EXERCISE 1.3

Discuss the continuity of the following functions at the indicated points.

1. \(f(x) = |x - 3| \) at \(x = 3 \)
2. \(f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 0 & \text{if } x = 3 \end{cases} \) at \(x = 3 \)
3. \(f(x) = \begin{cases} x - 4 & \text{if } -1 < x \leq 2 \\ x^2 - 6 & \text{if } 2 < x < 5 \end{cases} \) at \(x = 2 \)
4. \(f(x) = \begin{cases} \frac{x^3 - 27}{x^2 - 9} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases} \) at \(x = 3 \)
5. \(f(x) = \begin{cases} \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \) at \(x = 0 \)
6. \(f(x) = \sin x \) for all \(x \in \mathbb{R} \).
7. \(f(x) = \begin{cases} \frac{x^2}{a} - a & \text{if } 0 < x < a \\ 0 & \text{if } x = a \\ a - \frac{a^2}{x} & \text{if } x > a \end{cases} \) at \(x = a \)
8. \(\) Determine the points of continuity of the function \(f(x) = x - \lfloor x \rfloor \) for all \(x \in \mathbb{R} \).
9. Discuss the continuity of \(x - |x| \) at \(x = 1 \).
10. Show that the function \(f: \mathbb{R} \rightarrow \mathbb{R} \) defined by
 \[
 f(x) = \begin{cases}
 x & \text{if } x \text{ is irrational} \\
 1 - x & \text{if } x \text{ is rational}
 \end{cases}
 \]
 is continuous at \(x = \frac{1}{2} \).
11. Show that the function \(f: \mathbb{R} \rightarrow \mathbb{R} \) defined by
 \[
 f(x) = \begin{cases}
 \frac{1}{x} & \text{if } x \text{ is irrational} \\
 1 - x & \text{if } x \text{ is rational}
 \end{cases}
 \]
 is continuous on \([0, 1] \). Is \(f(x) \) bounded on this interval? Explain.
12. Let \(f(x) = \begin{cases} \cos \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases} \)

Is \(f \) continuous at \(x = 0 \)?

13. Let \(f(x) = \begin{cases} (x - a) \sin \left(\frac{1}{x - a} \right) & \text{if } x \neq a \\ 0 & \text{if } x = 0 \end{cases} \)

Discuss the continuity of \(f \) at \(x = a \).

14. Let \(f(x) = \begin{cases} x \cos \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \)

Show that \(f \) is continuous at \(x = 0 \).

15. Let \(f(x) = \begin{cases} x^2 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \)

Discuss the continuity of \(f \) at \(x = 0 \).

16. Let \(f(x) = \begin{cases} x \sin \left(\frac{|x|}{x} \right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \)

Discuss the continuity of \(f \) at \(x = 0 \).

17. Find \(c \) such that the function

\[
f(x) = \begin{cases} \frac{1 - \sqrt{x}}{x - 1} & \text{if } 0 \leq x < 1 \\ c & \text{if } x = 1 \end{cases}
\]

is continuous for all \(x \in [0, 1] \).

In Problems 18 – 20, find the points of discontinuity of the given function

18. \(f(x) = \begin{cases} x + 4 & \text{if } -6 \leq x < -2 \\ x & \text{if } -2 \leq x < 2 \\ x - 4 & \text{if } 2 \leq x \leq 6 \end{cases} \)

19. \(g(x) = \begin{cases} -4 - x^2 & \text{if } 1 \leq x \leq 10 \\ 6x^2 + 46 & \text{if } x > 10 \end{cases} \)

20. \(f(x) = \begin{cases} x + 2 & \text{if } 0 \leq x < 1 \\ x & \text{if } 1 \leq x < 2 \\ x + 5 & \text{if } 2 \leq x < 3 \end{cases} \)

21. Find constants \(a \) and \(b \) such that the function \(f \) defined by

\[
f(x) = \begin{cases} x^3 & \text{if } x < -1 \\ ax + b & \text{if } -1 \leq x < 1 \\ x^2 + 2 & \text{if } x \geq 1 \end{cases}
\]

is continuous for all \(x \).
Find the interval on which the given function is continuous. Also find points where it is discontinuous. (Problems 22-26):

22. \(f(x) = \frac{x^2 - 5}{x - 1} \)

23. \(f(x) = \frac{x}{|x|} \)

24. \(f(x) = \frac{\sin x}{x} \)

25. \(f(x) = \tan x \)

