CHAPTER \# 08

ANALYTIC GEOMETRY OF THREE DIMENSONS

Exercise \#8. 1

Show that the three given points are the vertices of a right triangle, or the vertices of an isosceles triangle, or both.

Q\#4: $A(1,5,0), \quad B(6,6,4), \quad C(0,9,5)$

Solution:

Consider a $\triangle \mathrm{ABC}$ with vertices $\quad A(1,5,0), B(6,6,4), C(0,9,5)$
For required proof, we have to find the following magnitudes

$$
\begin{aligned}
& \left.|\mathrm{AB}|=\sqrt{(6-1)^{2}+(6-5)^{2}+(4-0)^{2}}=\sqrt{5^{2}+1^{2}+4^{2}}=\sqrt{25+1+6}\right) \\
& |\mathrm{BC}|=\sqrt{(0-6)^{2}+(9-6)^{2}+(5-4)^{2}}=\sqrt{6^{2}+3^{2}+1^{2}}=\sqrt{36+9+1} \quad \Rightarrow \quad|\mathrm{AB}|=\sqrt{42} \\
& |\mathrm{AC}|=\sqrt{(1-0)^{2}+(5-9)^{2}+(0-5)^{2}}=\sqrt{1^{2}+4^{2}+5^{2}}=\sqrt{1+16+25} \quad \Rightarrow \quad|\mathrm{BC}|=\sqrt{46} \\
&
\end{aligned}
$$

Since $|A B|=|A C| \quad$ Hence given triangle is isosceles,
Q\#5: $A(4,9,4), \quad B(0,11,2), \quad C(1,0,1)$

Solution:

Consider a $\triangle \mathrm{ABC}$ with vertices $A(4,9,4), B(0,11,2), C(1,0,1)$
For required proof, we have to find the following magnitudes

$$
\begin{array}{ll}
|\mathrm{AB}|=\sqrt{(0-4)^{2}+(11-9)^{2}+(2-4)^{2}}=\sqrt{4^{2}+2^{2}+2^{2}}=\sqrt{16+4+4} & \Rightarrow|\mathrm{AB}|=\sqrt{24} \\
|\mathrm{BC}|=\sqrt{(1-0)^{2}+(0-11)^{2}+(1-2)^{2}}=\sqrt{1^{2}+11^{2}+1^{2}}=\sqrt{1+121+1} & \Rightarrow|\mathrm{BC}|=\sqrt{123} \\
|\mathrm{AC}|=\sqrt{(1-4)^{2}+(0-9)^{2}+(1-4)^{2}}=\sqrt{1^{2}+11^{2}+1^{2}}=\sqrt{9+81+9} & \Rightarrow|\mathrm{AC}|=\sqrt{99}
\end{array}
$$

Since $|A B|^{2}+|A C|^{2}=24+99=123=\sqrt{(123)^{2}}=|B C|^{2}$

$$
\Rightarrow|\mathrm{AB}|^{2}+|\mathrm{AC}|^{2}=|\mathrm{BC}|^{2}
$$

Hence $\triangle \mathrm{ABC}$ is a right triangle with right angle at vertex A .
Q\#6: $\mathbf{A}(\mathbf{1}, 0,2), \quad \mathbf{B}(4,3,2), \quad \mathbf{C}(0,7,6)$

Do yourself as above
Q\#7: $A(2,3,4), \quad B(8,-1,2), \quad C(4,1,0)$

Do yourself as above

Q\#8: Show that the points $(1,6,1),(1,3,4),(4,3,1)$ and $(0,2,0)$ are the vertices of regular tetrahedron.
Solution:Let given points are $A=(1,6,1), B=(1,3,4), C=(4,3,1) \& D=(0,2,0)$
to show that given points are the vertices of regular tetrahedron, for this we have to show that
$|\mathrm{AB}|=|\mathrm{AC}|=|\mathrm{AD}|=|\mathrm{BC}|=|\mathrm{CD}|=|\mathrm{BD}|$

