Chapter 03
Calculus with analytic geometry

Ex. Let \(S = \{1, 2, 3\} \)

An element \(x \in S \) is said to be bounded above if there is a number \(M \geq x \) for every \(x \in S \). The least of such numbers is called the upper bound of \(S \).

An element \(x \in S \) is said to be bounded below if there is a number \(m \leq x \) for every \(x \in S \). The greatest of such numbers is called the lower bound of \(S \).

Ex. Let \(S = \{1, 2, 3, 4, 5\} \)

An element \(x \in S \) is said to be bounded above by \(5 \) and bounded below by \(1 \).

Ex. Let \(S = \{1, 2, 3, 4, 5\} \)

An element \(x \in S \) is said to be bounded above by \(5 \) and bounded below by \(1 \).

Ex. Let \(S = \{1, 2, 3, 4, 5\} \)

An element \(x \in S \) is said to be bounded above by \(5 \) and bounded below by \(1 \).
Let S be a non-empty subset of \mathbb{R}.

1. If S is bounded above, then an upper bound of S is called a least upper bound of S, or supremum of S. If M is less than any other upper bound of S.
2. If S is bounded below, then a lower bound m of S is called greatest lower bound of S, or infimum of S. If m is greater than any other lower bound of S. In notation we write $m = \sup S$ or $M = \sup S$.

In example 1,

$M = 20$
$m = 1$

In example 2,

$M = 30$, $m = 0$.

A function f is said to be continuous in $[a, b]$ if there is no gap in the graph of f in the interval $[a, b]$.

For the given example, f is continuous in $[a, b]$ and discontinuous in $[c, d]$.

[Graph of a function with discontinuity at $x = c$]
Rolle's Theorem:

Statement:
Let a function \(f \) be

1. Continuous on a closed interval \([a, b]\).
2. Differentiable in the open interval \((a, b)\).
3. \(f(a) = f(b) \)

Then there exists at least one point \(c \in [a, b] \) such that

\[f'(c) = 0. \]

Proof:

Because \(f \) is continuous on \([a, b]\),

\[f \]

is bounded.

Let \(M = \sup f \) and \(m = \inf f \).

Case 1: \(M = m \)

Then \(f \) is constant on \((a, b)\) and so,

\[f(x) = 0 \quad \forall x \in [a, b] \]

we have the required proof.

Case 2: \(M \neq m \)

Then at least one of \(M \) and \(m \) is different from \(f(a) \) and \(f(b) \).

Suppose \(M \neq f(a) = f(b) \)

Since \(f \) attains its supremum on \([a, b]\), so there is a pt. \(c \in [a, b] \) such that \(f(c) = M \).

But from (i), \(M \neq f(a) = f(b) \)

so \(c \neq a \) and \(c \neq b \)

\[\Rightarrow c \in (a, b) \]
Suppose that \(h \) be a real number, then

\[
\frac{f(c+h) - f(c)}{h} \leq 0
\]

or

\[
\frac{f(c+h) - f(c)}{h} \geq 0
\]

Taking limit as \(h \to 0 \)

Eq. (a) becomes

\[
\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0
\]

\[
f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \leq 0
\]

\[
f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \geq 0
\]

\[
\Rightarrow f'(c) = 0
\]

Mean-Value Theorem (or) (Lagrange's M.V.T).

Statement:

Let a function \(f \) be

1. Continuous on closed interval \([a, b]\)
2. Differentiable in the open interval \((a, b)\)
Then there exists a point \(c \in [a, b] \) such that
\[
\frac{f(b) - f(a)}{b - a} = f'(c).
\]

Proof:

Define a new function
\[
\phi(x) = Ax + f(x)
\]
where \(A \) is a constant to be determined.

\(\phi(a) = \phi(b) \)

Obviously, the function \(Ax \) is continuous on \([a, b]\) and \(f(x) \) is derivable in \([a, b]\).

Now \(\phi(x) \) satisfies all the conditions of Rolle's theorem. So there is a point \(c \in [a, b] \) such that
\[
\phi'(c) = 0
\]
\[
A + f'(c) = 0
\]
\[
\Rightarrow f'(c) = -A
\]

From \(\phi(a) = \phi(b) \)
\[
\Rightarrow Aa + f(a) = Ab + f(b)
\]
\[
A(a - b) = f(b) - f(a)
\]
\[
A(b - a) = f(b) - f(a)
\]
\[
\Rightarrow -A(b - a) = f(b) - f(a)
\]
\[
= -A = \frac{f(b) - f(a)}{b - a}
\]
but value of $-a$ in (2)
\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
so \[\frac{f(b) - f(a)}{b - a} = f'(c) \] as desired.