26. \(f(x) = \begin{cases} \sin x & \text{if } x \leq \pi / 4 \\ \cos x & \text{if } x > \pi / 4 \end{cases} \)

In Problems 27 – 34, examine whether the given function is continuous at \(x = 0 \)

27. \(f(x) = \begin{cases} (1 + 3x)^{1/2} & \text{if } x \neq 0 \\ e^2 & \text{if } x = 0 \end{cases} \)

28. \(f(x) = \begin{cases} (1 + x)^{1/2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

29. \(f(x) = \begin{cases} (1 + 2x)^{1/2} & \text{if } x \neq 0 \\ e^2 & \text{if } x = 0 \end{cases} \)

30. \(f(x) = \begin{cases} e^{-1/2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

31. \(f(x) = \begin{cases} \frac{e^{1/2}}{1 + e^{1/2}} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

32. \(f(x) = \begin{cases} \frac{e^{1/2}}{e^{1/2} - 1} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

33. \(f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)

34. \(f(x) = \begin{cases} \frac{\sin 3x}{\sin 2x} & \text{if } x \neq 0 \\ 2/3 & \text{if } x = 0 \end{cases} \)

35. Let \(f(x) = x^2 \) and

\(g(x) = \begin{cases} -4 & \text{if } x \leq 0 \\ |x - 4| & \text{if } x > 0 \end{cases} \)

Determine whether \(f \circ g \) and \(g \circ f \) are continuous at \(x = 0 \).
Continuity

A function \(y = f(x) \) is said to be continuous at a point \(x = a \) \(\in \mathbb{D}_f \) if:

(i) \(f(x) \) is defined at \(x = a \)

(ii) \(\lim_{{x \to a}} f(x) = \lim_{{x \to a}} f(x) \)

(iii) \(\lim_{{x \to a}} f(x) = f(a) \)

Exercise No. 1.3

1. \(f(x) = \left| x - 3 \right| - 4 \)
 \(\text{at } x = 3 \)

 Value

 \(f(3) = 13 - 3 = 10 \)

 \(\Rightarrow x = 3 + h \)

 \(\Rightarrow \lim_{{h \to 0}} \left| 3 + h - 3 \right| = 0 \longrightarrow \text{(i)} \)

2. \(f(x) = \frac{x^2 - 9}{x - 3} \) \(\forall x \neq 3 \)

 Value

 \(f(3) = \lim_{{x \to 3}} \frac{x^2 - 9}{x - 3} = \lim_{{x \to 3}} \frac{(x-3)(x+3)}{x-3} = x+3 = 6 \) \(\text{at } x = 3 \)

3. \(f(x) = \begin{cases} \frac{1}{x} & 0 < x \leq 2 \\ \frac{1}{x^2} & 2 < x < 5 \end{cases} \) \(\forall x = 3 \)

 Value

 \(f(2) = \frac{1}{2} = \frac{1}{2} \rightarrow \text{iv} \)

\(\text{Written by: Prof. Muhammad Farooq} \)
\[f(x) = \begin{cases} \frac{2x^2 - 9}{x^2 - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases} \]

At \(x = 3 \), the limit is given and is 6:

\[\lim_{{x \to 3}} f(x) = \lim_{{x \to 3}} \frac{2x^2 - 9}{x^2 - 3} = \frac{2 \cdot 3^2 - 9}{3^2 - 3} = \frac{9}{6} = \frac{3}{2} \]

\(i \), \(ii \), and \(iii \):

\(f(3) \neq \frac{3}{2} \) for \(x \rightarrow 3 \)

\(\Rightarrow f(x) \) is discontinuous at \(x = 3 \)

As:

\[f(x) = \begin{cases} \sin \left(\frac{x}{2} \right) & \text{if } x = 0 \\ 2 & \text{if } x = 0 \end{cases} \]

Ex.2 Page (4 Limit)

\(x \to 0 \) \(f(x) \) does not exist.

