Techniques of Integration

EXERCISE 4.2

Q No. $1 \quad I=\int \frac{d x}{\sqrt{a^{2}+x^{2}}}$
Put $x=\operatorname{atan} \theta \Rightarrow d x=\operatorname{asec}^{2} \theta d \theta$
$I=\int \frac{\operatorname{asec}^{2} \theta d \theta}{\sqrt{\left(a^{2}+a^{2} \tan ^{2} \theta\right)}}$
$=\int \frac{a \sec ^{2} \theta d \theta}{\sqrt{a^{2}\left(1+\tan ^{2} \theta\right)}}=\int \frac{a \sec ^{2} \theta d \theta}{a \sqrt{\left(1+\tan ^{2} \theta\right)}}=$
$\int \frac{\sec ^{2} \theta d \theta}{\sqrt{\left(1+\tan ^{2} \theta\right)}}$
$=\int \frac{\sec ^{2} \theta d \theta}{\sec \theta}=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|$
Now substitution returns:
$I=\ln \left|\sqrt{1+\tan ^{2} \theta}+\tan \theta\right|$
$I=\ln \left|\sqrt{1+\left(\frac{x}{a}\right)^{2}}+\frac{x}{a}\right|=\ln \left|\frac{\sqrt{x^{2}+a^{2}}+x}{a}\right|$
Q No. $2 \quad I=\int \frac{d x}{\sqrt{x^{2}-a^{2}}}$
Put $x=a \cosh \theta \quad \Rightarrow \quad d x=a \sinh \theta d \theta$
$I=\int \frac{a \sinh \theta d \theta}{\sqrt{\left(a^{2} \cosh ^{2} \theta-a^{2}\right)}}$
$=\int \frac{a \sinh \theta d \theta}{\sqrt{a^{2}\left(\cosh ^{2} \theta-1\right)}}=\int \frac{a \sinh \theta d \theta}{a \sqrt{\left(\cosh ^{2} \theta-1\right)}}$
$=\int \frac{\sinh \theta d \theta}{\sqrt{\left(\cosh ^{2} \theta-1\right)}}=\int \frac{\sinh \theta d \theta}{\sinh \theta}$
$=\int d \theta=\theta$
Now substitution returns:

$$
=\cosh ^{-1} \frac{x}{a}
$$

Q No. $3 I=\int \operatorname{tanxdx}$
$\int \tan x d x=\int \frac{\sin x}{\cos x} d x$
$=-\int \frac{-\sin x}{\cos x} d x=-\ln (\cos x)=\ln (\sec x)$
Q No. $4 \quad I=\int \cot x d x$
$\int \cot x d x=\int \frac{\cos x}{\sin x} d x=\ln (\sin x)$
Q No. $5 \quad I=\int \sec x d x$
$\int \sec x d x=\int \frac{\sec x(\sec x+\tan x)}{(\sec x+\tan x)} d x$
$=\int \frac{\left.\sec ^{2} x+\sec x \tan x\right)}{(\sec x+\tan x)} d x=\ln (\sec x+\tan x)$
Q No. $6 \quad I=\int \csc x d x$
$\int \csc x d x=-\int \frac{-\csc x(\csc x+\cot x)}{(\csc x+\cot x)} d x$
$=-\int \frac{\left.-\operatorname{cosec}^{2} x-\csc x \cot x\right)}{(\csc x+\cot x)}=-\ln (\csc x+\cot x)$
by rationalizing this answer we can get another result
i.e $\ln (\csc x-\cot x)$

QNo. $7 \quad I=\int\left(a x^{2}+2 b x+c\right)^{2}(a x+b) d x$
$I=\frac{1}{2} \int\left(a x^{2}+2 b x+c\right)^{2}(2 a x+2 b) d x$
$I=\frac{\left(a x^{2}+2 b x+c\right)^{2+1}}{2+1}$