Now

$|\mathrm{AB}|=\sqrt{(1-1)^{2}+(3-6)^{2}+(4-1)^{2}}=\sqrt{0^{2}+3^{2}+3^{2}}=\sqrt{0+9+9}=\sqrt{18} \Rightarrow|\mathrm{AB}|=3 \sqrt{2}$
$|\mathrm{AC}|=\sqrt{(4-1)^{2}+(3-6)^{2}+(1-1)^{2}}=\sqrt{3^{2}+3^{2}+0^{2}}=\sqrt{9+9+0}=\sqrt{18} \Rightarrow|\mathrm{AC}|=3 \sqrt{2}$
$|\mathrm{AD}|=\sqrt{(0-1)^{2}+(2-6)^{2}+(0-1)^{2}}=\sqrt{1^{2}+4^{2}+1^{2}}=\sqrt{1+16+1}=\sqrt{18} \Rightarrow|\mathrm{AD}|=3 \sqrt{2}$
$|\mathrm{BC}|=\sqrt{(4-1)^{2}+(3-3)^{2}+(1-4)^{2}}=\sqrt{3^{2}+0^{2}+3^{2}}=\sqrt{9+0+9}=\sqrt{18} \Rightarrow|\mathrm{BC}|=3 \sqrt{2}$
$|C D|=\sqrt{(0-4)^{2}+(2-3)^{2}+(0-1)^{2}}=\sqrt{4^{2}+1^{2}+1^{2}}=\sqrt{16+1+1} \xlongequal{18} \Rightarrow|C D|=3 \sqrt{2}$
$|\mathrm{BD}|=\sqrt{(0-1)^{2}+(2-3)^{2}+(0-4)^{2}}=\sqrt{1^{2}+1^{2}+4^{2}}=\sqrt{1+1+16}=\sqrt{18} \Rightarrow|\mathrm{BD}|=3 \sqrt{2}$

Since $|A B|=|A C|=|A D|=|B C|=|C D|=|B D|$
Hence proved the given points are the vertices of a regular tetrahedron.
Q\#9: Show that the points $(3,-1,3),(1,-1,2),(2,1,0)$ and $(4,1,1)$ are the vertices of rectangle.
Solution: Suppose given points are $A=(3,-1,3), B=(1,-1,2), C=(2,1,0), D=(4,1,1)$
For a rectangle, we have to show that $\quad|A B|=|C D| \&|B C|=|A D| \& \angle A=90^{\circ}$

Now
$|A B|=\sqrt{(1-3)^{2}+(-1+1)^{2}+(2-3)^{2}}$

$$
=\sqrt{4+0+1}
$$

$\Rightarrow|A B|=\sqrt{5}$

$$
|C D|=\sqrt{(4-2)^{2}+(1-1)^{2}+(1-0)^{2}}
$$

$$
=\sqrt{4+0+1}
$$

$\Rightarrow|C D|=\sqrt{5}$

Now

$$
\begin{aligned}
|\mathrm{BC}| & =\sqrt{(2-1)^{2}+(1+1)^{2}+(0-2)^{2}} \\
& =\sqrt{1+4+4}=\sqrt{9}
\end{aligned}
$$

$$
\Rightarrow \quad|\mathrm{BC}|=3
$$

$$
\& \quad|\mathrm{AD}|=\sqrt{(4-3)^{2}+(1+1)^{2}+(1-3)^{2}}
$$

$$
=\sqrt{1+4+4}=\sqrt{9}
$$

$$
\Rightarrow|\mathrm{AD}|=3
$$

$$
\text { Hence }|\mathrm{AB}|=|\mathrm{CD}| \quad \& \quad|\mathrm{BC}|=|\mathrm{AD}|
$$

Now we have to prove $\angle \mathrm{A}=90^{\circ}$
Consider $|A B|^{2}+|A D|^{2}=5+9=14$ \qquad
Since

$$
\begin{align*}
& |\mathrm{BD}|=\sqrt{(4-1)^{2}+(1+1)^{2}+(1-2)^{2}} \tag{1}\\
& |\mathrm{BD}|=\sqrt{9+4+1}=\sqrt{14} \\
& |\mathrm{BD}|^{2}=14
\end{align*}
$$

Putting in equation (1)

$|A B|^{2}+|A D|^{2}=|B D|^{2}$
So $\angle \mathrm{A}=90^{\circ}$ Hence given points are the vertices of rectangle.