Note: Another form of mean value theorem.

If we take the interval as \([a, a+h]\) instead of \([a, b]\). Then mean value theorem becomes:
\[f(a+h) - f(a) = f'(c) \]
where \(c\) is a point such that \(a < c < a+h\).

Then clearly \(c = a + \theta h\) where \(0 < \theta < 1\).

So (1) becomes:
\[f(a+h) - f(a) = hf'(a+\theta h) \]
which is another form of M.V.T.

Cauchy's Mean Value Theorem (OR)

Generalized M.V.T:

Statement:

9 if two functions f and g are

1. Continuous on \([a, b]\)
2. Derivable in \(]a, b[\)
3. $g(x) \neq 0$ for all $x \in]a, b[$ Then there
exists: at least one \(c \in [a, b] \) such that

\[
\frac{f(b) - f(a)}{\phi(b) - \phi(a)} = \frac{f(c)}{\phi(c)}
\]

Proof:

Define a new function

\[F(x) = f(x) + A \phi(x) \]

where \(A \) is a constant to be determined so that \(F(a) = F(b) \).

So

\[f(a) + A \phi(a) = f(b) + A \phi(b) \]

or

\[A \phi(b) - A \phi(a) = f(a) - f(b) \]

\[\Rightarrow A (\phi(b) - \phi(a)) = - (f(b) - f(a)) \]

Now

\[\phi(b) - \phi(a) \neq 0 \]

Because if we suppose that

\[\phi(b) - \phi(a) = 0 \]

then \(\phi(a) = \phi(b) \)

and then \(\phi \) satisfies all the conditions of Rolle's theorem. So we must have

\[\phi(c) = 0 \]

for some \(c \in [a, b] \)

which is a contradiction to statement.

So

\[\phi(b) - \phi(a) \neq 0 \]

\[\Rightarrow A = - \frac{f(b) - f(a)}{\phi(b) - \phi(a)} \]

Now the function \(F \), being sum of two derivable functions is derivable in \([a, b]\).
Hence by Rolle's theorem
\[F'(c) = 0 \]
\[\rightarrow f'(c) + A \phi'(c) = 0 \]
\[\Rightarrow A = \frac{f'(c)}{\phi'(c)} \] \hspace{1cm} (2)

So from (1) and (2)
\[\frac{-f'(c)}{\phi'(c)} = \frac{f(b)-f(a)}{\phi(b)-\phi(a)} \]

So \[\frac{f(b)-f(a)}{\phi(b)-\phi(a)} = \frac{f'(c)}{\phi'(c)} \] as desired.

Note: Another form of Cauchy's M.V.T.
If we take the interval as \([a, a+h]\) instead of \([a, b]\). Then Cauchy's M.V.T. becomes:
\[\frac{f(a+h)-f(a)}{\phi(a+h)-\phi(a)} = \frac{f'(c)}{\phi'(c)} \] \hspace{1cm} (i)

where \(c \) is a pt s.t. \(a < c < a+h \)
If we write \(c = a + \theta h \) where \(0 < \theta < 1 \)
Then clearly \(a + \theta h \in [a, a+h] \)
So, \((i) \) becomes
\[\frac{f(a+h)-f(a)}{\phi(a+h)-\phi(a)} = \frac{f'(a+\theta h)}{\phi'(a+\theta h)} \quad 0 < \theta < 1 \]

viz. another form of Cauchy's M.V.T.
Increasing & decreasing functions:

A function f is said to be an increasing function on $[a, b]$ if for $x_1, x_2 \in [a, b]$,

$$f(x_2) > f(x_1) \text{ whenever } x_2 > x_1$$

A function f is said to be a decreasing function on $[a, b]$ if for $x_1, x_2 \in [a, b]$,

$$f(x_2) < f(x_1) \text{ whenever } x_2 > x_1$$

Theorem:

Suppose f is continuous on $[a, b]$ and has derivative at each point in $]a, b[$.

1. If f' is non-decreasing on $]a, b[$, then f is increasing on $[a, b]$.
2. If f' is non-increasing on $]a, b[$, then f is decreasing on $[a, b]$.

Proof:

Let $x_1, x_2 \in]a, b[$ such that $x_2 > x_1$.