Q No. $8 \quad I=\int \sqrt{\frac{1+x}{1-x}} d x$
By rationalizing we get, $\frac{1+x}{1-x} \times \frac{1+x}{1+x}=\frac{(1+x)^{2}}{1-x^{2}}$
So, $I=\int \frac{1+x}{\sqrt{1-x^{2}}} d x=\int \frac{d x}{\sqrt{1-x^{2}}}+\int \frac{x d x}{\sqrt{1-x^{2}}}$
$=\sin ^{-1} x+\int\left(1-x^{2}\right)^{-\frac{1}{2}} x d x$
$=\sin ^{-1} x-\frac{1}{2} \int\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x) d x$
$=\sin ^{-1} x-\frac{1}{2} \frac{\left(1-x^{2}\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$
$=\sin ^{-1} x-\frac{1}{2} \frac{\left(1-x^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}}$
$=\sin ^{-1} x-\sqrt{1-x^{2}}$

Q No. $9 \int \frac{d x}{a+\sqrt{b x+c}}$
(linear under square root)
Put $\sqrt{b x+c}=z$
$\Rightarrow b x+c=z^{2}$
$\Rightarrow \quad b d x=2 z d z$
$I=\int \frac{2 z d z / b}{a+z}$
$I=\frac{2}{b} \int \frac{z d z}{a+z}$
$I=\frac{2}{b} \int\left(1-\frac{a}{a+z}\right) d z$
$I=\frac{2}{b} \int d z-\frac{2 a}{b} \int \frac{d z}{a+z}$
$I=\frac{2}{b} z-\frac{2 a}{b} \ln (a+z)$
$I=\frac{2}{b} \sqrt{b x+c}-\frac{2 a}{b} \ln (a+\sqrt{b x+c})$

Q No. $10 \int \frac{d x}{\left(1+x^{2}\right) \tan ^{-1} x}$
$I=\int \frac{1 /\left(1+x^{2}\right)}{\tan ^{-1} x} d x=\ln \left(\tan ^{-1} x\right)$

Q No. $11 \quad I=\int \frac{\sin x+\cos x}{\sin x-\cos x} d x$
$I=\int \frac{\cos x-(-\sin x)}{\sin x-\cos x} d x=\ln (\sin x-\cos x)$
Q No. $12 \quad I=\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
(Substitute the complicated angle)
Put $\sqrt{x}=z \Rightarrow x=z^{2} \Rightarrow d x=2 z d z$
$I=\int \frac{\sin z}{z} \cdot 2 z d z=2 \int \sin z d z=-2 \cos z$

$$
=-2 \cos \sqrt{x}
$$

Q No. $13 \quad I=\int \sqrt{e^{2 x}+e^{3 x}} d x$
$I=\int \sqrt{e^{2 x}+e^{3 x}} d x=\int \sqrt{e^{2 x}\left(1+e^{x}\right)} d x$
$I=\int \sqrt{1+e^{x}} \cdot e^{x} d x=\frac{\left(1+e^{x}\right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}$
Q No. $14 \quad I=\int \frac{d x}{e^{x}+e^{-x}}$
I
$=\int \frac{e^{x} d x}{e^{x}\left(e^{x}+e^{-x}\right)} \quad$ (multiplied D^{r} and N^{r} by e^{x}
$I=\int \frac{e^{x} d x}{e^{2 x}+1}=\tan ^{-1}\left(e^{x}\right)$

Alternatively,

Put $e^{x}=z \quad \Rightarrow e^{x} d x=d z$
So $I=\int \frac{e^{x} d x}{e^{2 x}+1}=\int \frac{d z}{z^{2}+1}=\tan ^{-1} z=\tan ^{-1}\left(e^{x}\right)$