Hence the given function is not continuous at \(x = 0 \)

\(\sin x \neq x \) for \(x \in \mathbb{R} \)

\(f(x) \) is defined at \(x = 0 \)

\(\lim_{{x \to 0^+}} f(x) \) for \(L \)

\[x \to a^- (\frac{x^2}{a^2}) \]

\[\text{Written by: Prof. Muhammad Farooq} \]
\[
\lim_{{h \to 0}} \left(\frac{(a-h)^2}{a} - a \right) \\
= \frac{a^2}{a} - a = 0
\]

\(R.H.\ \lim_{x \to a} f(x) \downarrow\)
\(\lim_{x \to a} (a - \frac{a^2}{x}) = \lim_{h \to 0} (a - \frac{a^2}{a+h}) = a - \frac{a^2}{a} = 0\)
\(\Rightarrow \lim_{x \to a} f(x) = R.H.\ \lim_{x \to a} f(x) = 0\)
\(\Rightarrow x \to a \ f(x) = 0\)

Limit of \(f(x)\) exists at \(x = 0\)

\(i) \ \lim_{x \to 0} f(x) = f(0) = 0\)

All three conditions are satisfied:
- \(f(x)\) is Cont.: at \(x = 0\)

\(\text{Case I}\)

Determine the points of Continuity.

\(\text{if the function} \ f(x) = x - [x]\)

\(\text{for all} \ x \in \mathbb{R}\).

Note: \([x]\) is called Bracket \(f_n\)
(Greatest integral value of \(x\)
But not greater than \(x\)
(\(x\) is Decimal)

\(\text{Case II}\)

\(\text{let} \ x = 2.5\) (Take Fractional Value \(\in \mathbb{R}\))

\(\text{then} \ f(2.5) = 2.5 - [2.5] = 2.5 - 2 = 0.5\)

And \(\lim_{x \to 2.5} f(x) = L+ (x - [x]) = 2.5 - [2.5] = 2.5 - 2 = 0.5\)

\(\text{for} \ 1 \ \text{and} \ 2, \ \text{we get}\)

\(f(2.5) = x \to 2.5 \ f(x) = 0.5\)

\(f_n\) is Cont. at any Fractional value of \(x \in \mathbb{R}\).

\(\text{Case III}\)

When \(x\) is Integer either +ve or -ve

Suppose that \(x = c = 5\)

Then \(f(c) = x - [x]\) will

Then \(f(5) = 5 - [5] = 5 - 5 = 0\)

\(\text{And let}\)

\(\lim_{x \to 5-0} f(x) = L+ (x - [x]) = 5 - [5-0] = 5 - 4 = 1\)

\(\lim_{x \to 5+0} f(x) = L- (x - [x]) = 5 - [5+0] = 5 - 5 = 0\)

\(\lim \text{does not exist at} \ x = c = 5 \in \mathbb{R}.\)
For any two \(a \) and \(b \) in \(\mathbb{R} \), let \(f \) be a function defined on \([a, b] \). Consider the integral of \(f \) from \(a \) to \(b \) defined by

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x
\]

where \(\Delta x = \frac{b-a}{n} \) and \(x_i = a + i\Delta x \) for \(i = 1, 2, \ldots, n \).

If \(f \) is continuous for all \(x \in [a, b] \), then the integral exists.

However, if \(f \) is continuous at every other real value of \(x \), \(f \) is continuous for all real values of \(x \).

Let \(f(x) = 1 - |x| \) at \(x = 1 \)

\[
f(1) = 1 - |1| = 1 - 1 = 0
\]

\[
x \to 1^{-} f(x) = x \to 1^{-} 0 = 1 - x
\]

\[
x \to 1^{+} f(x) = x \to 1^{+} 0 = 1 - x
\]

\[
\therefore \quad x \to 1^{-} f(x) = x \to 1^{+} 0 = f(1)
\]

\(f \) is continuous at \(x = 1 \).

Show that the function \(f : \mathbb{R} \to \mathbb{R} \) defined by

\[
f(x) = \begin{cases}
1 & \text{if } x \text{ is irrational} \\
1 - x & \text{if } x \text{ is rational}
\end{cases}
\]

is continuous at \(x = \frac{1}{2} \).

\(\therefore \quad \lim_{x \to \frac{1}{2}} f(x) = f \left(\frac{1}{2} \right) = \frac{1}{2} \)

\(\therefore \quad f \) is continuous at \(x = \frac{1}{2} \).

Note: The numbers \(a \) and \(b \) can be written to the form of \(\frac{p}{q} \) and \(q \) an integer. When \(q \neq 0 \) is called rational.
1) Show that the function $f: [0,1] \rightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is bounded on the interval. Explain.

