Notes of Chapter 06 Calculus with Analytic Geometry by Ilmi Kitab Khana, Lahore.

www.MathCity.org

Written by Shahid Javed

Exercise 6.1 Examine whether each of the given equations sepsents two straight lines. If so, find an equation of each straight line. 10xy+ 8x-15y-12=0 Q.1 General equation of 2nd degree is ax2+ 2hxy+by+ 2gx+2fy+c=0 _____ From O and a=0, h=5, b=0, g=4, f=-15, c=-12 Now $\begin{vmatrix} a & h & g \\ h & b & f \end{vmatrix} = \begin{vmatrix} 5 & 0 & -\frac{15}{2} \\ g & f & c \end{vmatrix} = \begin{vmatrix} 4 & -\frac{15}{2} & -12 \end{vmatrix}$ $0 = 5(-60 - (-30)) + 4(-\frac{25}{2} - 0)$ --5(-60+30) - 2(75)2 -5(-30)-150 2 150 - 150 i.e O represents two straight lines. 2x(5y+4) - 3(5y+4)=0 クシ (2x-3) (5y+4)=0 2x-3=0, 54+4=0 are the two straight lines. (i) # 2 $\partial x^2 - xy + 5x - 2y + \lambda = 0$ ax2 + 2hny + by2 + 2gn + 2 fy + C =0 ____ 0 a=2, h=- 1, b=0, g= 2, f=-1, C=2 Here $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = \begin{vmatrix} \partial & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 0 & -1 \end{vmatrix}$ $= 2(0-1) + \frac{1}{2}(-1 + \frac{5}{2}) + \frac{5}{2}(\frac{1}{2} - 0)$

$$= -2 + \frac{1}{2} \left(\frac{-2+5}{2} \right) + \frac{5}{4}$$

$$= -2 + \frac{3}{4} + \frac{5}{4} = -\frac{-8+3+5}{4} = 0$$
Hence the given equation represents two straight lines.

$$D = 2 \quad 9x^{2} + x(5-7) + 2(1-7) = 0$$

$$x = -\frac{(5-7) \pm \sqrt{(5-7)^{2} - 4(2)(2-24)}}{2(2)}$$

$$x = -\frac{(5-7) \pm \sqrt{(5-7)^{2} - 8(2-24)}}{4}$$

$$x = -\frac{(5-7) \pm \sqrt{35+7^{2}-107-16+167}}{4}$$

$$x = -\frac{(5-7) \pm \sqrt{(3+7)^{2}}}{4}$$

A STATE OF A

- Aller

@#3 6x2- 17xy-342+ 22x+ 10y-8=0 $ax^2 + ahxy + by^2 + 2gx + 2fy + C = 0$ a=6, h= -12, b=-3, g=11, f=5, c=-8 Here $\begin{vmatrix} a & h & g \\ h & b & f \end{vmatrix} = \begin{vmatrix} 0 & -\frac{11}{2} & 11 \\ -\frac{12}{2} & -3 & 5 \\ g & f & C \end{vmatrix}$ $= \delta(24 - 25) + \frac{17}{5}(68 - 55) + 11(-\frac{85}{5} + 33)$ $= -6 + \frac{221}{2} - \frac{935}{2} + 363$ $= \frac{22}{2} - \frac{935}{2} + 357$ $\frac{221 - 935 + 714}{2} = \frac{0}{2} = 0$ Hence the given equation represents the two straight lines Bx2 + x (22-17y) + (-372+10y-8) =0 1)=> $x = \frac{-(22 - 174) \pm \sqrt{(22 - 174)^2 - 4(6)(-34^2 + 104 - 8)}}{(22 - 174)^2 - 4(6)(-34^2 + 104 - 8)}$ x = -22+17 × + 484+2894-7484+7242-2404+192 $x = \frac{-\lambda\lambda + 174 \pm \sqrt{676 + 361} \gamma^2 - 988}{12}$ $x = \frac{-22 + 177 \pm \sqrt{(26 - 194)^2}}{(26 - 194)^2}$ $= -\frac{22+177 \pm (26-194)}{12}$ $\frac{-22+17Y+26-19Y}{12}, x = \frac{-22+17Y-26+19Y}{12}$ シ $\frac{4-27}{12}$ $v = -\frac{48+369}{12}$

$$\begin{aligned} \pi &= \frac{p-\gamma}{6} , \quad x = -4 + 3\gamma \\ & 6x + \gamma - 2 = 0 , \quad x - 3\gamma + 4 = 0 \\ ode the two Mraight lines. \end{aligned}$$