Q No. $15 \quad I=\int \frac{e^{2 x} d x}{\sqrt{e^{x}-1}}$

$$
\text { Put } e^{x}=z \quad \Rightarrow e^{x} d x=d z
$$

$I=\int \frac{e^{x} \cdot e^{x} d x}{\sqrt{e^{x}-1}}=\int \frac{z d z}{\sqrt{z-1}}=\int \frac{(z-1+1) d z}{\sqrt{z-1}}$
$I=\int \frac{(z-1) d z}{\sqrt{z-1}}+\int \frac{d z}{\sqrt{z-1}}$
$I=\int(z-1)^{1-\frac{1}{2}} d z+\int(z-1)^{\frac{-1}{2}} d z$
$I=\int(z-1)^{\frac{1}{2}} d z+\int(z-1)^{\frac{-1}{2}} d z$
$I=\frac{(z-1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{(z-1)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}$
$I=\frac{(z-1)^{\frac{3}{2}}}{\frac{3}{2}}+\frac{(z-1)^{\frac{1}{2}}}{\frac{1}{2}}=\frac{2}{3}\left(e^{x}-1\right)^{\frac{3}{2}}+2 \sqrt{e^{x}-1}$
Q No. $16 \quad I=\int \frac{\cos (\ln x)}{x} d x$
(Substitute the complicated angle)
Put $\ln x=z \Rightarrow \frac{1}{x} d x=d z$
$I=\int \cos z d z=\sin z=\sin (\ln x)$
Q No. $17 \quad I=\int \frac{2 x+5}{\sqrt{x^{2}+5 x+7}} d x$
$I=\int\left(x^{2}+5 x+7\right)^{-\frac{1}{2}} \cdot(2 x+5) d x$
$I=\frac{\left(x^{2}+5 x+7\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$
Q No. $18 \quad I=\int \frac{x+2}{\sqrt{2 x^{2}+8 x+5}} d x$
$I=\int\left(2 x^{2}+8 x+5\right)^{-\frac{1}{2}} \cdot(x+2) d x$
$I=\frac{1}{4} \int\left(2 x^{2}+8 x+5\right)^{-\frac{1}{2}} \cdot 4(x+2) d x$
$I=\frac{1}{4} \int\left(2 x^{2}+8 x+5\right)^{-\frac{1}{2}} \cdot(4 x+8) d x$

$$
I=\frac{\left(2 x^{2}+8 x+5\right)^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}
$$

Q No. $19 \quad I=\frac{\sqrt{x^{2}-a^{2}}}{\boldsymbol{x}^{4}} d \boldsymbol{d}$
Put $x=a \cosh \theta \quad \Rightarrow \quad d x=a \sinh \theta$
$I=\int \frac{\sqrt{a^{2} \cosh ^{2} \theta-a^{2}}}{a^{4} \cosh ^{4} \theta} a \sinh \theta d \theta$
$I=\int \frac{a \sqrt{\cosh ^{2} \theta-1}}{a^{4} \cosh ^{4} \theta} a \sinh \theta d \theta$
$I=\int \frac{\sqrt{\cosh ^{2} \theta-1}}{a^{2} \cosh ^{4} \theta} \sqrt{\cosh ^{2} \theta-1} d \theta$
$I=\frac{1}{a^{2}} \int \frac{\cosh ^{2} \theta-1}{\cosh ^{4} \theta} d \theta$
$I=\frac{1}{a^{2}} \int \frac{1}{\cosh ^{2} \theta} d \theta-\frac{1}{a^{2}} \int \frac{1}{\cosh ^{4} \theta} d \theta$
$I=\frac{1}{a^{2}} \int \operatorname{sech}^{2} \theta d \theta-\frac{1}{a^{2}} \int \operatorname{sech}^{4} \theta d \theta$
$I=\frac{1}{a^{2}} \tanh \theta-\frac{1}{a^{2}} I_{1}$

$$
\begin{gather*}
I_{1}=\int \operatorname{sech}^{4} \theta d \theta \tag{1}\\
I_{1}=\int \operatorname{sech}^{2} \theta \cdot \operatorname{sech}^{2} \theta d \theta \\
I_{1}=\int\left(1-\tanh ^{2} \theta\right) \cdot \operatorname{sech}^{2} \theta d \theta \\
I_{1}=\int \operatorname{sech}^{2} \theta d \theta-\int \tanh ^{2} \theta \operatorname{sech}^{2} \theta d \theta \\
I_{1}=\tanh \theta-\frac{\tanh ^{3} \theta}{3}
\end{gather*}
$$