Solution: Let a be an arbitrary real number belonging to $[0,1].$

Value:

\[f(a) = \frac{1}{a} \] \quad \text{if } a \neq 0

\[f(a) = 0 \] \quad \text{if } a = 0

Limit

\[\lim_{{x \to a^+}} f(x) = \lim_{{h \to 0^+}} \left(\frac{1}{a-h} \right) \]

\[= \frac{1}{a} \]

\[= \lim_{{h \to 0^+}} \left(\frac{1}{a+h} \right) \]

\[\text{as } h \to 0 \]

\[\text{Limit exists.} \]

ii:

\[f(a) = \lim_{{x \to a}} f(x) = \frac{1}{a} \]

a is arbitrary real number in $(0,1]$

Concl: on $(0,1]$

Explain: $x \to$ any value in $[0,1].$

Let see that $f(x) = 1$ when $x = 1$

$x = 1$ is its lower bound.

But value of x becomes decreasing from 1. The value of $f(x) \to \infty \quad \text{as } x \to 0$

So fn: has not upper bound.

Thus fn: $f(x)$ is not bounded above.

Hence $f(x)$ is unbounded.

2) Let $f(x) = \begin{cases}
\cos \left(\frac{x}{x} \right) & x \neq 0 \\
0 & x = 0
\end{cases}$

\[f \text{ is cont. at } x = 0 \]

Value:

\[f(0) = 0 \quad \text{(given)} \]

Limit

\[\lim_{{x \to 0^+}} f(x) = \lim_{{h \to 0^+}} f(h) \]

\[\lim_{{x \to 0^+}} \cos \left(\frac{x}{x} \right) \]

\[\cos \left(\frac{1}{h} \right) \]

\[\text{does not exist.} \]

\[\lim_{{x \to 0^-}} f(x) \]

\[\lim_{{h \to 0^-}} f(h) \]

\[\cos \left(\frac{1}{h} \right) \]

\[\text{does not exist.} \]

\[\text{fn is discontinuous at } x = 0 \]

3

\[f(x) = \begin{cases}
(x-a)^2 \sin \left(\frac{1}{x-a} \right) & x \neq a \\
0 & x = a
\end{cases} \]

Concl: at $x = 0$

Sol:

\[f(0) = 0 \quad \text{(given)} \]

Limit

\[\lim_{{x \to a^+}} f(x) = \lim_{{h \to 0^+}} f(h) \]

\[\lim_{{x \to a^-}} (x-a)^2 \sin \left(\frac{1}{x-a} \right) \]

\[\sin \left(\frac{1}{x-a} \right) \]

\[\text{as } h \to 0 \]

\[\text{does not exist.} \]

\[\lim_{{x \to a^-}} (x-a)^2 \sin \left(\frac{1}{x-a} \right) \]

\[\sin \left(\frac{1}{x-a} \right) \]

\[\text{as } h \to 0 \]

\[\text{does not exist.} \]

\[\text{fn is discontinuous at } x = 0 \]

\[f(x) = \begin{cases}
(x-a)^2 \sin \left(\frac{1}{x-a} \right) & x \neq a \\
0 & x = a
\end{cases} \]

R.H.L.

\[\lim_{{x \to a^+}} f(x) = \lim_{{h \to 0^+}} f(h) \]

\[\lim_{{x \to a^-}} (x-a)^2 \sin \left(\frac{1}{x-a} \right) \]

\[\sin \left(\frac{1}{x-a} \right) \]

\[\text{as } h \to 0 \]

\[\text{does not exist.} \]

\[\lim_{{x \to a^-}} (x-a)^2 \sin \left(\frac{1}{x-a} \right) \]

\[\sin \left(\frac{1}{x-a} \right) \]

\[\text{as } h \to 0 \]

\[\text{does not exist.} \]
\[f(x) = \begin{cases} 1 - \frac{\sqrt{x}}{x^2 - 1} & \text{for } 0 < x < 1 \\ C & \text{for } x = 1 \end{cases} \]

\[f(1) = C \rightarrow (i) \]

\[\frac{f(x)}{x-1} = \frac{1 - \sqrt{x}}{x-1} - \frac{1}{x-1} = -\frac{1}{\sqrt{x+1}} \]

\[f(x) \text{ is cont: } x < 0, x > 1 \]

\[f(x) \text{ is cont: at } x = 0 \]

\[f(x) \text{ is cont: at } x = 1 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]

\[f(x) \text{ is cont: at } x = -2 \]

\[f(x) \text{ is cont: at } x = 2 \]
\[g(x) = \begin{cases}
 x^3 & \text{if } x < 1 \\
 -4 - x^2 & \text{if } 1 \leq x \leq 10 \\
 6x^2 + 46 & \text{if } x > 10
\end{cases} \]

At \(x = 1 \):
\[g(1) = -4 - (1)^2 = -4 - 1 = -5 \]

Left:
\[\lim_{{x \to 1^-}} g(x) = \lim_{{x \to 1^-}} (x^3) = (1)^3 = 1 \]

Right:
\[\lim_{{x \to 1^+}} g(x) = \lim_{{x \to 1^+}} (-4 - x^2) = -5 \]

\(g(x) \) is not continuous at \(x = 1 \).

