+b^{2}-c^{2}}{a^{2}+b^{2}+c^{2}}$
From (1),(2),(3) \& (4) we see that the angles between four diagonats are
$\cos ($ angle $)=\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}} \Rightarrow$ angle $=\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm \pm^{2}}{a^{2}+b^{2}+c^{2}}\right)$ hence proved.
Q\#16: A straight line makes angles of measure $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube. Prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}
$$

Solution:

Let " a " be the length of each side of a cube
Points of the each corner of the cube are
$O=(0,0,0), P=(a, a, a), A=(a, 0,0), B=(0, a, 0), C=$ ($0,0, a$)
$A^{\prime}=(0, a, a), B^{\prime}=(a, 0, a), C^{\prime}=(a, a, 0)$
Now $\overrightarrow{O P}, \overrightarrow{A A}, \overrightarrow{B B}, \overrightarrow{C C}$ are the diagonals of a cube
$\overrightarrow{O P}=(a, a, a)-(0,0,0)=a \hat{\imath}+a \hat{\jmath}+a \hat{k}$
$\overrightarrow{A A}=(0, a, a)-(a, 0,0)=-a \hat{\imath}+a \hat{\jmath}+a \hat{k}$
$\overrightarrow{B B}=(a, 0, a)-(0, a, 0)=a \hat{\imath}-a \hat{\jmath}+a \hat{k}$
$\overrightarrow{C C}=(a, a, 0)-(0,0, a)=a \hat{\imath}+a \hat{\jmath}-a \hat{k}$
Length of each diagonal is $\sqrt{a^{2}+a^{2}+a^{2}}=\sqrt{3 a^{2}}=\sqrt{3} a$

Now direction cosines of each diagonals are
$\overrightarrow{O P} \Rightarrow l_{1}=\frac{a}{\sqrt{3} a}, m_{1}=\frac{a}{\sqrt{3} a}, n_{1}=\frac{a}{\sqrt{3} a}$
$\overrightarrow{O P} \Rightarrow l_{1}=\frac{1}{\sqrt{3}}, m_{1}=\frac{1}{\sqrt{3}}, n_{1}=\frac{1}{\sqrt{3}}$
$\overrightarrow{A A^{\prime}} \Rightarrow l_{2}=\frac{-1}{\sqrt{3}}, m_{2}=\frac{1}{\sqrt{3}}, n_{2}=\frac{1}{\sqrt{3}}$
$\overrightarrow{B B} \Rightarrow l_{3}=\frac{1}{\sqrt{3}}, m_{3}=\frac{-1}{\sqrt{3}}, n_{3}=\frac{1}{\sqrt{3}}$
$\overrightarrow{C C} \Rightarrow l_{4}=\frac{1}{\sqrt{3}}, m_{4}=\frac{1}{\sqrt{3}}, n_{4}=\frac{-1}{\sqrt{3}}$
Let l, m, n be the direction cosines of line L which makes angles $\alpha, \beta, \gamma \& \delta$ with each diagonal \ltimes α is the angle between line L and $\overrightarrow{O P}$
$\cos \alpha=l l_{1}+m m_{1}+n n_{1}=l\left(\frac{1}{\sqrt{3}}\right)+m\left(\frac{1}{\sqrt{3}}\right)+n\left(\frac{1}{\sqrt{3}}\right)=\frac{l+m+n}{\sqrt{3}}$