Putting in eq(1) we get,
$I=\frac{1}{a^{2}} \tanh \theta-\frac{1}{a^{2}} \tanh \theta+\frac{\tanh ^{3} \theta}{3 a^{2}}$
$I=\frac{\tanh ^{3} \theta}{3}=\frac{1}{3} \cdot\left(\frac{\sinh \theta}{\cosh \theta}\right)^{3}=\frac{1}{3} \cdot\left(\frac{\sqrt{\cosh ^{2} \theta-1}}{\cosh \theta}\right)^{3}$
$I=\frac{1}{3 a^{2}}\left(\frac{\sqrt{\frac{x^{2}}{a^{2}}-1}}{\frac{x}{a}}\right)^{3}=\frac{\left(x^{2}-a^{2}\right)^{\frac{3}{2}}}{3 a^{2} x^{3}}$

> Q No. $20 \boldsymbol{I}=\int \boldsymbol{\operatorname { c o s }}^{6} \boldsymbol{x} \boldsymbol{\operatorname { s i n }}^{\mathbf{3}} \boldsymbol{x} \boldsymbol{d} \boldsymbol{x}$
> $I=\int \cos ^{6} x \cdot \sin ^{2} x \cdot \sin x d x$
> $=\int \cos ^{6} x \cdot\left(1-\cos ^{2} x\right) \cdot \sin x d x$
> $=\int \cos ^{6} x \cdot \sin x d x-\int \cos ^{8} x \cdot \sin x d x$
> $=-\int \cos ^{6} x \cdot(-\sin x) d x+\int \cos ^{8} x \cdot(-\sin x) d x$
> $=-\frac{\cos ^{7} x}{7}+\frac{\cos ^{9} x}{9}$

Q No. $21 I=\int \tan ^{3} x \sec ^{3} x d x$
$I=\int \tan ^{2} x \cdot \sec ^{2} x \cdot \sec x \tan x d x$
$I=\int\left(\sec ^{2} x-1\right) \cdot \sec ^{2} x \cdot \sec x \tan x d x$
$I=\int \sec ^{4} x \cdot \sec x \tan x d x-\int \sec ^{2} x \cdot \sec x \tan x d x$
$I=\frac{\sec ^{5} x}{5}-\frac{\sec ^{3} x}{3}$

Q No. $22 I=\int \cot ^{3} x \boldsymbol{c s c}^{4} x d x$
$I=\int \cot ^{2} x \csc ^{3} x \cdot(\cot x \csc x) d x$
$I=-\int \cot ^{2} x \csc ^{3} x \cdot(-\cot x \csc x) d x$
$I=-\int\left(\csc ^{2} x-1\right) \csc ^{3} x \cdot(-\cot x \csc x) d x$
$I=-\int \csc ^{5} x(-\cot x \csc x) d x+\int \csc ^{3} x(-\cot x \csc x) d x$ $I=\frac{-\csc ^{6} x}{6}+\frac{\csc ^{4} x}{4}$
Alternatively,

$$
\begin{aligned}
& \boldsymbol{I}=\int \boldsymbol{\operatorname { c o t }}^{\mathbf{3}} \boldsymbol{x} \boldsymbol{c s c}^{\mathbf{4}} \boldsymbol{x} \boldsymbol{d} \boldsymbol{x} \\
& I=\int \cot ^{3} x \csc ^{2} x \cdot\left(\csc ^{2} x\right) d x \\
& I=-\int \cot ^{3} x \csc ^{2} x \cdot\left(-\csc ^{2} x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& I=-\int \cot ^{3} x\left(\cot ^{2} x+1\right) \cdot\left(-\csc ^{2} x\right) d x \\
& I=-\int \cot ^{5} x\left(-\csc ^{2} x\right) d x-\int \cot ^{3} x\left(-\csc ^{2} x\right) d x \\
& I=-\frac{1}{6} \cot ^{6} x-\frac{1}{4} \cot ^{4} x
\end{aligned}
$$

$$
\text { Q No. } 23 I=\int \frac{d x}{\sqrt{2 x^{2}+3 x+4}}
$$

$$
I=\int \frac{d x}{\sqrt{2\left(x^{2}+\frac{3}{2} x+2\right)}}=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\left(x^{2}+\frac{3}{2} x+2\right)}}
$$