By Lagrange's MVT, there is a point $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\Rightarrow f(x_2) - f(x_1) = (x_2 - x_1) f'(c) \quad \text{(i)}$$
Now \(f'(c) \) is +ve a_alio \(x_2 - x_1 > 0 \)

So \(D \Rightarrow f(x_2) - f(x_1) > 0 \)

So \(f(x_2) > f(x_1) \) for \(x_2 > x_1 \).

Hence \(f \) is an increasing function.

(2) let \(x_1, x_2 \in]a, b[\) s. that \(x_2 > x_1 \).

By Lagrange’s M.V.T. There is a pt \(c \) s. that

\[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) \quad \text{for } c \in \{x_1, x_2\}
\]

\[
\Rightarrow f(x_2) - f(x_1) = (x_2 - x_1)f'(c) \quad (2)
\]

Now \(f'(c) < 0 \) a \(x_2 - x_1 > 0 \)

So \(f(x_2) < f(x_1) \) whenever \(x_2 > x_1 \). Thus \(f \) is a decreasing function.
Exercise 3.1

1. Discuss the validity of Rolle's theorem for the following functions.

(i) \(f(x) = x^2 - 3x + 2 \) on \([1, 2]\)

\[\text{Let } f(x) = x^2 - 3x + 2 \]
\[f(1) = 1 - 3 + 2 = 0 \]
\[f(2) = 4 - 6 + 2 = 0 \]

Thus, \(f(1) = f(2) \)

Clearly, \(f(x) \) is continuous on \([1, 2]\) and derivable in \((1, 2)\). Since all conditions of Rolle's theorem are satisfied, there must exist a point \(c \in (1, 2) \) such that
\[f'(c) = 0 \]

Now \(f'(x) = 2x - 3 \)
\[\Rightarrow f'(c) = 2c - 3 \]
So \(2c - 3 = 0 \)
\[\Rightarrow c = \frac{3}{2} \]

Hence, Rolle's theorem is valid with \(c = \frac{3}{2} \)

(ii) \(\text{Let } f(x) = \sin x \) on \([0, \pi]\)

Now \(f(0) = \sin 0 = 0 \)
\[f(\pi) = \sin \pi = 0 \]
\[f'(c) = 0 \]

Now \(f'(x) = 2 \sin x \cos x \)

so \(2 \sin c \cos c = 0 \)

\[\Rightarrow \sin c \cos c = 0 \]

\[\Rightarrow c = 0, \frac{\pi}{2} \]

Hence, Rolle's theorem is valid if \(c = \frac{\pi}{2} \).

(iii) Let \(f(x) = 1 - x^{3/4} \) on \([-1, 1]\)

Now \(f(-1) = 1 - (-1)^{3/4} \)

\[= 1 - (-1) \]

\[f(-1) = 1 + 1 = 2 \]

\(f(1) = 1 - (1)^{3/4} \)

\[= 1 - 1 \]

\[f(1) = 0 \]

Hence, \(f(-1) \neq f(1) \)

Since one of the conditions of Rolle's theorem is not satisfied, hence Rolle's theorem is not valid and we cannot calculate \(c \).
By Lagrange's Mean Value Theorem,
\[f(b) - f(a) = (b - a) f'(c) \quad (1) \]
where \(c \in \left[-\frac{11}{7}, \frac{13}{7} \right] \).

Now
\[f'(c) = f\left(-\frac{11}{7} \right) = \left(-\frac{11}{7} \right)^3 - 3 \left(-\frac{11}{7} \right) - 1 \]
\[= -\frac{1331}{343} + \frac{33}{7} - 1 \]
\[= -\frac{1331 + 1617 - 343}{343} \]
\[f\left(-\frac{11}{7} \right) = -\frac{57}{343} \]

Also,
\[f'(x) = \frac{3}{2} x^2 - 3 \]
\[\Rightarrow f'(c) = 3c^2 - 3 \]
putting values in (1)
\[-\frac{57}{343} \left(-\frac{57}{343} \right) = \left(\frac{13}{7} - \left(-\frac{11}{7} \right) \right) \left(3c^2 - 3 \right) \]
\[-\frac{57}{\sqrt{13}} + \frac{57}{343} = \left(\frac{13}{7} + \frac{11}{7} \right) \left(3c^2 - 3 \right) \]
\[0 = \left(\frac{24}{7} \right) \left(3c^2 - 3 \right) \]
\[\Rightarrow 3c^2 - 3 = 0 \]
\[\Rightarrow c^2 - 1 = 0 \]
\[\Rightarrow c = \pm 1 \]

(ii) Hence \(f(x) = \sin x \) on \([a, b] \).
By Lagrange's M.V Theorem,
\[f(b) - f(a) = (b - a) f'(c) \quad (i) \]
for some \(c \in [a, b] \).