$$\underbrace{\textcircled{0}} \underbrace{\#4} \quad for x^{2} - 23xy - 5y^{2} - 29x + 32y + 24 = 0 \qquad 0 \\ ax^{2} + 2kxy + 4by^{2} + 2gx + 2fy + C = 0 \\ ax^{2} + 2kxy + 4by^{2} + 2gx + 2fy + C = 0 \\ & 6z - 10, \quad h = -\frac{12}{2}, \quad bz - 5, \quad g = -\frac{29}{2}, \quad f_{2} / (6, C = 21) \\ & \left[\begin{vmatrix} a & b & g \\ h & b & f \\ g & f & C \end{vmatrix} \right] = \left| \begin{pmatrix} 10 & -\frac{23}{2} & -\frac{19}{2} \\ -\frac{24}{2} & -5 & 16 \\ -\frac{24}{2} & -\frac{19}{2} \end{vmatrix} \\ & = 10(-105 - 256) + \frac{23}{2}(-\frac{483}{2} + 232) - \frac{19}{2}(-194) + \frac{105}{2} \end{aligned} \right] \\ & = -3610 + \frac{23}{2}(-\frac{193}{2} + \frac{649}{2}) - \frac{29}{2}(-\frac{369 + 105}{2}) \\ & = -3610 + \frac{23}{2}(-\frac{193}{2} + \frac{6499}{2}) - \frac{29}{2}(-\frac{369 + 105}{2}) \\ & = -3610 + \frac{23}{2}(-\frac{19}{2}) + \frac{16979}{2} + \frac{16979}{2} \\ & = -3610 - \frac{437}{4} + \frac{64999}{4} + \frac{14877}{4} \\ & = -\frac{14400 - 431 + \mathbf{14}877}{4} = 0 \\ & \text{The given equation hermisents The pair of lines.} \\ O = > \quad 10x^{2} + x(-29 - 23y) + (-5y^{2} + 32y + 24) = 0 \\ & 10x^{2} - x(-23y + 19) + (-5y^{2} + 32y + 24) = 0 \\ & x = (\frac{23y + 29}{2}) \pm \sqrt{(\frac{23y + 19}{2})^{2} - 40(-5y^{2} + 3y + 21)} \\ & z = \frac{23y + 29}{2} \pm \sqrt{\frac{729}{2}y^{2} + 5y + 1} \\ & z = 0 \\ \end{array}$$

Available at http://www.MathCity.org

 $= \frac{237 + 29 \pm (277 + 1)}{20}$ $= \frac{237 + 29 + 277 + 1}{20}, \quad \frac{237 + 29 - 277 - 1}{20}$ $= \frac{507 + 30}{20}, \quad -\frac{47 + 28}{20}$ $= \frac{57 + 3}{2}, \quad -\frac{47 + 7}{5}$

Hence the lines are

0#5

2x-5y-3=0, 5x+y-7=0 Bn2-1542- ny+16n+244=0 \bigcirc ax+ 2h xy + by + 2gx+2fy+C=0 a= 6, h= 0- 1/2, b=-15, g= 8, f= 12, C=0

Here

$$\begin{vmatrix} \alpha & h & g \\ h & b & f \\ g & f & C \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & -\frac{1}{15} & \frac{1}{12} \\ g & f & C \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} & -\frac{1}{15} & \frac{1}{12} \\ g & f & C \end{vmatrix}$$

$$= \frac{6(-144) + \frac{1}{2}(-96) + g(-6 + 126)}{g + 12}$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48 + 912$$

$$= -864 - 48$$

1

-

,

1

9f ≥=0, the given equation is linear and represent a straight line - Hence a point of lines $\lambda = \frac{15}{2}$ for (1) sepresen. $4x^2 - 9y^2 - 2(8+\lambda)x - 18y = 29 + 2\lambda$ <u>0#8</u> $4x^2 - 9y^2 - 16x - \partial \lambda x - 18y - 29 - 2\lambda = 0$ $4x^2 - 9y^2 - 2x(8+\lambda) - 18y - 29 - 2\lambda = 0$ a= 4, h=0, b=-9, g=-(8+2), f=-9, c=-(29+2) Here •., : O Represents two straight lines if 4 0 -8-A $\begin{vmatrix} 0 & -9 & -9 \\ -8-\lambda & -9 & -29-2\lambda \end{vmatrix} = 0$ $4(-9(-29-2\lambda) - 81) + (-8-\lambda)(-(-9(-8-\lambda)) = 0$ $4(261+18\lambda-81)+(-8-\lambda)(-72-9\lambda)=0$ $1044 + 72 \lambda - 324 + 576 + 72 \lambda + 72 \lambda + 9\lambda^2 = 0$ 91+2167+1296=0 1 + 241 + 144 =0 $(\lambda + 12)^2 = 0$ $\lambda + 12 = 0$ A = -12Hence $\lambda = -1\lambda$ Find the angle b/w each of the following pairs of lines. x2 - 2 my Tan 0 - y=0 ____ 0 <u>) #9</u> ax2+ 2hny+ by=0 Here a=1, h= - Tam 0, b=-1 a_{\pm} / , b_{\pm} - / a+ b=0 Lines generated by D are I i.e the angle b/w the lines = 90°