Q\#10: Under what conditions on x, y and z is the point $P(x, y, z)$ equidistant from the points $(3,-1,4)$ and $(-1,5,0)$?

Solution:

Suppose the given points are $A(3,-1,4)$ and $B(-1,5,0) \&$ Let $P(x, y, z)$ be any point which is equidistance from A and B.

According to given condition

$$
|\mathrm{PA}|=|\mathrm{PB}|
$$

$$
\Rightarrow \quad \sqrt{(x-3)^{2}+(y+1)^{2}+(z-4)^{2}}=\sqrt{(x+1)^{2}+(y-5)^{2}+(z-0)^{2}}
$$

Square on both sides

$$
\begin{aligned}
\Rightarrow \quad(\mathrm{x}-3)^{2}+(\mathrm{y}+1)^{2}+(\mathrm{z}-4)^{2} & =(\mathrm{x}+1)^{2}+(\mathrm{y}-5)^{2}+(\mathrm{z}-0)^{2} \\
x^{2}-6 x+9+y^{2}+2 y+1+z^{2}-8 z+16 & =x^{2}+2 x+1+y^{2}-10 y+25+z^{2} \\
-6 x+2 y-8 z+26 & =2 x-10 y+26 \\
-8 x+12 y-8 z & =0 \\
-4(2 x-3 y+2 z) & =0
\end{aligned}
$$

$$
\Rightarrow \quad 2 x-3 y+2 z=0
$$

is the required condition
Q\#11: Find the coordinates of the point dividing the join of $A(-3,1,4)$ and $B(5,-1,6)$ in the ratio 3:5.
Solution: Given points are $A(-3,1,4) \& B(5,-1,6)$.
Let $P(x, y, z)$ be the required point dividing the line AB in ratio $3: 5$
As we know that the $P(x, y, z)$ divide the join of $A\left(x_{1}, y_{1}, z_{1}\right) \& B\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $m_{1}: m_{2}$ is
$\left(\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}, \frac{m_{2} z_{1}+m_{1} z_{2}}{m_{1}+m_{2}}\right)$
Hence coordinates of point P are
$P\left(\frac{5(-3)+3(5)}{3+5}, \frac{5(1)+3(-1)}{3+5}, \frac{5(4)+3(6)}{3+5}\right)$
$P\left(\frac{-15+15}{8}, \frac{5-3}{8}, \frac{20+18}{8}\right) \Rightarrow P=\left(0,1, \frac{19}{4}\right)$ is required point.
Q\#12: Find the ratio in which the yz-plane divides the segment joining the points $A(-2,4,7)$ and $B(3,-5,8)$.
Solution: Given points are $A(-2,4,7) \& B(3,-5,8)$
Let the yz -plane divides the join of the given points in the ratio $m_{1}: m_{2}$
Now the x -coordinate of the point P dividing the join of given points in the ratio $m_{1}: m_{2}$ is

$$
x=\frac{3 m_{1}+(-2) m_{2}}{m_{1}+m_{2}}=\frac{3 m_{1}-2 m_{2}}{m_{1}+m_{2}}
$$

Since this point lies on yz -plane so $x=0$

$$
\begin{array}{cc}
\Rightarrow & \frac{3 m_{1}-2 m_{2}}{m_{1}+m_{2}}=0 \Rightarrow 3 m_{1}-2 m_{2}=0 \\
\Rightarrow & 3 m_{1}=2 m_{2} \\
\Rightarrow & \frac{m_{1}}{m_{2}}=\frac{2}{3} \\
\Rightarrow & m_{1}: m_{2}=2: 3 \text { is required ratio }
\end{array}
$$

Q\#13: Show that the centroid of the triangle whose vertices are $\left(x_{i}, y_{i}, z_{i}\right), i=1,2,3$; is