Now
\[f(a) = \sin a \]
and \(f(b) = \sin b \)

also \(f'(x) = \cos x \)
\[\Rightarrow f'(c) = \cos c \]

So from (i)
\[\sin b - \sin a = (b - a) \cos c \]

\[\Rightarrow c = \cos \left(\frac{b - a}{b - a} \right) \]

(iii): Here \(f(x) = 2x - x^3 \) on \([0, 1]\).

By Lagrange's M.V. Theorem
\[f(b) - f(a) = (b - a) f'(c) \quad (i) \]
for some \(c \in [a, b] \).

Now
\[f(a) = f(0) = 0 \cdot 0 = 0 \]
and \(f(b) = f(1) = 2 - 1 = 1 \)

Putting values in (i)
\[1 - 0 = (1 - 0) (2 - 3c^2) \]
\[\Rightarrow 2 - 3c^2 = 1 \]
\[\Rightarrow 3c^2 = 1 \]
\[\Rightarrow c^2 = \frac{1}{3} \]
\[\Rightarrow c = \pm \frac{1}{\sqrt{3}} \]

\[\int_{-1}^{1} f(x) \, dx \]
(iv) Let \(f(x) = x^{2/3} \) on \([-1, 1]\).

By Lagrange's Mean Value Theorem,
\[
f(b) - f(a) = (b-a) f'(c)
\]
where \(a < c < b \).

Now,
\[
f(a) = f(-1) = (-1)^{2/3} = 1
\]
and
\[
f(b) = f(1) = 1
\]
Now, \(f(x) \) is not derivable at \(x = 0 \),

i.e. \(f'(0) \) doesn't exist, where \(0 \in]-1, 1[\).

Hence Mean Value theorem is not applicable here.

(3) Use M.V. Theorem to show that

(i) \[
|\sin x - \sin y| \leq |x - y| \text{ for any real nos. } \ x \neq y
\]

Sol. Let \(f(t) = \sin t \),

Then \(f(t) \) is continuous & differentiable for

every real no. Hence Lagrange's M.V. theorem can be applied in the interval \([x, y]\)

where \(x \neq y \) are any two real nos.

So,
\[
\frac{f(y) - f(x)}{y - x} = \cos z \quad \text{where } z \in]x, y[.
\]

But, \(|\cos z| \leq 1 \),

\[
\Rightarrow \left| \frac{\sin y - \sin x}{y - x} \right| \leq 1
\]
\[
\begin{align*}
\cos bx - \cos ax &= \frac{\sin x}{x} \quad \text{if } x \neq 0 \\
&= \sin z \\
&\text{for some } z \in [ax, bx] \\
\cos ax - \cos bx &= \frac{\sin x}{x} (b - a) \\
\Rightarrow \quad \left| \frac{\cos bx - \cos ax}{x} \right| &= \left| \frac{\sin z}{x} \right| \\
\Rightarrow \quad \left| \frac{\cos ax - \cos bx}{x} \right| &= \frac{1}{|b - a|} |\sin z| \\
\Rightarrow \quad \left| \frac{\cos ax - \cos bx}{x} \right| &\leq (b - a) \\
\tan x + \tan y &\geq |x + y| \quad \text{for all } x, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]
\end{align*}
\]
Let \(f(t) = \tan t \)

Then \(f(t) \) is continuous in \([-\pi, \pi]\) and differentiable in \([-\pi, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\).

Hence Lagrange's M.V.T can be applied in the interval \([-\pi, \pi]\).

So
\[
\frac{f(y)-f(-x)}{y-x} = \sec^2 z \quad \text{for some } z \in (-\pi, \pi]
\]

or
\[
\tan y - \tan (-x) = \sec^2 z
\]

or
\[
|\tan y + \tan x| = |\sec^2 z|
\]

But
\[
|\sec^2 z| = 1 \quad \forall z \in (-\pi, \pi]
\]

So
\[
\frac{|\tan y + \tan x|}{|y+x|} > 1
\]

\[
\Rightarrow |\tan x + \tan y| > |x+y| \quad \forall x, y \in \text{intervals } [-\frac{\pi}{2}, \frac{\pi}{2}]
\]

Q1) Let a function \(f \) be continuous on \((a, b)\) and \(f(x) = 0 \) for all \(x \in]a, b[\). Prove that \(f \) is constant. Use this to show that
\[
\sin^2 x + \cos^2 x = 1.
\]

Q2) Given \(f \) is continuous on \([a, b]\) and differentiable in \([a, b[\).
Let \(x_1, x_2 \in [a, b] \) s.t. \(x_2 > x_1 \).