β is the angle between line L and $\overrightarrow{A A}$
$\cos \beta=l l_{2}+m m_{2}+n n_{2}=l\left(\frac{-1}{\sqrt{3}}\right)+m\left(\frac{1}{\sqrt{3}}\right)+n\left(\frac{1}{\sqrt{3}}\right)=\frac{-l+m \not n n}{\sqrt{3}}$
γ is the angle between line L and $\overrightarrow{B B}$
$\cos \gamma=l l_{3}+m m_{3}+n n_{3}=l\left(\frac{1}{\sqrt{3}}\right)+m\left(\frac{-1}{\sqrt{3}}\right)+n\left(\frac{1}{\sqrt{3}}\right)=\frac{b-m+n}{\sqrt{3}}$
δ is the angle between line L and $\overrightarrow{C C}$
$\cos \delta=l l_{4}+m m_{4}+n n_{4}=l\left(\frac{1}{\sqrt{3}}\right)+m\left(\frac{1}{\sqrt{3}}\right)+n\left(\frac{-1}{\sqrt{3}}\right)=\frac{l+m-n}{\sqrt{3}}$
Squaring eq. (1),(2),(3) \& (4) and adding
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\left(\frac{l+m+n}{\sqrt{3}}\right)^{2}+\left(\frac{-l+m+n}{\sqrt{3}}\right)^{2}+\left(\frac{l-m+n}{\sqrt{3}}\right)^{2}+\left(\frac{l+m-n}{\sqrt{3}}\right)^{2}$

$$
\begin{aligned}
& =\frac{l^{2}+m^{2}+n^{2}+2 l m+2 m n+2 n l}{3}+\frac{l^{2}+m^{2}+n^{2}-2 l m+2 m n-2 n l}{3} \\
& +\frac{l^{2}+m^{2}+n^{2}-2 l m-2 m n+2 n l}{3}+\frac{l^{2}+m^{2}+n^{2}+2 l m-2 m n-2 n l}{3}
\end{aligned}
$$

$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4 l^{2}+4 m^{2}+4 n^{2}}{3}=\frac{4\left(l^{2}+m^{2}+n^{2}\right)}{3}$
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3} \quad$ hence proved

Q\#17: Find equations of the straight line passing through the point $P(0,-3,2)$ and parallel to the straight line
joining the points $A(3,4,7)$ and $B(2,7,5)$.
Solution: Consider two lines $L_{1} \& L_{2}$
Let L_{1} be the required equation of the straight line passing through the point $P(0,-3,2)$
The points $A(3,4,7)$ and $B(2,7,5)$ on line L_{2}. So direction ratios from $A(3,4,7)$ to $B(2,7,5)$ are

$$
\overrightarrow{A B}=(2,7,5)-(3,4,7)=-\hat{\imath}+3 \hat{\jmath}-2 \hat{k}
$$

Then $-1,3,-2$ are direction ratios of line L_{2}.
By given condition both lines are parallel so both lines having same direction ratios.
Now required equation through the point $P(0,-3,2)$

$$
\frac{x-0}{-1}=\frac{y+3}{3}=\frac{z-2}{-2} \Rightarrow \frac{x}{1}=\frac{y+3}{-3}=\frac{z-2}{2} \quad \text { required equation. }
$$

Q\#18: Find equations of the straight line passing through the point $\mathrm{P}(2,0,-2)$ and perpendicular to each of straight lines

$$
\frac{x-3}{2}=\frac{y}{2}=\frac{z+1}{2} \text { and } \frac{x}{3}=\frac{y+1}{-1}=\frac{z+2}{2}
$$

Solution:

Given equations of lines are

$$
\begin{aligned}
& \frac{x-3}{2}=\frac{y}{2}=\frac{z+1}{2} \\
& \frac{x}{3}=\frac{y+1}{-1}=\frac{z+2}{2}---\left(L_{1}\right)
\end{aligned}
$$

Direction ratios of line L_{1} are $2,2,2 \quad \Rightarrow \vec{d}_{1}=2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
Direction ratios of line L_{2} are $3,-1,2 \Rightarrow \vec{d}_{2}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
Suppose L be the required line through the point $P(2,0,-2)$ with
direction ratios $c_{1}, c_{2}, c_{3} \Rightarrow \vec{d}_{3}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Since $L \perp L_{1}$

So by condition of perpendicularity

$$
\begin{array}{r}
\vec{d}_{1} \cdot \vec{d}_{3}=0 \Rightarrow(2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \cdot\left(c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}\right)=0 \\
2 c_{1}+2 c_{2}+2 c_{3}=0 \\
\vec{d}_{2} \cdot \vec{d}_{3}=0 \quad \Rightarrow \quad(3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \cdot\left(c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}\right)=0 \\
3 c_{1}-c_{2}-2 c_{3}=0 \tag{2}
\end{array}
$$