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right) .
$$

Solution: Let the given vertices of the triangle are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right) \& C\left(x_{3}, y_{3}, z_{3}\right)$.
Suppose D, E, F are the mid points of the sides $B C, A C \& A B$ respectively.
Now coordinates of D are $D=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$
Suppose G is the centroid of $\triangle A B C$, Then coordinates of point G dividing $A D$ in the ratio 2:1 are
$G\left(\frac{1 \cdot x_{1}+2\left(\frac{x_{2}+x_{3}}{2}\right)}{1+2}, \frac{1 \cdot y_{1}+2\left(\frac{y_{2}+y_{3}}{2}\right)}{1+2}, \frac{1 . z_{1}+2\left(\frac{z_{2}+z_{3}}{2}\right)}{1+2}\right)$
$G\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$

Now the coordinates of the points E and F are
$E\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right) \& F\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
Then the coordinates of the centroid G dividing $B E$ in the ratio $2: 1$ are
$G\left(\frac{1 . x_{2}+2\left(\frac{x_{1}+x_{3}}{2}\right)}{1+2}, \frac{1 . y_{2}+2\left(\frac{y_{1}+y_{3}}{2}\right)}{1+2}, \frac{1 . z_{2}+2\left(\frac{z_{1}+z_{3}}{2}\right)}{1+2}\right)$

$G\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$
Similarly the coordinates of cancroids G dividing $C F$ in the ratio $2: 1$ are

$$
G\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

Hence coordinates of centroid G are

$$
G\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3^{\bullet}}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

Q\#14: Find the centroid of the tetrahedron whose vertices are $\left(x_{i}, y_{i}, z_{i}\right), i=1,2,3,4$.
Solution: Let the vertices of the tetrahedron are
$A=\left(x_{1}, y_{1}, z_{1}\right)$
$B=\left(x_{2}, y_{2}, z_{2}\right)$
$C=\left(x_{3}, y_{3}, z_{3}\right)$
$D=\left(x_{4}, y_{4}, z_{4}\right)$
Let E, F, G, H are the centroids of
the triangle $B C D, A C D, A B D \& A B C$ respectively,

Then their coordinates are
$E=\left(\frac{x_{2}+x_{3}+x_{4}}{3}, \frac{y_{2}+y_{3}+y_{4}}{3}, \frac{z_{2}+z_{3}+z_{4}}{3}\right)$
$F=\left(\frac{x_{1}+x_{3}+x_{4}}{3}, \frac{y_{1}+y_{3}+y_{4}}{3}, \frac{z_{1}+z_{3}+z_{4}}{3}\right)$
$G=\left(\frac{x_{1}+x_{2}+x_{4}}{3}, \frac{y_{1}+y_{2}+y_{4}}{3}, \frac{z_{1}+z_{2}+z_{4}}{3}\right)$
$H=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$

Now coordinates of centroid dividing the line $A E$ in ratio 3: 1 are
$\left(\frac{1 . x_{1}+3\left(\frac{x_{2}+x_{3}+x_{4}}{3}\right)}{1+3}, \frac{1 . y_{1}+3\left(\frac{y_{2}+y_{3}+y_{4}}{3}\right)}{1+3}, \frac{1 . z_{1}+3\left(\frac{z_{2}+z_{3}+z_{4}}{3}\right)}{1+3}\right)$
$\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)$
Now coordinates of centroid dividing the line $B F$ in the ratio 3: 1 are
$\left(\frac{1 . x_{2}+3\left(\frac{x_{1}+x_{3}+x_{4}}{3}\right)}{1+3}, \frac{1 . y_{2}+3\left(\frac{y_{1}+y_{3}+y_{4}}{3}\right)}{1+3}, \frac{1 . z_{2}+3\left(\frac{z_{1}+z_{3}+z_{4}}{3}\right)}{1+3}\right)$
$\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)$
Similarly we can prove that co-ordinates of centroid in case of $C G$ and $D G$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)
$$

So co-ordinates of centroid are

$$
\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)
$$

Checked by: Sir Hameed ullah (hameedmath2017 @ gmail.com)

Specially thanks to my Respected Teachers
 Prof. Muhammad Ali Malik (M.phill physics and Publisher of www.Houseofphy.blogspot.com)
 Muhammad Umar Asghar sb (MSc Mathematics)
 Hameed Ullah sb (MSc Mathematics)