Applying L'Hopital's M.V.T on \(\{ x_1, x_2 \} \subseteq [a, b] \):

\[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) \quad \text{for } c \in]x_1, x_2[
\]

But \(f'(c) = 0 \)

\[
\Rightarrow f(x_2) - f(x_1) = \]

So \(f(x_2) = f(x_1) \) whenever \(x_2 > x_1 \).

Hence \(f \) is a constant function.

Now suppose that \(f(x) = \sin x + \cos x \)

\[
\Rightarrow f'(x) = 2 \sin x \cos x - 2 \cos x \sin x = 0
\]

So \(f'(x) = 0 \) for all real nos. \(x \).

Hence \(f \) is constant.

Suppose \(f(x) = \sin x + \cos x = c \) \(\quad \text{(i)} \)

where \(c \) is an arbitrary constant.

Since \(f \) is constant, \(f \) holds for every real no. \(x \).

So in particular \(\sin 0 + \cos 0 = c \)

\[
\Rightarrow [c = 1]
\]

Hence from \((i) \) \(\sin x + \cos x = 1 \)

\(\square \)

(ii) Show that \(f(x) = x^3 - 3x^2 + 3x + 2 \) is monotonically increasing on every interval.

So if we know that if \(f \) is continuous on \([a, b] \) a has derivative at each pt \(\text{on }]a, b[\). Then \(f \) is an increasing function.
If \(f' \text{ is } +ve \text{ in }]a, b[\),

Now \(f(x) = x^3 - 3x^2 + 3x + 1 \).

\[
\begin{align*}
 f'(x) &= 3x^2 - 6x + 3 \\
 &= 3(x^2 - 2x + 1) \\
 &= 3(x-1)^2 \\
\end{align*}
\]

so \(f'(x) = 3(x-1)^2 \text{ is } +ve \text{ for all real nos. } x \). Hence \(f \) is monotonically increasing on every interval.

Available at
www.mathcity.org
(c) prove that \(f(x) = 2x - \tan^{-1}x - \ln(x + \sqrt{x^2 + 1}) \)

increases steadily on \([0, \infty]\)

sol. Let \(f(x) = 2x - \tan^{-1}x - \ln(x + \sqrt{x^2 + 1}) \)

\[
diff \ \text{w. r. to } x \\
f'(x) = 2 - \frac{1}{1 + x^2} - \frac{1}{x + \sqrt{x^2 + 1}} \left[\frac{1 + x^2}{\sqrt{x^2 + 1}} \right] \\
= 2 - \frac{1}{1 + x^2} - \frac{1}{(x + \sqrt{x^2 + 1})} \left[\frac{(x^2 + 1 + x)}{\sqrt{x^2 + 1}} \right] \\
= 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}} \\
= \frac{2(1 + x^2) - 1 - \sqrt{1 + x^2}}{1 + x^2} \\
= \frac{2 + 2x^2 - 1 - \sqrt{x^2 + 1}}{(1 + x^2)} \\
f'(x) = \frac{2 + 2x^2 - 1 - \sqrt{x^2 + 1}}{(1 + x^2)}
\]

Now if \(f(x) \) is steadily increasing then \(f'(x) > 0 \)

i.e. \(2x^2 + 1 - \sqrt{x^2 + 1} > 0 \)

or \(2(x^2 + 1) - \sqrt{x^2 + 1} - 1 > 0 \)

or \(2(x^2 + 1) - 2\sqrt{x^2 + 1} + \sqrt{x^2 + 1} - 1 > 0 \)

or \(2\sqrt{x^2 + 1} (\sqrt{x^2 + 1} - 1) + 1 (\sqrt{x^2 + 1} - 1) > 0 \)

or \((2\sqrt{x^2 + 1} + 1)(\sqrt{x^2 + 1} - 1) > 0 \)

which is true for all \(x \in [0, \infty) \)

Hence

\(f(x) \) increases steadily in \([0, \infty)\)
(7) Show that \(\frac{\tan x}{x} \) is an increasing fn \(\implies 0 < x < \frac{\pi}{2} \).

\[f(x) = \frac{\tan x}{x} \]
\[f'(x) = \frac{x \sec^2 x - \tan x}{x^2} \]

\[\phi(x) = x \sec^2 x - \tan x \]
\[\phi'(x) = \sec^4 x + x (2 \sec x \sec x \tan x) - \sec^2 x \]
\[= \sec^4 x + 2x \sec^3 x \tan x - \sec^2 x \]
\[\phi'(x) = 2x \sec^3 x \tan x \]

Now clearly \(\phi'(x) > 0 \) when \(0 < x < \frac{\pi}{2} \).