Now

$$
\frac{c_{1}}{\left|\begin{array}{cc}
2 & 2 \\
-1 & 2
\end{array}\right|}=\frac{-c_{2}}{\left|\begin{array}{cc}
2 & 2 \\
3 & 2
\end{array}\right|}=\frac{c_{3}}{\left|\begin{array}{cc}
2 & 2 \\
3 & -1
\end{array}\right| \quad \Rightarrow \frac{c_{1}}{6}=\frac{-c_{2}}{-2}=\frac{c_{3}}{-8} \quad \Rightarrow \frac{c_{1}}{3}=\frac{c_{2}}{1}=\frac{c_{3}}{-4}, 0,}
$$

Hence $(3,1,-4)$ be the direction ratios of required line L
Now equation of required line L passing through the point $P(2,0,-2)$ is $\frac{x-2}{3}=\frac{y-0}{1}=\frac{z+2}{-4}$

Find equations of straight line through the given point A and intersecting at right angles the given straight line:
Q\#19: $A=(11,4,-6)$ and $x=4-t, y=7+2 t, z=-1+t$.
Solution: Let L be the required line passing through $A=(11,4,-6)$ and perpendicular to given line.
Suppose it meets the given line at point B.
Now a point on given line is $\quad \mathrm{B}(4-t, 7+2 t,-1+t)$

$$
\begin{aligned}
& \overrightarrow{A B}=(4-t-11) \hat{\imath}+(7+2 t-4) \hat{\jmath}+(-1+t+6) \hat{k} \\
& \overrightarrow{A B}=(-t-7) \hat{\imath}+(2 t+3) \hat{\jmath}+(t+5) \hat{k}
\end{aligned}
$$

By perpendicular condition

$$
\begin{aligned}
& \overrightarrow{A B} \perp \vec{d}=0 \quad \Longrightarrow \overrightarrow{A B} \cdot \vec{d}=0 \\
& {[(-t-7) \hat{\imath}+(2 t+3) \hat{\jmath}+(t+5) \hat{k}] \cdot[-\hat{\imath}+2 \hat{\jmath}+\hat{k}]=0} \\
& (-1)(-t-7)+(2)(2 t+3)+(1)(t+5)=0 \quad \Rightarrow 7+t+4 t+6+t+5=0 \quad \Longrightarrow \quad \boldsymbol{t}=-\mathbf{3}
\end{aligned}
$$

Direction vector of required line will become

$$
\overrightarrow{A B}=(-(-3)-7) \hat{\imath}+(2(-3)+3) \hat{\jmath}+(-3+5) \hat{k} \quad \Rightarrow \overrightarrow{A B}=-4 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}
$$

Now required equation passing through the point $A=(11,4,-6)$ having direction ratios $-4,-3,2$

$$
\frac{x-11}{-4}=\frac{y-4}{-3}=\frac{z+6}{2} \quad \text { OR } \quad \frac{x-11}{4}=\frac{y-4}{3}=\frac{z+6}{-2}
$$

Q\#20: $A=(5,-4,4)$ and $\frac{x}{-1}=\frac{y-1}{1}=\frac{z}{-2}$
Solution: Given point and line are $A=(5,-4,4)$ and $\frac{x}{-1}=\frac{y-1}{1}=\frac{z}{-2}=t \quad$ (say)
The parametric equations of given line are $\quad x=-t, y=1+t, z=-2 t$

DO YOURSELF AS ABOVE

Q\#21: Find the length of the perpendicular from the point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the straight line

$$
\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n} \quad, \text { where } l^{2}+m^{2}+n^{2}=1
$$

Solution: Given point and line are

$$
P\left(x_{1}, y_{1}, z_{1}\right) \quad \& \quad \frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}
$$

Hence $A=(\alpha, \beta, \gamma)$ is a point of given line
Direction vector of given line is $\vec{b}=l \hat{\imath}+m \hat{\jmath}+n \hat{k}$
Now $\overrightarrow{A P}=\left(x_{1}-\alpha\right) \hat{\imath}+\left(y_{1}-\beta\right) \hat{\jmath}+\left(z_{1}-\gamma\right) \hat{k}$