31 + Try + 24=0 Q#10 ax+ 2h my + by 20 a= 3, h= 1/2, b=2 Here Tan Q = 2 th2-ab $= \frac{2\sqrt{49/4}-6}{5}$ $= \frac{2\sqrt{\frac{49-24}{4}}}{5} = \frac{2\sqrt{\frac{25}{4}}}{5} = \frac{2\cdot \frac{5}{2}}{5} = 1$. 0 = Tan (1) O 2 T/4 The angle b/w the lines is The. ie 11x2 + 16xy-42 = 0 @ #11 _____ 0 a=11, h, 8, b=-1 $Tam 0 = \frac{2\sqrt{64+11}}{11-1} = \frac{2\sqrt{75}}{10} = \frac{2\times 5\sqrt{3}}{10}$ Tand = N3 0 = Tan-1(13) 0 = 60° i'c the angle b/w the Curves is bo. x+4xy+ 4-6x-3=0 0 # 12 a=1, h=2, b=1 $Tan 0 = \frac{2\sqrt{4-1}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}$ Jand= N3 · O = 60° rie the angle b/w the lines = bo

@#13 /tere bx2+ xy- y2- 21 x- 8y+9=0 a=b, b=-1, h= 1 $Tan 0 = 2\sqrt{\frac{14}{4}+6} = 2\sqrt{\frac{4}{4}+24}$ $= \frac{\sqrt{2}}{5} = \frac{5}{5} = 1$ 0 = Tan- (1) O = 45 ie the angle b/w the lines is 45°. @#14 Show that 1brey - be + 8y-3=0 sepsesents a pair of straight lines. Also prove that this together with the coordinates axes form a rectangle and find the area enclosed by the sectangle. Soln 16xy- 6x + 8y -3=0 2x(8y-3) + (8y-3) = 0(2x+1)(8y-3)=0 =) dx+1=0, by-3=0 linear : O has been factorized into two A facto voi The resulting equations represents the two straight lines. We can write dx+1 and 87-3=0 in the form $x = -\frac{1}{2}$, slope 11 to y-axis and $y = \frac{3}{8}$ st line 11 to X-axis. $= \frac{|0||0||}{|0||0||0||}$ $= \frac{|-1/2||0||3||8|}{|0||0||1||1||3||8|}$ = 3/ Deg. Unit

@#15. Show that an equation of rectangular hyperbole x-y'=1 refferred to its anymptotoes as axis is x y =-1/2 The given sectangular hyperbole is x2-y2=1 we know that the equations of the transformations are x= x' Cast - y' sind ____ (2) $Y = \pi \sin \Theta + Y \cos \Theta$ (3) For the eq. sefered to its asymptotes, we know that O= T/4 2)=> x= x Cas (1/4) - y sin (1/4) Angle b/w the $x = \frac{x}{\sqrt{2}} - \frac{7}{\sqrt{2}}$ esymptoles and $\chi = \int_{2}^{1} (\chi - \gamma)$ (4) The ares is The 3)=> Y = x' Sin (F/4) + x' CAS (F/4) $Y = \chi I + Y I$ $\gamma = \frac{1}{\sqrt{2}} (x + \gamma)$ (5) putting these values in (1), we have $\frac{1}{2}(x-y)^2 - \frac{1}{2}(x+y)^2 = 1$ $x^{2} + y^{2} - \partial x y - x - y - \partial x y = \partial$ -4xy=2 x y = - 1/2 Note The asymptotes y= + 2 or segended as axes. Keeping these anes in view the equation x'-y'= 1 is reduced to xY = - 1 by proceeding as above. Analyze and graph the conic represented by each of the following equations. C# 16 - 0#25 For @.16 - @.25 See the graph Book. Written by Shahid Javed