Now obviously \(\phi(0) = 0 \)
\[\implies \phi(x) > \phi(0) = 0 \implies \phi \text{ is increasing fn.} \]
\[\text{i.e. } x \sec^2 x - \tan x > 0 \]
\[\implies x \sec^2 x - \tan x > 0 \text{ for } 0 < x < \frac{\pi}{2} \]

Hence from (1) we conclude that

\[f'(x) > 0 \]
\[\text{for } 0 < x < \frac{\pi}{2} \]

 Hence \(f(x) \) is an increasing fn for
\[0 < x < \frac{\pi}{2} \]

(8) Determine the intervals in which
\[f(x) = 2x^3 - 15x^2 + 36x + 1 \]
is increasing or decreasing.

\[f'(x) = 6x^2 - 30x + 36 \]

\[f'(x) = 0 \]
\[\text{for } x = 3, 2 \]

\[\text{Hence } f(x) \text{ is decreasing for } 0 < x < 2 \text{ or } x > 3 \]
\[f'(x) = 6x^2 - 30x + 36 \]

If \(f(x) \) is an increasing function

Then \(f'(x) > 0 \)

i.e. \(6x^2 - 30x + 36 > 0 \)

or \(6(x^2 - 5x + 6) > 0 \)

or \((x^2 - 5x + 6) > 0 \)

or \((x-2)(x-3) > 0 \)

Now either \(x-2 > 0 \) or \(x-3 > 0 \)

or \(x-2 < 0 \) or \(x-3 < 0 \)

\text{Case (1)}: \(x - 2 > 0 \) or \(x - 3 > 0 \)

\[\Rightarrow x > 2 \quad \text{or} \quad x > 3 \]

Hence we see that \(f(x) \) is an increasing function for all \(x > 3 \), i.e. for all \(x \in]3,\infty[\)

\text{Case (2)}: \(x - 2 < 0 \) or \(x - 3 < 0 \)

\[\Rightarrow x < 2 \quad \text{or} \quad x < 3 \]

So we see that \(f(x) \) is an increasing function for all \(x < 2 \), i.e. for all \(x \in]-\infty,2[\)

Now either \(f(x) < 0 \)

\[\text{Then} \quad f'(x) < 0 \]

i.e. \(6x^2 - 30x + 36 < 0 \)

or \(6(x^2 - 5x + 6) < 0 \)

or \((x^2 - 5x + 6) < 0 \)

or \((x-2)(x-3) < 0 \)

Now either \((x-2) < 0 \) or \((x-3) > 0 \)

or \((x-2) > 0 \) or \((x-3) < 0 \)
Case (i) \(x - 2 < 0 \) and \(x - 3 > 0 \)
\[\Rightarrow x < 2 \quad \text{and} \quad x > 3 \]
which is impossible for any \(x \in \mathbb{R} \).

Case (ii) \(x - 2 > 0 \) and \(x - 3 < 0 \)
\[\Rightarrow x > 2 \quad \text{and} \quad x < 3 \]
so \(x \in \{2, 3\} \)
Hence \(f(x) \) is a decreasing function for
\[x \in \{2, 3\} \]

(i) \(\forall x > 0 \). Then prove that \(x - \ln(1 + x) \geq \frac{x^2}{2(1 + x)} \)

Scl: Let \(f(x) = x - \ln(1 + x) - \frac{x^2}{2(1 + x)} \)
\[
f'(x) = 1 - \frac{1}{1 + x} - \frac{1}{2} \left(\frac{(1 + x)2x - x^2}{(1 + x)^2} \right)
\]
\[
= 1 - \frac{1}{1 + x} - \frac{1}{2} \left(\frac{2x + x^2}{(1 + x)^2} \right)
\]
\[
= 1 - \frac{1}{1 + x} - \frac{2x + x^2}{2(1 + x)^2}
\]
\[
= \frac{2(1 + x)^2 - 2(1 + x) - 2x - x^2}{2(1 + x)^2}
\]
\[
= \frac{x^2}{2(1 + x)^2}
\]
\[
f'(x) = \frac{x^2}{2(1 + x)^2}
\]

obviously \(f(x) > 0 \) for all \(x > 0 \).
Hence $f(x)$ is an increasing fn for $x > 0$.