Let d be the required distance then by using formula

$$
\begin{equation*}
d=\frac{|\overrightarrow{A P} \times \vec{b}|}{|\vec{b}|} \tag{A}
\end{equation*}
$$

$\therefore \overrightarrow{A P} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ x_{1}-\alpha & y_{1}-\beta & z_{1}-\gamma \\ l & m & n\end{array}\right|$

$$
=\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right] \hat{\imath}-\left[n\left(x_{1}-\alpha\right)-l\left(z_{1}-\gamma\right)\right] \hat{\jmath}+\left[m\left(x_{1}-\alpha\right)-l\left(y_{1}-\beta\right)\right] \hat{k}
$$

$\overrightarrow{A P} \times \vec{b}=\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right] \hat{\imath}+\left[l\left(z_{1}-\gamma\right)-n\left(x_{1}-\alpha\right)\right] \hat{\jmath}+\left[m\left(x_{1}-\alpha\right)-l\left(y_{1}-\beta\right)\right] \hat{k}$ $|\overrightarrow{A P} \times \vec{b}|=\sqrt{\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right]^{2}+\left[l\left(z_{1}-\gamma\right)-n\left(x_{1}-\alpha\right)\right]^{2}+\left[m\left(x_{1}-\alpha\right)-l\left(y_{1}-\beta\right)\right]^{2}}$ $|\overrightarrow{A P} \times \vec{b}|=\sqrt{\sum\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right]^{2}} \quad \& \quad|\vec{b}|=\sqrt{l^{2}+m^{2}+n^{2}}=\sqrt{1}=1$

Putting in equation (A)

$$
d=\frac{\sqrt{\sum\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right]^{2}}}{1} \quad \Rightarrow d=\sqrt{\sum\left[n\left(y_{1}-\beta\right)-m\left(z_{1}-\gamma\right)\right]^{2}} \text { required distance }
$$

Q\#22: Find equations of the perpendicular from the point $P(1,6,3)$ to the straight line

$$
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}
$$

Also obtain its length and coordinates of the foot of the perpendicular.

Solution:

Given point $P(1,6,3)$ and equation of straight line is

$$
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}
$$

Let $A P$ be the length of perpendicular from point A to given line
$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=t$
So parametric equations of given line are

$$
\left.\begin{array}{l}
x=t \\
y=1+2 t \\
z=2+3 t
\end{array}\right\}
$$

Any point on this line is $(t, 1+2 t, 2+3 t)$ 》
So coordinates of point P are $P(t, 1+2 t, 2+3 t)$

Direction ratios of line $\overrightarrow{A P}$ are $=(t, 1+2 t, 2+3 t)-(1,6,3)$

$$
\overrightarrow{A P}=(t-1) \hat{\imath}+(2 t-5) \hat{\jmath}+(3 t-1) \hat{k}
$$

$\&$ direction yector of given line is $\vec{d}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
Since $\overrightarrow{A P} \perp d$

$$
\Rightarrow \overrightarrow{A P} \cdot \vec{d}=0
$$

$[(t-1) \hat{\imath}+(2 t-5) \hat{\jmath}+(3 t-1) \hat{k}] \cdot(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=0$
$(1)(t-1)+(2)(2 t-5)+(3)(3 t-1)=0 \quad \Rightarrow 14 t-14=0 \quad \Rightarrow \boldsymbol{t}=\mathbf{1}$
So coordinates of point P are $P(1,3,5)$
Length of perpendicular $=|A P|=\sqrt{(1-1)^{2}+(3-1)^{2}+(5-3)^{2}}=\sqrt{0+9+4}=\sqrt{13}$
Now equation of perpendicular $\overrightarrow{A P}$ is

$$
\frac{x-1}{1-1}=\frac{y-6}{3-6}=\frac{z-3}{5-3} \Rightarrow \frac{x-1}{0}=\frac{y-6}{-3}=\frac{z-3}{2} \quad \text { required equation of line }
$$