Completing square of

$$
x^{2}+\frac{3}{2} x+2
$$

$$
=(x)^{2}+2\left(\frac{3}{4}\right)(x)+\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}+2
$$

$$
=\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}+2
$$

$$
=\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}+\frac{32}{16}
$$

$$
=\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}
$$

$$
=\left(x+\frac{3}{4}\right)^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}
$$

So,

$$
I=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\left(x+\frac{3}{4}\right)^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}}}
$$

$$
I=\frac{1}{\sqrt{2}} \sinh ^{-1}\left(\frac{x+\frac{3}{4}}{\frac{\sqrt{23}}{4}}\right)=\frac{1}{\sqrt{2}} \sinh ^{-1}\left(\frac{4 x+3}{\sqrt{23}}\right)
$$

Q No. $24 I=\sqrt{a^{2}-x^{2}} d x$
Put $x=a \sin \theta \Rightarrow d x=a \cos \theta d \theta$
$I=\int \sqrt{a^{2}-a^{2} \sin ^{2} \theta} a \cos \theta d \theta$
$I=\int a \sqrt{1-\sin ^{2} \theta} a \cos \theta d \theta$
$I=a^{2} \int \cos ^{2} \theta d \theta$
$I=\frac{a^{2}}{2} \int(1+\cos 2 \theta) d \theta$
as $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
$I=\frac{a^{2}}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)$
$I=\frac{a^{2}}{2}\left(\theta+\frac{2 \sin \theta \cos \theta}{2}\right)$
$I=\frac{a^{2}}{2}\left(\theta+\sin \theta \sqrt{1-\sin ^{2}} \theta\right)$
Substitution returned:
$I=\frac{a^{2}}{2}\left(\sin ^{-1} \frac{x}{a}+\frac{x}{a} \sqrt{1-\frac{x^{2}}{a^{2}}}\right)$
$I=\frac{a^{2}}{2}\left(\sin ^{-1} \frac{x}{a}+\frac{x}{a} \sqrt{\frac{a^{2}-x^{2}}{a^{2}}}\right)$
$I=\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\frac{a^{2}}{2} \cdot \frac{x}{a} \cdot \frac{\sqrt{a^{2}-x^{2}}}{a}$
$I=\frac{x}{2} \cdot \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)$
Q No. $25 \quad I=\int(2 x+3) \sqrt{2 x+1} d x$
$I=\int(2 x+1+2) \sqrt{2 x+1} d x$
$I=\int(2 x+1) \sqrt{2 x+1} d x+2 \int \sqrt{2 x+1} d x$
$I=\int(2 x+1)^{1+\frac{1}{2}} d x+2 \int(2 x+1)^{\frac{1}{2}} d x$
$I=\frac{1}{2} \int(2 x+1)^{\frac{3}{2}} \cdot 2 d x+\int(2 x+1)^{\frac{1}{2}} 2 \cdot d x$
$I=\frac{1}{2} \cdot \frac{(2 x+1)^{\frac{3}{2}+1}}{\frac{3}{2}+1}+\frac{(2 x+1)^{\frac{1}{2}+1}}{\frac{1}{2}+1}$