At \(x = 10 \):
\[g(10) = 600 + 46 = 646 \]

Left:
\[\lim_{{x \to 10^-}} g(x) = \lim_{{x \to 10^-}} (6x^2 + 46) = 600 + 46 = 646 \]

Right:
\[\lim_{{x \to 10^+}} g(x) = \lim_{{x \to 10^+}} (x^3) = (10)^3 = 1000 \]

\(g(x) \) is also discontinuous at \(x = 10 \).

\[f(x) = \begin{cases}
 x^2 & \text{if } x < -1 \\
 ax + b & \text{if } -1 \leq x < 1 \\
 x^2 + 2 & \text{if } x \geq 1
\end{cases} \]

Continues for all \(x \).

At \(x = -1 \):
\[f(-1) = (-1)^2 = 1 \]

Left:
\[\lim_{{x \to -1^-}} f(x) = \lim_{{x \to -1^-}} (x^3) = (-1)^3 = -1 \]

Right:
\[\lim_{{x \to -1^+}} f(x) = \lim_{{x \to -1^+}} (ax + b) = \lim_{{x \to -1^+}} (-1 + b) = -1 + b \]

By iii, \(b = 1 \).

By i, \(a + b = 3 \).

Add by ii:
\[a + b = 1 \]
\[a + b = 3 \]
\[b = 2 \Rightarrow b = 1 \]

Using i:
\[a + 1 = 3 \]
\[a = 2 \]
Find the interval on which the given function is continuous. Also find points where it is discontinuous (22 - 26)

22 \[f(x) = \frac{x^2 - 5}{x - 4} \]

Clearly at \(x = 4 \), the value of \(f(x) \) does not exist.
\(f(x) \) is not continuous at \(x = 4 \).

And continuous for all \(x \in \mathbb{R} - \{4\} \)

23 \[f(x) = \frac{x}{|x|} \]

As the function is not defined at \(x = 0 \).
So it is discontinuous at \(x = 0 \).
The function is cont. at every value of \(x \) when \(x \in \mathbb{R} - \{0\} \).

24 \[f(x) = \frac{\sin x}{x} \]

\(f(x) \) is not defined at \(x = 0 \) (Dis. Cont. Pt).
Every value of \(\sin x \) and \(x \) is continuous when \(x \neq 0 \)
i.e \(x \in \mathbb{R} - \{0\} \)

25 \[f(x) = \tan x \]

Since \(\tan \left(\frac{\pi}{2} \right) \)

Value of \(\tan x \) at \(x = \frac{(2n+1)\frac{\pi}{2}}{2} \)
does not exist. Therefore \(f(x) \) is discontinuous at \(x = \frac{(2n+1)\frac{\pi}{2}}{2} \).

26 \[f(x) = \sin x, x \leq \frac{\pi}{4} \]

\[= \cos x, x > \frac{\pi}{4} \]

(i) \[f\left(\frac{\pi}{4} \right) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \]

(ii) \[x \to \frac{\pi}{4}, f(x) = x \to \frac{\pi}{4} \]
\[\cos x = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \]

\[x \to \frac{\pi}{4}, f(x) = x \to \frac{\pi}{4} \]
\[\sin x = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \]

\[x \to \frac{\pi}{4}, f(x) = x \to \frac{\pi}{4} \]
\[\text{f}\left(\frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \]

\[f(x) \text{ is cont. at } x = \frac{\pi}{4} \]

Both \(\sin x \) \& \(\cos x \) are continuous at every value of \(x \in \mathbb{R} \), hence \(f(x) \) is continuous at every value of \(x \in \mathbb{R} \).
Examine whether the given function is continuous at $x=0$.

27. $f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ e^2 & x = 0 \end{cases}$

- **Value:** $f(0) = e^2 \quad \rightarrow \text{i}$
- **Limit:**
 \[\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \left(\frac{1}{x^2} \right) = \lim_{{x \to 0}} \left(\frac{1}{x} \right)^3 = \lim_{{x \to 0}} \left(\frac{3x}{x} \right)^3 = \lim_{{x \to 0}} 3^3 = 27 \quad \rightarrow \text{i} \]
- **Result:** $f(x)$ is not continuous at $x=0$.