Q\#23: Find necessary and sufficient condition that the point $P\left(x_{1}, y_{1}, z_{1}\right), Q\left(x_{2}, y_{2}, z_{2}\right)$ and $R\left(x_{3}, y_{3}, z_{3}\right)$ are collinear.
Solution: Given points are $P\left(x_{1}, y_{1}, z_{1}\right), Q\left(x_{2}, y_{2}, z_{2}\right) \& R\left(x_{3}, y_{3}, z_{3}\right)$
Suppose that the points $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are collinear.
Now equation of line through $P\left(x_{1}, y_{1}, z_{1}\right) \& Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Since points $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are collinear. So point $R\left(x_{3}, y_{3}, z_{3}\right)$ lies on line.

$$
\frac{x_{3}-x_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{y_{2}-y_{1}}=\frac{z_{3}-z_{1}}{z_{2}-z_{1}}=t(\text { say })
$$

$$
\left.\left.\left.\Rightarrow \quad \begin{array}{c}
x_{3}-x_{1}=t\left(x_{2}-x_{1}\right) \\
y_{3}-y_{1}=t\left(y_{2}-y_{1}\right) \\
z_{3}-z_{1}=t\left(z_{2}-z_{1}\right)
\end{array}\right] \quad \text { or } \begin{array}{c}
x_{3}-x_{1}-t x_{2}+t x_{1}=0 \\
y_{3}-y_{1}-t y_{2}+t y_{1}=0 \\
z_{3}-z_{1}-t z_{2}+t z_{1}=0
\end{array}\right] \Rightarrow \begin{array}{l}
(t-1) x_{1}-t x_{2}+x_{3}=0 \\
(t-1) y_{1}-t y_{2}+y_{3}=0 \\
(t-1) z_{1}-t z_{2}+z_{3}=0
\end{array}\right\}
$$

Eliminating $(t-1),-t, 1$ from above equations
$\left|\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3}\end{array}\right|=0 \quad$ or $\quad\left|\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3}\end{array}\right|=0$
Which is necessary condition for three points $P, Q \& R$ to be collinear.

Q\#24: If $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2}$ and l_{3}, m_{3}, n_{3} are direction cosines of three mutual perpendicular lines, prove that the lines whose direction cosines are proportional to $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}$ makes congruent angles with them.
Solution: Suppose that $L_{1}, L_{2} \& L_{3}$ are given line such that
Direction cosines of L_{1} are l_{1}, m_{1}, n_{1}
Direction cosines of L_{2} are l_{2}, m_{2}, n_{2}
Direction cosines of L_{3} are l_{3}, m_{3}, n_{3}
Since lines $L_{1}, L_{2} \& L_{3}$ are mutually perpendicular

$$
\text { So } \left.\begin{array}{ll}
& l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0 \\
l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}=0 \\
& l_{1} l_{3}+m_{1} m_{3}+n_{1} n_{3}=0
\end{array}\right\}
$$

Let L be the line having direction ratios $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3} \& n_{1}+n_{2}+n_{3}$
Let α be the angle between $L \& L_{1}$ then
$\cos \alpha=\frac{l_{1}\left(l_{1}+l_{2}+l_{3}\right)+m_{1}\left(m_{1}+m_{2}+m_{3}\right)+n_{1}\left(n_{1}+n_{2}+n_{3}\right)}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}} \cdot \sqrt{\left(l_{1}+l_{2}+l_{3}\right)^{2}+\left(m_{1}+m_{2}+m_{3}\right)^{2}+\left(n_{1}+n_{2}+n_{3}\right)^{2}}}$

$$
\begin{equation*}
=\frac{\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)+\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)+\left(l_{1} l_{3}+m_{1} m_{3}+n_{1} n_{3}\right)}{\sqrt{\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)+\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)+\left(l_{3}^{2}+m_{3}^{2}+n_{3}^{2}\right)+2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)}} \tag{1}
\end{equation*}
$$