Q No. $26 \quad I=\int\left(1+x^{2}\right)^{-\frac{3}{2}} \boldsymbol{d} \boldsymbol{x}$
Put $x=\tan \theta \quad \Rightarrow \quad d x=\sec ^{2} \theta d \theta$
$I=\int\left(1+\tan ^{2} \theta\right)^{-\frac{3}{2}} \cdot \sec ^{2} \theta d \theta$
$I=\int\left(\sec ^{2} \theta\right)^{-\frac{3}{2}} \cdot \sec ^{2} \theta d \theta$
$I=\int \frac{\sec ^{2} \theta}{\sec ^{3} \theta} d \theta=\int \cos \theta d \theta=\sin \theta$
In right triangle :
$\tan \theta=\frac{x}{1}$
By Pythagorean's theorem
 we can find the Hyp. So

$$
\sin \theta=\frac{x}{x^{2}+1}
$$

Hence $I=\frac{x}{x^{2}+1}$
Q No. $27 I=\int \frac{x^{2}}{\sqrt{x^{2}+1}} \mathrm{dx}$
$I=\int \frac{x^{2}+1-1}{\sqrt{x^{2}+1}} d x=\int\left(\frac{x^{2}+1}{\sqrt{x^{2}+1}}-\frac{1}{\sqrt{x^{2}+1}}\right) d x$
$I=\int \sqrt{x^{2}+1} d x-\int \frac{d x}{\sqrt{x^{2}+1}}$
$I=\left[\frac{x}{2} \sqrt{x^{2}+1}+\frac{1}{2} \sinh ^{-1} x\right]-\sinh ^{-1} x$
$I=\frac{x}{2} \sqrt{x^{2}+1}-\frac{1}{2} \sinh ^{-1} x$
Q No. $28 I=\int(2 x+4) \sqrt{2 x^{2}+3 x+1} \mathrm{dx}$
$I=\frac{1}{2} \int\left(2 x^{2}+3 x+1\right)^{\frac{1}{2}} \cdot(4 x+8) d x$
$I=\frac{1}{2} \int\left(2 x^{2}+3 x+1\right)^{\frac{1}{2}} \cdot(4 x+3+5) d x$
$I=\frac{1}{2} \int\left(2 x^{2}+3 x+1\right)^{\frac{1}{2}} \cdot(4 x+3) d x+\frac{1}{2} \int\left(2 x^{2}+3 x+1\right)^{\frac{1}{2}} \cdot 5 d x$
$I=\frac{1}{2} \frac{\left(2 x^{2}+3 x+1\right)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{5}{2} \cdot \sqrt{2} \int\left(x^{2}+\frac{3}{2} x+\frac{1}{2}\right)^{\frac{1}{2}} d x$
$I=\frac{1}{3}\left(2 x^{2}+3 x+1\right)^{\frac{3}{2}}+\frac{5}{\sqrt{2}} \int \sqrt{\left(x+\frac{3}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}} d x$

$$
\begin{aligned}
& \text { Completing square of } \\
& x^{2}+\frac{3}{2} x+\frac{1}{2} \\
& =(x)^{2}+2\left(\frac{3}{4}\right)(x)+\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}+\frac{1}{2} \\
& =\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}+\frac{1}{2} \\
& =\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}+\frac{8}{16} \\
& =\left(x+\frac{3}{4}\right)^{2}-\frac{1}{16} \\
& =\left(x+\frac{3}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}
\end{aligned}
$$

Hence,
$I=\frac{1}{3}\left(2 x^{2}+3 x+1\right)^{\frac{3}{2}}$

$$
+\frac{5}{\sqrt{2}}\left[\frac{x+\frac{3}{4}}{2} \sqrt{\left(x+\frac{3}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}}-\frac{(1 / 4)^{2}}{2} \cosh ^{-1} \frac{x+\frac{3}{4}}{\frac{1}{4}}\right]
$$

$I=\frac{1}{3}\left(2 x^{2}+3 x+1\right)^{\frac{3}{2}}$
$+\frac{5}{\sqrt{2}}\left[\frac{4 x+3}{8} \cdot \frac{\sqrt{(4 x+3)^{2}-(1)^{2}}}{4}-\frac{1}{32} \cosh ^{-1}(4 x+3)\right]$
$I=\frac{1}{3}\left(2 x^{2}+3 x+1\right)^{\frac{3}{2}}$

$$
+\frac{5}{32 \sqrt{2}}\left[4 x+\sqrt{(4 x+3)^{2}-1}-\cosh ^{-1}(4 x+3)\right]
$$