But $f(0) = 0$

$\Rightarrow f(x) > f(0)$ for $x > 0$

$\therefore x - \ln(1 + x) > \frac{x^2}{2(1 + x)} > 0$

i.e. $x - \ln(1 + x) > \frac{x^2}{2(1 + x)}$ for $x > 0$.

Solved Examples:

1) Verify Rolle's theorem for $f(x) = 1 - \frac{x^2}{2}$ on $[-1, 1]$.

Solution:

Let $f(x) = 1 - \frac{x^2}{2}$

$f(-1) = 1 - (-1)^2 = 0$

Hence $f(-1) = f(1)$

Clearly $f(x)$ is continuous on $[-1, 1]$ and not derivable in $[-1, 1]$.

Because $f'(x) = -\frac{2}{3} x^{1/3}$

$\Rightarrow f'(0) = -\frac{2}{3} 0^{1/3} = \frac{2}{0}$

Hence $f(x)$ is not derivable at $x = 0 \in]-1, 1[$.

Rolle's Theorem is not applicable.

2) If $f(x) = x(x-1)(x-2)$, $a = 0$, $b = \frac{1}{2}$,

find c of M.V.T.

Solution:

Here $f(x) = x(x-1)(x-2)$.

By Lagrange's M.V.T.

$f(b) - f(a) = (b-a) f'(c)$ for some $c \in]a, b[$.
Now
\[f(a) = f(0) = 0 \]
\[f(b) = f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) = \frac{3}{8} \]

Also
\[f(x) = x^3 - 3x^2 + 2x \]
\[f'(x) = 3x^2 - 6x + 2 \]
\[f'(c) = 3c^2 - 6c + 2 \]

Put value in (i)
\[\frac{3}{8} - 0 = \left(\frac{1}{2} - 0\right) \left(3c^2 - 6c + 2\right) \]
\[\Rightarrow \frac{6}{8} = 3c^2 - 6c + 2 \]
\[3c^2 - 6c + 2 = \frac{3}{4} \]
\[12c^2 - 24c + 8 = 3 \]
\[12c^2 - 24c + 5 = 0 \]
\[c = 2.4 \pm \sqrt{(2.4)^2 - 4(12)(0.8)} \]
\[= 2.4 \pm \sqrt{3.12} \]
\[c = \frac{2.4 \pm \sqrt{3.12}}{2.4} \]
\[= 9 2.4 \pm 4\sqrt{21} \]
\[c = \frac{6 \pm \sqrt{21}}{6} \]
\[= 1 \frac{1}{6} \pm \sqrt{21} \]
\[= 1 \pm \sqrt{21} \]
\[c = 1 \pm \sqrt{21} / 36 \]
\[N(x) = 1 + \frac{\pi^2}{12} e^{\left[0, \frac{1}{2}\right]} \]
\[C = 1 - \frac{\pi^2}{12} \]

\[
\Rightarrow
\]

(3) For the function \(f(x) = |x| \), check whether, \(M.V.T \) holds on the interval \([-2, 2]\).

The graph of the function \(f(x) = |x| \) is

Now obviously \(f(x) \) is continuous on \([-2, 2]\).

The slope of the line through points \(A(-2, 2) \) and \(B(2, 2) \) is \(\frac{2 - 2}{2 + 2} = 0 \).

Now the function \(f(x) \) doesn't have a derivative at \(x = 0 \) because

\[f'(x) \neq 0 \quad \text{for any} \quad x \in [-2, 2] \]

So one of the conditions of \(M.V.T \) is not satisfied. Hence \(M.V.T \) doesn't hold in \([-2, 2]\).