28. $f(x) = \begin{cases} (1+x)^{1/2} & x \neq 0 \\ 1 & x = 0 \end{cases}$

- **Value:** $f(0) = 1 \quad \rightarrow \text{i}$
- **Limit:**
 \[\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} (1+x)^{1/2} = \frac{1}{x} \quad \rightarrow \text{i} \]
- **Result:** $f(x)$ is discontinuous at $x=0$.

30. $f(x) = \begin{cases} -x^2 & x \neq 0 \\ 1 & x = 0 \end{cases}$

- **Value:** $f(0) = 1 \quad \rightarrow \text{i}$
- **Limit:**
 \[\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \frac{-x^2}{x} = \frac{1}{x^2} = \frac{1}{e^{2x}} = \frac{1}{e^0} = 1 \quad \rightarrow \text{i} \]
- **Result:** $f(x)$ is continuous at $x=0$.

31. $f(x) = \frac{1}{1 + e^{1/x}} \quad \rightarrow \text{i}$

- **Value:** $f(0) = 1 \quad \rightarrow \text{i}$
- **Limit:**
 \[\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \frac{e^{1/x}}{1 + e^{1/x}} \quad \text{given} \]

Since $f(0) = 1$ (given),
\[\lim_{{x \to 0}} f(x) = \lim_{{x \to 0}} \frac{e^{1/x}}{1 + e^{1/x}} \]
\[f(x) = \frac{1}{e^{1x}} \]

\[\lim_{x \to 0} f(x) = \frac{1}{e^{0}} = 1 \]

\[f(0) = \frac{1}{e^{0}} = 1 \]

\[f(0) \neq \lim_{x \to 0} f(x) \]

Function is not continuous at \(x = 0 \).

Since \(f(0) \neq \lim_{x \to 0} f(x) \), function is not continuous at \(x = 0 \).

\[f(x) = \frac{\sin 2x}{x} \quad \text{if} \quad x \neq 0 \]

\[f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{2 \sin 2x}{2x} = \lim_{x \to 0} \frac{\sin 2x}{2x} = 2 \]

\[\text{Value} \quad f(0) = 2 \]

\[f(x) = \begin{cases} \frac{1}{x^2} & \text{if} \quad x \neq 0 \\ 1 & \text{if} \quad x = 0 \end{cases} \]

\[\text{Value} \quad f(0) = 1 \]

\[\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = \lim_{x \to 0} \frac{1 - \frac{1}{e^{1x^2}}}{x^2 - 1} \]

\[= \frac{1}{1 - \frac{1}{e^{1x^2}}} \]

\[= 1 \quad \text{if} \quad x \to 0 \]

\[\frac{1}{1 - \frac{1}{e^{1x^2}}} = 1 \]

\[\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 3x}{\sin 2x} \]

\[= \lim_{x \to 0} \frac{3x}{2x} \cdot \frac{1}{\frac{\sin 2x}{\sin 3x}} \]

\[= \lim_{x \to 0} \frac{3x}{2x} \cdot \frac{1}{\frac{1}{3}} = \frac{3}{2} \cdot 1 = \frac{3}{2} \]
Let \(f(x) = x^2 \) and
\[g(x) = \begin{cases}
-4 & \text{if } x \leq 0 \\
|x-4| & \text{if } x > 0
\end{cases} \]

Determine whether \(f \circ g \) and \(g \circ f \) are continuous at \(x = 0 \).

\[(f \circ g)(x) = f(g(x)) = \begin{cases}
-4^2 = 16 & \text{if } x \leq 0 \\
(x-4)^2 & \text{if } x > 0
\end{cases} \]

\[g(f(0)) = g(-4) = -4 \]

\[\lim_{{x \to 0^+}} g(f(x)) = \lim_{{x \to 0^+}} (x-4)^2 = 16 \]

\[\lim_{{x \to 0^-}} g(f(x)) = \lim_{{x \to 0^-}} (-4) = -4 \]

\(g(f(x)) \) is discontinuous at \(x = 0 \).

\[(g \circ f)(x) = g(f(x)) = \begin{cases}
g(f(x)) = g(x^2) = -4 & \text{if } x \leq 0 \\
|\sqrt{x-4}| & \text{if } x > 0
\end{cases} \]