Q No. $29 \quad I=\int \frac{d x}{3 \sin x+4 \cos x}$
Let $3=r \operatorname{sint}$ and $4=r \cos t$

Squaring and adding, we get,

$3^{2}+4^{2}=r^{2} \sin ^{2} t+r^{2} \cos ^{2} t$

$$
25=r^{2}
$$

$$
r=5
$$

Dividing, we get

$$
\frac{r \sin t}{r \cos t}=\frac{3}{4}
$$

$$
t=\tan ^{-1}\left(\frac{3}{4}\right)
$$

$I=\int \frac{d x}{r \operatorname{sintsin} x+r \operatorname{costcos} x}$
$I=\frac{1}{r} \int \frac{d x}{\cos (x-t)}$
$I=\frac{1}{r} \int \sec (x-t) d x$
$I=\frac{1}{r} \ln |\sec (x-t)+\tan (x-t)|$
$I=\frac{1}{5} \ln \left|\sec \left(x-\tan ^{-1} \frac{3}{4}\right)+\tan \left(x-\tan ^{-1} \frac{3}{4}\right)\right|$
Q No. $30 \quad I=\int \frac{\tan x d x}{\cos x+\sec x}$
$I=\int \frac{\frac{\sin x}{\cos x}}{\cos x+\frac{1}{\cos x}} d x$
$I=\int \frac{\sin x}{\cos ^{2} x+1} d x$
$I=-\int \frac{-\sin x}{\cos ^{2} x+1} d x$
$I=\tan ^{-1}(\cos x)$
Q No. $31 \quad I=\int \frac{d x}{\sin (x-a) \sin (x-b)}$

$$
\begin{aligned}
& 1=\frac{\sin (a-b)}{\sin (a-b)}=\frac{\sin (a-b+x-x)}{\sin (a-b)} \\
& =\frac{\sin (x-b-x+a)}{\sin (a-b)} \\
& =\frac{\sin [(x-b)-(x-a)]}{\sin (a-b)} \\
& =\frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\sin (a-b)}
\end{aligned}
$$

So,
$I=\frac{1}{\sin (a-b)}$
$\int\left(\frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\sin (x-a) \sin (x-b)}\right)$
$I=\frac{1}{\sin (a-b)} \int\left[\frac{\cos (x-a)}{\sin (x-a)}-\frac{\cos (x-b)}{\sin (x-b)}\right] d x$
$I=\frac{1}{\sin (a-b)}[\ln \sin (x-a)-\ln \sin (x-b)]$
$I=\frac{1}{\sin (a-b)} \ln \frac{\sin (x-a)}{\sin (x-b)}$

Q No. $32 \quad I=\int \operatorname{tanx} \ln (\sec x) d x$
Put $\ln \sec x=z \quad \Rightarrow d z=\frac{1}{\sec x} \cdot \sec x \cdot \tan x \cdot d x$