(4) If a function \(f \) satisfies the hypothesis of \(M.V.T \) on \([a, b]\) and \(|f(x)| \leq M \) for
If \(x \in \mathbb{R} \cap \{a, b\} \), then prove that
\[
\left| \frac{f(b) - f(a)}{b - a} \right| \leq M(b - a).
\]

Solution:
Given that \(f \) satisfies the hypothesis of M.V.T. on \([a, b]\).
So, by M.V.T,
\[
\frac{f(b) - f(a)}{b - a} = f'(c) \quad \text{for some } c \in (a, b).
\]
Taking modulus on both sides
\[
\left| \frac{f(b) - f(a)}{b - a} \right| = \left| f'(c) \right|
\]
\[
\Rightarrow \left| \frac{f(b) - f(a)}{b - a} \right| \leq M \quad \text{where } a < c < b
\]
\[
\Rightarrow \frac{|f(b) - f(a)|}{|b - a|} \leq M
\]
\[
\Rightarrow |f(b) - f(a)| \leq M|b - a|
\]
\[
\Rightarrow |f(b) - f(a)| \leq M(b - a) \quad \text{Ans.}
\]
(2) Prove that for \(x > 0 \), \(\frac{x}{x+1} < \ln(x+1) < x \).

Solution: Let \(f(x) = \ln(x+1) - \frac{x}{x+1} \).

\[
f'(x) = \frac{1}{x+1} - \left[\frac{(x+1) - x}{(x+1)^2} \right]
\]

\[
= \frac{1}{x+1} - \frac{x+1-x}{(x+1)^2}
\]

\[
= \frac{1}{x+1} - \frac{1}{(x+1)^2}
\]

\[
= \frac{x+1-1}{(x+1)^2}
\]

\[
f'(x) = \frac{x}{(x+1)^2}
\]

So \(f'(x) > 0 \) for all \(x > 0 \).

Hence \(f(x) \) is an increasing function.

Now \(f(0) = 0 \).

\(\Rightarrow f(x) > f(0) = 0 \) for all \(x > 0 \).

\(\Rightarrow \ln(x+1) - \frac{x}{x+1} > 0 \)

\(\Rightarrow \ln(x+1) > \frac{x}{x+1} \)

Hence

\(\frac{x}{x+1} < \ln(x+1) \quad \text{(1) for } x > 0 \)

Again, suppose \(g(x) = x - \ln(x+1) \).
\[
\phi'(x) = 1 - \frac{1}{x+1}
\]

\[
\omega = \frac{x+1-1}{x+1} = \frac{x}{x+1}
\]

so \(\phi'(x) > 0 \) for \(x > 0 \)

Now \(\phi(0) = 0 \)

so \(\phi(x) > \phi(0) \)

\implies x - \ln(x+1) > 0 \at\ x > \ln(x+1)

or \ln(x+1) < x

Combining (1) and (2), we have

\[
\frac{x}{x+1} < \ln(x+1) < x \quad \forall x > 0
\]

(6) prove that \(f(x) = \frac{\ln(x+1)}{x} \) decreases in \(]0, \infty[\)

so \(f'(x) = \frac{\ln(x+1)}{x} \)

Diff w. x.t. x

\[
f'(x) = \frac{x \cdot \frac{1}{x+1} - \ln(x+1)}{x^2}
\]

\[
= \frac{x - \ln(x+1)}{x^2}
\]

but we know that

\[
\frac{x}{x+1} < \ln(x+1) \quad \forall x > 0
\]

so \(\frac{x}{x+1} - \ln(x+1) < 0 \)

Hence \(f'(x) = \frac{-ve}{+ve} = -ve \quad \forall x > 0 \)
Hence \(f(x) \) is decreasing function \(x > 0 \) i.e., \(f(x) \) decreases for \(\{0, \infty\} \).

(1) Let \(f(x) = x^2 \) and \(\phi(x) = x^3 \). Verify Cauchy M.V.T in \([1, 2]\). Also find \(c \).

Sol.:

Given \(f(x) = x^2 \)

\(\phi(x) = x^3 \)

Obviously \(f(x) \) and \(\phi(x) \) are continuous in \([1, 2]\) and derivable in \([1, 2]\).

Hence by Cauchy's M.V.T

\[
\frac{f(2) - f(1)}{\phi(2) - \phi(1)} = \frac{f'(c)}{\phi'(c)} \text{ for some } c \in \{1, 2\}
\]

\[
\frac{2^2 - 1^2}{2^3 - 1^3} = \frac{2c}{3c^2}
\]

\[
\frac{4 - 1}{8 - 1} = \frac{2}{3c}
\]

\[
\frac{3}{7} = \frac{2}{3c} \Rightarrow 9c = 14
\]

\[
\boxed{c = \frac{14}{9}}
\]

Hence Cauchy's M.V.T holds for \(c = \frac{14}{9} \in \{1, 2\} \).

Available at

www.mathcity.org