$\cos \alpha=\frac{1+0+0}{\sqrt{1+1+1+0+0+0}} \quad \Rightarrow \quad \cos \alpha=\frac{1}{\sqrt{3}} \quad \Rightarrow \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Let β be the angle between $L \& L_{2}$ then

$$
\begin{align*}
\cos \beta & =\frac{l_{2}\left(l_{1}+l_{2}+l_{3}\right)+m_{2}\left(m_{1}+m_{2}+m_{3}\right)+n_{2}\left(n_{1}+n_{2}+n_{3}\right)}{\sqrt{{l_{2}}^{2}+m_{2}^{2}+n_{2}^{2}} \cdot \sqrt{\left(l_{1}+l_{2}+l_{3}\right)^{2}+\left(m_{1}+m_{2}+m_{3}\right)^{2}+\left(n_{1}+n_{2}+n_{3}\right)^{2}}} \\
& =\frac{\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)+\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)++\left(l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}\right)}{\sqrt{\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)+\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)+\left(l_{3}^{2}+m_{3}^{2}+n_{3}^{2}\right)+2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)}} \tag{2}
\end{align*}
$$

$\cos \beta=\frac{0+1+0}{\sqrt{1+1+1+0+0+0}} \Rightarrow \cos \beta=\frac{1}{\sqrt{3}} \quad \Rightarrow \beta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
Let γ be the angle between $L \& L_{1}$ then

$$
\begin{align*}
\cos \gamma & =\frac{l_{3}\left(l_{1}+l_{2}+l_{3}\right)+m_{3}\left(m_{1}+m_{2}+m_{3}\right)+n_{3}\left(n_{1}+n_{2}+n_{3}\right)}{\sqrt{l_{3}^{2}+m_{3}^{2}+n_{3}^{2}} \cdot \sqrt{\left(l_{1}+l_{2}+l_{3}\right)^{2}+\left(m_{1}+m_{2}+m_{3}\right)^{2}+\left(n_{1}+n_{2}+n_{3}\right)^{2}}} \\
& =\frac{\left(l_{1} l_{3}+m_{1} m_{3}+n_{1} n_{3}\right)+\left(l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}\right)+\left(l_{3}^{2}+m_{3}^{2}+n_{3}^{2}\right)}{\sqrt{\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)+\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)+\left(l_{3}^{2}+m_{3}^{2}+n_{3}^{2}\right)+2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)}} \tag{3}
\end{align*}
$$

$\cos \gamma=\frac{1+0+0}{\sqrt{1+1+1+0+0+0}} \Rightarrow \cos \gamma=\frac{1}{\sqrt{3}} \quad \Rightarrow \gamma=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
From (1) (2) \& (3) it is proved that $\Rightarrow \alpha \cong \beta \cong \gamma \quad$ required result
Q\#25: A variable line in two adjacent positions has direction cosines $\boldsymbol{l}, \boldsymbol{m}, n$ and $\boldsymbol{l}+\boldsymbol{\delta l}, \boldsymbol{m}+\boldsymbol{\delta} \boldsymbol{m}, n+\boldsymbol{n} \boldsymbol{n}$. Show that measure of the small angle $\delta \theta$ between the two positions is given by $(\delta \theta)^{2}=(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}$.

Solution:

Let OA and OB be the two adjacent positions of the line. Let PQ be the arc of the circle with centre at O and radius 1 .
Then the coordinates of the points.
$\mathrm{P} \& \mathrm{Q}$ are $P(l, m, n) \& Q(l+\delta l, m+\delta m, n+\delta n)$.
Let $\delta \theta$ be the angle between two positions of line.
Now $\delta \theta=$ chord $P Q$
So $\quad \delta \theta=|P Q|$

$$
\delta \theta=\sqrt{(l+\delta l-l)^{2}+(m+\delta m-m)^{2}+(n+\delta n-n)^{2}}
$$

$\delta \theta=\sqrt{\delta l^{2}+\delta m^{2}+\delta n^{2}}$

$\Rightarrow \quad \delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$

Checked by: Sir Hameed ullah (hameedmath2017 @ gmail.com)

Specially thanks to my Respected Teachers

Prof. Muhammad Ali Malik (M.phill physics and Publisher of (www.Houseofphy.blogspot.com

Muhammad Umar Asghar sb (M.Sc Mathematics)

Hameed Ullah sb (M.Sc Mathematics)