$$
\Rightarrow \mathrm{dz}=\tan x d x
$$

$I=z d z=\frac{z^{2}}{2}=\frac{(\operatorname{lnsec} x)^{2}}{2}$
Q No. $33 \quad I=\int \frac{d x}{(3 \tan x+1) \cos ^{2} x}$
$I=\int \frac{\sec ^{2} x d x}{3 \tan x+1}=\frac{1}{3} \int \frac{3 \sec ^{2} x d x}{3 \tan x+1}=\frac{1}{3} \ln (3 \tan x+1)$
Q No. $34 \quad I=\int \boldsymbol{e}^{\sin \boldsymbol{x}} \cos \boldsymbol{x} d \boldsymbol{x}$
Put $\sin x=z \quad \Rightarrow \cos x d x=d z$
$I=\int e^{z} d z=e^{z}=e^{\sin x}$
Q No. $35 \quad I=\int \sqrt{1+3 \cos ^{2} x} \sin 2 x d x$
Put $\cos ^{2} x=z \Rightarrow 2 \cos x(-\sin x) d x=d z$
$\Rightarrow-2 \sin x \cdot \cos x d x=d z$ or $\sin 2 x d x=-d z$
$I=-\int(1+3 z)^{\frac{1}{2}} d z$
$I=-\frac{1}{3} \int(1+3 z)^{\frac{1}{2}} \cdot 3 d z$
$I=-\frac{1}{3} \cdot \frac{(1+3 z)^{\frac{1}{2}+1}}{\frac{1}{2}+1}$
$I=-\frac{2}{9}(1+3 z)^{\frac{3}{2}}$
$I=-\frac{2}{9}\left(1+3 \cos ^{2} x\right)^{\frac{3}{2}}$
Q No. $36 \quad I=\int \frac{\sin 2 x d x}{\sqrt{1+\cos ^{2} x}}$
Put $\cos ^{2} x=z \quad \Rightarrow \quad 2 \cos x(-\sin x) d x=d z$
$\Rightarrow-2 \sin x \cdot \cos x d x=d z$ or $\sin 2 x d x=-d z$
$I=-\int(1+z)^{\frac{-1}{2}} d z$
$I=-\frac{(1+z)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}$
$I=-2 \sqrt{1+\cos ^{2} x}$

Q No. $37 \quad I=\int \frac{d x}{2 \sin ^{2} x+3 \cos ^{2} x}$
Divide N^{r} and D^{r} by $\cos ^{2} x$
$I=\int \frac{\sec ^{2} x d x}{2 \tan ^{2} x+3}$
Put tan $=\mathrm{z} \quad \sec ^{2} \mathrm{xdx}=\mathrm{dz}$
$I=\int \frac{d z}{2 z^{2}+3}=\frac{1}{2} \int \frac{d z}{z^{2}+\frac{3}{2}}$
$I=\frac{1}{2} \cdot \sqrt{\frac{2}{3}} \tan ^{-1} \frac{\sqrt{2} z}{\sqrt{3}} \quad$ as $\left(\frac{1}{a} \tan ^{-1} \frac{x}{a}\right)$
Q No. $38 \quad I=\int \frac{1}{\sqrt{x}} \sec \sqrt{x} \tan \sqrt{x} d x$
Put $\sqrt{x}=z \Rightarrow \frac{1}{2 \sqrt{x}} d x=d z \quad \Rightarrow \quad \frac{d x}{\sqrt{x}}=2 d z$
$I=\int \sec z \operatorname{tanz} .2 d z=2 \sec z=2 \sec \sqrt{x}$
$\overline{\text { Q No. } 39 I=\int\left[\pi^{\sin x}+(\sin x)^{\pi}\right] \cos x d x}$
Put $\sin x=z \quad \Rightarrow \cos x d x=d z$
$I=\int \pi^{z} d z+\int z^{\pi} d z$
$I=\frac{\pi^{z}}{\ln \pi}+\frac{z^{\pi+1}}{\pi+1}$
$I=\frac{\pi^{\sin x}}{\ln \pi}+\frac{(\sin x)^{\pi+1}}{\pi+1}$
Q No. $40 \quad I=\int \frac{\cos x d x}{3 \sin x+4 \sqrt{\sin x}}$
Put $\sqrt{\sin x}=z \Rightarrow \sin x=z^{2} \Rightarrow \quad \cos x d x=2 z d z$
$I=\int \frac{2 z d z}{3 z^{2}+4 z}=2 \int \frac{d z}{3 z+4}=\frac{2}{3} \int \frac{3 d z}{3 z+4}$
$I=\frac{2}{3} \ln (3 z+4)$

$$
I=\frac{2}{3} \ln (3 \sqrt{\sin x}+4)
$$

